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Resolving jets and the QGP with jet substructure

Jet quenching is a multi-scale problem

• The strong suppression of hadron and jet cross sections
has been observed more than a decade ago

• Many models exploit the idea of parton energy loss and can
explain the data

• However, it has been clear that cross sections are not
sufficient to distinguish various jet formation mechanisms

• Jet substructure can resolve jets at different energy scales

• It can also separate final-state, jet-medium interactions
from initial state effects

• The interference between jets and the medium is an even
more complicated multi-scale problem
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Effective field theory techniques are extremely useful
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Jet shape(Ellis, Kunszt, Soper)

R

r ΨJ(r,R) =

∑

ri<r ET i
∑

ri<R ET i

〈Ψ〉 =
1

NJ

NJ
∑

J

ΨJ(r, R)

ψ(r, R) =
d〈Ψ〉

dr 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

20

25

30

35

gluon NLL

gluon LO

quark NLL

quark LO

r

ψ(r)

• Jet shapes probe the averaged energy distribution inside a jet

• The infrared structure of QCD induces Sudakov logarithms

• Fixed order calculation breaks down at small r

• Large logarithms of the form αn
s logm r/R (m ≤ 2n) need to be resummed

The necessity of resummation for jet substructure calculat ions
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Soft-Collinear Effective Theory (SCET)

• Effective field theory techniques are useful whenever there
is clear scale separation

• SCETseparates physical degrees of freedom in QCD by a
systematic expansion in power counting

• Match SCETwith QCD at the hard scale by integrating
out the hard modes

• Integrating out the off-shell modes gives collinear
Wilson lines which describe the collinear radiation

• The soft sector is described by soft Wilson lines along
the jet directions

• Soft-collinear decoupling holds at leading power in the
Lagrangian, which makes the factorization theorems of
cross sections manifest

SCET factorizes a complicated, multi-scale problem
into multiple simpler, single-scale problems
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Jet shape factorization theorem(Chien et al)
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• The factorization theorem for the differential cross
section of the production of N jets with pT i, yi, the
energy Er inside the cone of size r in one jet, and an
energy cutoff Λ outside all the jets is the following,

dσ

dpT idyidEr
= H(pT i, yi, µ)J

ω1
1 (Er, µ)J

ω2
2 (µ) . . . S1,2,...(Λ, µ)

• For the differential jet rate

dσ

dpT idyi
= H(pT i, yi, µ)J

ω1
1 (µ)Jω2

2 (µ) . . . S1,2,...(Λ, µ)

• H(pT i, yi, µ) describes the hard scattering process at high energy

• Jω1 (Er, µ) describes the probability of having the amount of energy Er inside the
cone of size r

• Xc is constrained within jets by the corresponding jet algorithm

• S1,2,...(Λ, µ) describes how soft radiation is constrained in measurements

Factorization theorem simplifies dramatically and has a pro duct form
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Jet shape factorization theorem(Chien et al)

The averaged energy inside the cone of size r in jet 1 is the following,

〈Er〉ω =
1
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∫
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• JωE,r(µ) =
∫

dErErJω(Er, µ) is referred to as the jet energy function

• Huge cancelation between the hard, unmeasured jet and soft functions

• The jet shape is insensitive to the details of the underlying hard scattering
process as well as the other part of the event

• The integral jet shape, averaged over all jets, is the following
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The jet shape is within the class of collinear observables an d is relatively
insensitive to the soft radiation
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Scale hierarchy and renormalization group evolution
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• 〈Er〉ω and Ψω are renormalization
group invariant

Ψω =
JE,r(µ)

JE,R(µ)
=

JE,r(µjr )

JE,R(µjR )
UJ(µjr , µjR )

• Identify the natural scale µjr to
eliminate large logarithms in JE,r(µjr )

• The RG evolution kernel UJ(µjr , µjR )
resums the large logarithms

R

r

µjR ≈ EJ × R

µjr ≈ EJ × r

µ

RG evolution between µjr and µjR resums logµjr/µjR = log r/R
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Baseline jet shape calculations
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• Compare CMS pp data at 2.76 and 7 TeV

