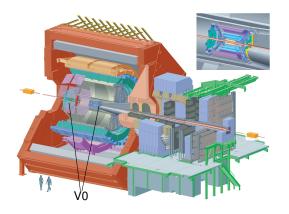
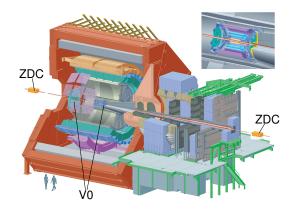
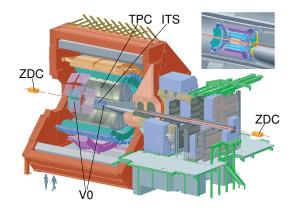


New results related to soft probes in Pb–Pb at $5.02\,\mathrm{TeV}$ with ALICE

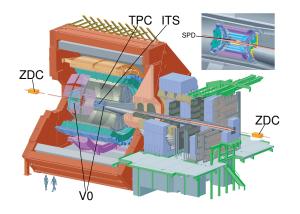
ALICE[©] | LHCp | 14th of June, 2016 | Christian Holm Christensen


1


► Detectors used

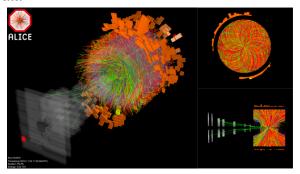

- ► Detectors used
 - V0: trigger, centrality

- ► Detectors used
 - V0: trigger, centralityZDC:
 - ZDC: Background rejection



► Detectors used

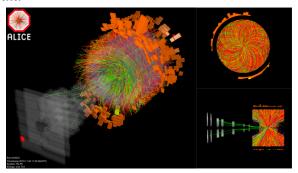
- V0: trigger, centrality
- ZDC: Background rejection
- ► TPC & ITS: tracking



► Detectors used

- V0: trigger, centrality
- ZDC: Background rejection
- TPC & ITS: tracking
- ► SPD: N_{ch}

Lots of data



Pb-Pb at $\sqrt{s_{\scriptscriptstyle \mathrm{NN}}} = 5.02\,\mathrm{TeV}$

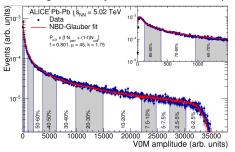
- ► 3 weeks of data
- $\triangleright \approx 150\,\mathrm{M}$ events
- ► Here, only low-intensity beams
 - Small pile-up background
 - ► Analysis not statistics limited

Lots of data

Pb-Pb at $\sqrt{s_{_{\mathrm{NN}}}} = 5.02\,\mathrm{TeV}$

- ► 3 weeks of data
- $\triangleright \approx 150\,\mathrm{M}$ events
- Here, only low-intensity beams
 - Small pile-up background
 - ► Analysis not statistics limited

pp at $\sqrt{s} = 5.02 \,\mathrm{TeV}$

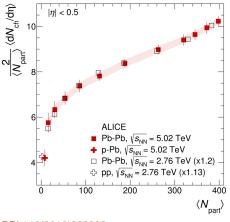

- ▶ 5 days of data
- $\blacktriangleright~\approx 130\,\mathrm{M}$ events
- ► Important for comparisons

Cross–section at $\sqrt{s_{_{\mathrm{NN}}}} = 5.02\,\mathrm{TeV}$

Centrality proxy for impact parameter

- ► Small centrality, large nuclear overlap
- ► Large centrality, small nuclear overlap

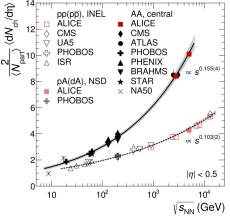
ALICE-PUBLIC-2015-008


- Slice V0 amplitude distribution
- Fit NBD–Glauber
- Fit NBD–Glauber
 - ▶ Extract $\langle N_{\text{part}} \rangle$
 - ► Extract $\sigma_{\text{Pb-Pb}} = (7.72 \pm 0.22) \text{ b}$
- ► Model 'ancestors' as

$$fN_{\text{part}} + (1-f)N_{\text{coll}}$$

- ▶ Large f: mostly soft
- $f \approx 0.8$ same as $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$
- Other models: equally good description

${ m d}N_{ m ch}/{ m d}\eta|_{|\eta|<0.5}$: 20% increase from $\sqrt{s_{ m NN}}=2.76\,{ m TeV}$


Average $dN_{\rm ch}/d\eta$ in $|\eta| < 0.5$

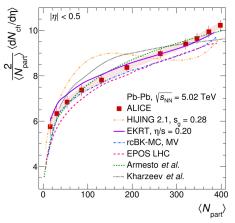
- $ightharpoonup \langle N_{\mathrm{part}} \rangle$ from Glauber
- $ightharpoonup \langle N_{
 m part}
 angle$ dependence similar to $\sqrt{s_{
 m NN}}$ =2.76 TeV
- ► Increase of $\approx 20\%$ per nucleon pair w.r.t. $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$

PRL116(2016)222302

Excitation function of $N_{\rm ch}$: Power–law scaling

PRL116(2016)222302

 $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta|_{|\eta|<0.5}$ VS. $\sqrt{s_{\mathrm{NN}}}$

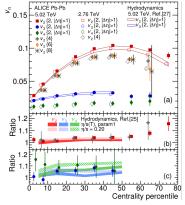

- ► 0-5% most central (PHOBOS, ATLAS: 0-6%)
- ▶ Fit power–law: $a \cdot s^b$
 - NN: $b = 0.155 \pm 0.004$ pp: $b = 0.103 \pm 0.002$
- ► Change w.r.t. $\sqrt{s_{\rm NN}}$, $\sqrt{s} = 2.76 \, {\rm TeV}$ at $|\eta| < 0.5$ for

Pb-Pb: 20% pp: 13%

 Confirms trend from lower energies

Saturation of particle production at $|\eta| < 0.5$?

