New results on “soft" probes in PbPb collisions from Run 2

Zhoudunming Tu (Kong)
Rice University
On behalf of CMS collaboration
Lund, Sweden 2016
Heavy ion collisions

Time

Initial state Energy Stopping Hard Collisions Hydrodynamic Evolution Hadron Freezeout
Heavy ion collisions

“Glauber-like” IS + (η/s ≈ 0.2)
Heavy ion collisions

"Glauber-like" IS + ($\eta/s \approx 0.2$)

CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV

low shared viscosity \rightarrow A “perfect” fluid
Previous measurement

- CMS from RUN 1 measured v_2 up to 60 GeV/c
- Can RUN 2 do better?
High-\(p_T \) trigger

- 2015 PbPb run at LHC
 - \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), 404 \(\mu \text{b}^{-1} \)
 - MinimumBias \((p_T < 14 \text{ GeV/c}) \)
- High \(p_T \) track trigger
 - \(|\eta| < 1.0 \), \(14.0 < p_T < 100 \text{ GeV/c} \)

![Graph showing efficiency as a function of \(p_T \).]

![Graph showing efficiency as a function of Offline leading track \(p_T \).]
How to measure v_n

$\nu_2\{SP\}$

$Q_n = \sum_j w_j e^{i\phi_j}$

$\eta_{gap} > 3.0$

It’s measuring $v2$ RMS

$\eta_{gap} > 3.0$

$-0.75 < \eta(Q_{n_c}) < 0.75$

Q_{n_A}

Q_{n_B}

Q_{n_c}

$Q_n \{SP\} = \frac{\langle Q_n \cdot Q_{nA}^* \rangle}{\sqrt{\langle Q_{nA} \cdot Q_{nB}^* \rangle \langle Q_{nA} \cdot Q_{nC}^* \rangle}}$
How to measure v_n

Cumulant

$Q_n = \sum_j w_j e^{i\phi_j}$

HF

(-5 \leq \eta \leq -3.0)

-2.4

-1.0

1.0

2.4

HF

(3 \leq \eta \leq 5.0)
How to measure v_n

Cumulant

$Q_n = \sum_j w_j e^{in\phi_j}$

$\{4\}$

$\{6\}$

$\{8\}$

$\{4\}$

$\{6\}$

$\{8\}$

Reference flow

- $1.0 < p_T < 5.0$ GeV/c
- Full tracker region

$\nu_n \{4\} = \frac{4}{\sqrt{-c_n \{4\}}}$

$\nu_n \{6\} = \frac{6}{\sqrt{c_n \{6\}}} / 4$

$\nu_n \{8\} = \frac{8}{\sqrt{-c_n \{8\}}} / 33$
How to measure v_n

Cumulant

$Q_n = \sum_j w_j e^{i\phi_j}$

Differential flow
- 1 particle at a given p_T
- $(m-1)$ Ref particles

$v_n\{4\}(p_T) = \frac{-d_n\{4\}}{(-c_n\{4\})^{3/4}}$

$v_n\{6\}(p_T) = \frac{d_n\{6\}}{4} \left(\frac{c_n\{6\}}{4}\right)^{5/6}$

$v_n\{8\}(p_T) = \frac{-d_n\{8\}}{33} \left(\frac{-c_n\{8\}}{33}\right)^{7/8}$

Reference flow
- $1.0 < p_T < 5.0$ GeV/c
- Full tracker region

$v_n\{4\} = \frac{4}{3} \sqrt{-c_n\{4\}}$

$v_n\{6\} = \frac{6}{4} \sqrt{c_n\{6\}} / 4$

$v_n\{8\} = \frac{8}{33} \sqrt{-c_n\{8\}} / 33$
How to measure v_n:

Cumulant $\rightarrow v_2\{2\} \approx v_2\{SP\}$

Differential flow
- 1 particle at a given p_T
- $(m-1)$ Ref particles

$$v_n\{4\}(p_T) = \frac{-d_n\{4\}}{c_n\{4\}^{3/4}}$$

$$v_n\{6\}(p_T) = \frac{d_n\{6\}}{4 \left(\frac{c_n\{6\}}{4}\right)^{5/6}}$$

$$v_n\{8\}(p_T) = \frac{-d_n\{8\}}{33 \left(\frac{-c_n\{8\}}{33}\right)^{7/8}}$$

Reference flow
- $1.0 < p_T < 5.0$ GeV/c
- Full tracker region

$$v_n\{4\} = 4\sqrt{-c_n\{4\}}$$

$$v_n\{6\} = 6\sqrt{c_n\{6\}} / 4$$

$$v_n\{8\} = 8\sqrt{-c_n\{8\}} / 33$$
Soft probe, low $p_T \cdot v_2 @ 5\text{TeV}$

