New Results Related to QGP in Small Systems with ATLAS

Adam Trzupek on behalf of the ATLAS experiment
Institute of Nuclear Physics PAS
The fourth annual Large Hadron Collider Physics Conference (LHCP2016)
Lund, Sweden, 13th - 18th June 2016
Ridge in Pb+Pb

Strongly interacting QGP

Pressure gradients lead to azimuthal anisotropy

\[v_n = \langle \cos(n(\phi - \Phi_{RP})) \rangle \]

Single-particle \(v_n \) was measured

Ridge in p+Pb and pp Collisions

p+Pb ridge

\[\text{ATLAS } p+Pb \ \sqrt{s_{NN}} = 5.02 \text{ TeV}, \ L_{\text{int}} = 28 \text{ nb}^{-1} \]

\[1 < p_T^{a,b} < 3 \text{ GeV} \quad N_{ch}^{\text{rel}} \geq 220 \]

pp ridge

\[\text{ATLAS } \quad pp \ \sqrt{s} = 13\text{ TeV} \]

\[0.5 < p_T^{a,b} < 5.0 \text{ GeV} \quad N_{\text{ch}}^{\text{rec}} \geq 120 \]

\[C(\Delta n, \Delta \eta) \]

v_n was measured

ATLAS PRL 116, 172301 (2016)
ATLAS-CONF-2016-026 - **v_n** in 2.76, 5.02 and 13 TeV pp were measured

Strongly interacting QGP in small systems?
Three main subsystems:

- **Inner Detector (ID)** – tracking $|\eta|<2.5$
- **Calorimetry** – $|\eta|<4.9$
 - FCal $3.1<|\eta|<4.9$
- **Muon Spectrometer** - $|\eta|<2.7$

Fast trigger systems:

- **Level 1 (L1)**
- **High Level Trigger (HLT)**
In addition to minimum bias triggers, High Multiplicity Triggers (HMT) are used:

- **p+Pb collisions**
 - six HMT triggers
- **pp collisions**
 - \(N_{\text{ch}}^{\text{rec}} > 60, > 90 \)

Event activity:
- For **p+Pb collisions**, both \(E_T^{\text{Pb}} \) in the FCal on Pb-going side and the number of charged particles with \(p_T > 0.4 \) GeV in ID, \(N_{\text{ch}}^{\text{rec}} \) are used.
- For **pp collisions**, only \(N_{\text{ch}}^{\text{rec}} \) is used.

\(N_{\text{ch}}^{\text{rec}} \) - number of tracks at primary vertex

![Graphs showing distribution of \(N_{\text{ch}}^{\text{rec}} \) for different collisions](image)
Two-particle Correlations in 13 TeV pp

ATLAS, PRL 116, 172301 (2016)
To quantify the strength of the ridge, the “per-trigger-particle yield” is defined as:

\[Y(\Delta \phi) \equiv C(\Delta \phi) \times \left(\frac{\int B(\Delta \phi) d\Delta \phi}{N^a \int d\Delta \phi} \right) \]
Two-particle Correlations in 13 TeV pp

With increasing \(N_{\text{ch}}^{\text{rec}} \), the minimum at \(\Delta \phi = 0 \) fills in, and the “ridge” peak appears and increases.
Two-particle Correlations in 13 TeV pp

Template fit function:

\[Y(\Delta \phi)_{\text{high-mult}} \equiv F \cdot Y(\Delta \phi)_{\text{low-mult}} + G \left(1 + 2 \sum_{n,n} v_{n,n} \cos(n \Delta \phi) \right) \]

\[N_{\text{ch}}^\text{rec} < 20 \]

azimuthal modulation

\[\Delta \phi \]

Graphs showing the fit function with conditions for high- and low-multiplicity events.
Template-fitting method

ATLAS, PRL 116, 172301 (2016)

Fit function successfully describes Y distributions in all $N_{\text{ch}}^{\text{rec}}$ intervals

If $v_{n,n} \cos(n\Delta \phi)$ modulation arises from modulation of the single-particle ϕ distributions, then $v_{n,n}$ should factorize:

$$V_{n,n} = V_n V_n$$

The factorization was cross-checked in different p_T-ranges
First measurements with the new template fitting method showed that v_2 very weakly depends on energy and multiplicity in pp collisions.
- v_n^{pp} very weakly depends on energy and multiplicity
- v_n^{pp} and v_n^{p+Pb} are similar at low multiplicity, but v_n^{p+Pb} increases with $N_{\text{ch}}^{\text{rec}}$
- $v_2 >> v_3 >> v_4$ for all systems
$v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)}$

- $v_2(p_T)$ shows a rise & fall, trend characteristic for collective flow observed in PbPb
- $v_2(p_T)$ in 5.02 and 13 TeV pp collisions agree

- $v_{3,4}(p_T)$ in p+Pb collisions are similar to $v_{3,4}(p_T)$ in 13 TeV pp collisions but a faster increase is observed for p+Pb system
The ratio is constant for both systems but is higher in pp than in p+Pb collisions

- stronger non-linear coupling in pp
Summary

- Using a template fit method ATLAS has observed elliptic, triangular and quadrangular harmonics in 5.02 and 13 TeV pp collisions
 - v_n^{pp} are almost constant with multiplicity and energy
 - v_n^{pp} and v_n^{p+Pb} are similar at low multiplicity, but v_n^{p+Pb} increase with multiplicity
 - v_2^{pp} and v_2^{p+Pb} have similar p_T dependence
 - v_4/v_2^2 ratios in pp and pPb collisions are constant with multiplicity
 - Larger ratio for pp is observed due to larger non-linear contribution to v_4