PRL116(2016)222302


Models: PRC83(2011)014915, arXiv:1106.0978, arXiv:1011.5161, PRL94(2005)022002. NPA747(2005)609. PRC92(2015)034906

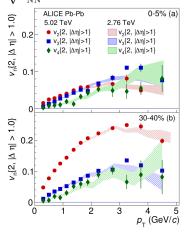
Predictions from various models

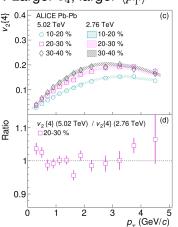
- HIJING: More gluon shadowing
- CGC-like models (rcBK-MC, Armesto, Kharzeev) give envelope around data
- EKRT: pQCD minijets+saturation+viscous hydro reasonable.
- EPOS-LHC: parton ladders — qualitatively close, but low

Little change in flow

PRL116(2016)132302

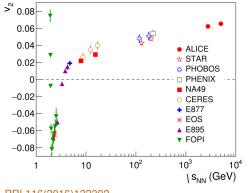
Models: [25] arXiv:1511.04296, [27] arXiv:1511.06289


Flow parameters vs. centrality


- ▶ 2-particle v_2, v_3 , and v_4 w/ η -gap
- ▶ 4, 6, 8-particle *v*₂
- ► Same dependence on centrality as in $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$
- ▶ v_2 and v_3 moderate ($\approx 3 4.3\%$) change w.r.t. $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$
- v_4 increased by $\approx 10\%$ w.r.t. $\sqrt{s_{\mathrm{NN}}} = 2.76 \, \mathrm{TeV}$
- ► Hydro (EKRT [27], Noronha-Hostler et al [25]) consistent over 0 50%

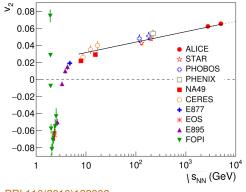
PRL116(2016)132302

$\sqrt{s_{\scriptscriptstyle { m NN}}} = 2.76\,{ m TeV} ightarrow 5.02\,{ m TeV}$: Larger v_4 , larger $\langle p_{\scriptscriptstyle { m T}} \rangle$



- $\blacktriangleright~p_{_{\rm T}}$ dependent $v_2,v_3,$ and v_4 No significant change w.r.t. $\sqrt{s_{_{\rm NN}}}=2.76\,{\rm TeV}$
- ▶ Change in centrality dependent v_4 from larger $\langle p_{\rm T} \rangle$ than $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$ See talk by J.M.Gronefeld tomorrow

Smooth evolution of v_2 from $\sqrt{s_{_{\rm NN}}} \approx 10\,{\rm GeV}$ to $5.02\,{\rm TeV}$



- v_2 for 20 30% central
- ightharpoonup $\sqrt{s_{_{
 m NN}}}$ dependence

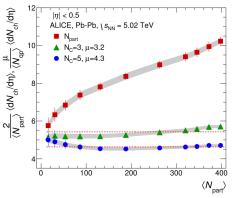
PRL116(2016)132302

Smooth evolution of v_2 from $\sqrt{s_{_{\mathrm{NN}}}} \approx 10\,\mathrm{GeV}$ to $5.02\,\mathrm{TeV}$

- $ightharpoonup v_2$ for 20-30% central
- ightharpoonup $\sqrt{s_{_{
 m NN}}}$ dependence

PRL116(2016)132302

Summary


- Hydrodynamic expansion of hot and dense phase models data well at midrapidity
 - Fixed $\eta/s = 0.20$ perhaps slightly preferred
 - ▶ Dynamic η/s with minimum of 0.12 also feasible
- ▶ Smooth evolution from $\sqrt{s_{_{\rm NN}}} = 2.76\,{\rm TeV}$
 - ▶ Power-law scaling of most central $dN_{\rm ch}/d\eta|_{|\eta|<0.5}$ versus $\sqrt{s_{\rm NN}}$
 - ▶ Linear rise of v_2 with $\sqrt{s_{\rm NN}}$
- ▶ No clear indication of $N_{\rm coll}$ scaling $N_{\rm ch}$ production near $\eta=0$ dominated by soft sector

Back-ups

Quark scaling?

ALICE-PUBLIC-2015-008, arXiv:1603.07375

Average $dN_{\rm ch}/d\eta$ in $|\eta|<0.5$

- ▶ Scaled by $\langle N_{\rm part} \rangle / 2$
- lacktriangle Scaled by $\langle N_{
 m qp}
 angle/\mu$
 - ► N_c: # const. quarks
 - μ : $\langle N_{qp} \rangle$ in pp
- ► $N_c = 5$ slightly preferred.