• Bands are theory uncertainties estimated by
varying µjr and µjR

• The shape difference for jets reconstructed
using different algorithms is significant

• In the region r ≈ R, higher fixed order
calculations and power corrections are more
prominent
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• For low pT jets, power corrections
have significant contributions
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Multiple scattering in a medium

• Coherent multiple scattering and
induced bremsstrahlung are the
qualitatively new ingredients in
the medium parton shower

• Interplay between several
characteristic scales:

• Debye screening scale µ
• Parton mean free path λ
• Radiation formation time τ

µ

∆Z L

• From thermal field theory and lattice QCD calculations,
an ensemble of quasi particles with debye screened
potential and thermal masses is a reasonable
parameterization of the medium properties

1
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Parton splitting and induced bremsstrahlung interfere in t he jet formation
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SCET with Glauber gluons (SCETG)

• Glauber gluon is the relevant mode for medium interactions

• SCETG was extended from SCET(Idilbi et al, Vitev et al)

• Glauber gluons are generated from the colored charges in
the QGP providing transverse momentum transfer

• Given a medium model, we can use SCETG to consistently
couple the medium to jets

QCD
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• Because of the collinear nature, the jet shape can be calculated using only the
splitting functions
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The medium induced splitting functions are calculated nume rically using
SCETG with the Bjorken-expanded hydrodynamic QGP model
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Landau-Pomeranchuk-Migdal effect

• The hierarchy between τ and λ determines the
degree of coherence between multiple scatterings

τ =
x ω

(q⊥ − k⊥)2
v.s. λ

• τ ≫ λ: destructive interference
• τ ≪ λ: Bethe-Heitler incoherence limit ∆z

ω, x, k⊥

q⊥

• Medium induced splitting functions in SCETG (Ovanesyan et al)
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•
dNmed

dxd2k⊥
→ finte as k⊥ → 0: the LPM effect

• dNvac

dxd2k⊥
→ 1

k⊥
as k⊥ → 0

Large angle bremsstrahlung takes away energy, resulting in jet energy loss
and the modification of jet shapes
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Jet shapes in heavy ion collisions

• Jet shapes get modified through the modification of jet energy functions

Ψ(r) =
Jvac

E,r + Jmed
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Jvac
E,R + Jmed

E,R

=
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E,R + Jmed
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• Large logarithms in Ψvac(r) = Jvac
E,r/Jvac

E,R have been resummed
• There are no large logarithms in Jmed

E,r due to the LPM effect
• The RG evolution of medium-modified jet energy functions is unchanged

• However, with the use of small R’s in heavy ion collisions, there is significant jet
energy loss which leads to the suppression of jet production cross sections

• Jet-by-jet shapes are averaged with the jet cross sections
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• Cold nuclear matter effects are characterized by µCNM
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Results
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• The plots are the ratios between the jet cross sections and differential jet shapes
in lead-lead and proton-proton collisions

• Jet shapes are insensitive to cold nuclear matter effects

• Jet shape modifications are due to the following two effects

• Gluon jets are more suppressed which increases the quark jet fraction
• Jet-by-jet the shape is broadened
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Results

ATLAS

sNN = 2.76 TeV
R = 0.4, È Η È < 2
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• The plots shows the dependence of jet cross section suppressions on centrality,
jet rapidity and jet radius
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Results

sNN = 5.10 TeV
R = 0.4, È Η È < 2
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• Predictions for jet shapes and cross sections at 5 TeV for inclusive and
photon-tagged jets
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Conclusions

• Jet substructure in proton and heavy ion collisions can be calculated within the
same framework

• Promising agreement with data and phenomenological applications
• Stay tuned before Hard Probes 2016 for pA and AA jet fragmentation

function and jet mass distribution

• Take-home message: the modification of jet substructure is a combination
of cross section suppression and jet-by-jet broadening
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