Consistent results observed with other experiment

Link
High-p_T v_n is NOT flow
High-\(p_T\) \(v_n\) is NOT flow
High-$p_T v_n$ is NOT flow

- A high energy jet interacts with the medium \rightarrow “Jet quenching”

- High-$p_T v_2$ tells us the energy loss mechanism from:
 - Geometry, path length dependence
 - Initial state fluctuations
High-p$_T$ v$_2$

- Non-zero v$_2$ at very high p$_T$, indicating energy loss depends on "directions" and/or initial state fluctuations
High-\(p_T\) \(v_3\)

- **Non-zero** \(v_2\) at very high \(p_T\), indicating energy loss depends on “directions” and/or initial state fluctuations
- First time measurement of high \(p_T\) \(v_3\) up to 100 GeV!
High-$p_T v_2$ compare with theory

First time up to 100 GeV/c

- CUJET calculation can describe part of the data!
- Missing initial state fluctuations?
\(v_2 \text{ vs } R_{AA} \)

- \(v_2 \) and \(R_{AA} \) both describe the energy loss of the medium
- But it’s a puzzle to model them simultaneously

RUN1 DATA

- Models with initial state fluctuations. Puzzle solved?
- Looking forward to 5 TeV calculations!

arXiv:1602.03788
\(v_2 \) vs \(R_{AA} \)

- \(v_2 \) and \(R_{AA} \) both describe the energy loss of the medium
- But it’s a puzzle to model them simultaneously

CMS has measured both \(v_n \) and \(R_{AA} \) up to very high \(p_T \) @ 5 TeV!
Multi-particle v_2

$v_2\{2\} \geq v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$

- Collectivity observed in soft region from Run 1
Multi-particle v_2

$v_2\{2\} \geq v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 5.02$ TeV

- Multi-particle v_2 measured up to 100 GeV/c
- Collectivity holds up to high p_T
Soft correlates with Hard?
Soft correlates with Hard?

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 5.02$ TeV

v_2 is linear between soft and hard particles as in different centralities
Soft correlates with Hard?

- v_2 is linear between soft and hard particles as in different centralities

- Indicates similar origin of the correlation (Geometry + fluctuations)
What do we learn so far?

• V_n has been measured at the highest nuclear-nuclear energy @ 5TeV

 • V_2 & V_3 measured up to 100 GeV/c \Rightarrow constrain the energy loss models

• Multi-particle correlation \Rightarrow collectivity from soft region to intermediate (hard) region

• Strong correlation between soft (low p_T) and hard (high p_T) particles \Rightarrow same origin

[Link to Physics Analysis Summary (PAS)]

Stay tuned! pPb @ 8 TeV is coming later this year
Backups
Backups

\[v_2^{\{m\}} / v_2^{\{SP\}} \]

CMS Preliminary

PbPb \(\sqrt{s_{NN}} = 5.02 \) TeV

5 - 10% 10 - 20% 20 - 30%
30 - 40% 40 - 50% 50 - 60%

\[p_T \ (\text{GeV/c}) \]

\[\begin{align*}
& v_2^{\{4\}} / v_2^{\{SP\}} \\
& v_2^{\{6\}} / v_2^{\{SP\}} \\
& v_2^{\{8\}} / v_2^{\{SP\}}
\end{align*} \]
Backups

CMS Preliminary
PbPb $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE, |η| < 0.8
- v_2^2, |$\Delta \eta$| > 1
- v_3^2, |$\Delta \eta$| > 1
- v_4^2

CMS, |η| < 1.0
- v_2^2, |$\Delta \eta$| > 3
- v_3^2, |$\Delta \eta$| > 3
- v_4^2

0-5%

10-20%

30-40%

20-30%

V_n

p_T (GeV/c)

FIRST time measure of $v_3\{\text{SP}\}$ up to 100 GeV/c
Consistent with 0 for $p_T > 20$ GeV/c
Backups

$25.8 \text{ pb}^{-1} \text{(5.02 TeV pp)} + 404 \mu\text{b}^{-1} \text{(5.02 TeV PbPb)}$

CMS

Preliminary

R_{AA} and lumi. uncertainty

$|\eta|<1$

$0-100\%$

$p_T (\text{GeV})$
25.8 pb⁻¹ (5.02 TeV pp) + 404 µb⁻¹ (5.02 TeV PbPb)

CMS Preliminary

- **SCETₐ 0-10%**
- **CUJET 3.0 0-10% (h²+π⁰)**

Tₐₐ and lumi. uncertainty $|η|<1$

- **0-10%**
- **30-50%**