New Results Related to QGP in Small Systems with ATLAS Adam Trzupek on behalf of the ATLAS experiment Institute of Nuclear Physics PAS The fourth annual Large Hadron Collider Physics Conference (LHCP2016) Lund, Sweden, 13th - 18th June 2016 #### Ridge in Pb+Pb #### **Strongly interacting QGP** # Pressure gradients lead to azimuthal anisotropy $$v_n = < \cos(n(\phi - \Phi_{RP})) >$$ Single-particle v_n was measured #### Ridge in p+Pb and pp Collisions p+Pb ridge v_n was measured ATLAS PRL 116, 172301 (2016) ATLAS-CONF-2016-026 - v_n in 2.76, 5.02 and 13 TeV pp were measured Strongly interacting QGP in small systems? Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker #### **ATLAS Detector** ### High Multiplicity Triggers in pp and p+Pb Collisions #### In addition to minimum bias triggers, High Multiplicity Triggers (HMT) are used - p+Pb collisions - six HMT triggers - pp collisions - $N_{ch}^{rec} > 60, > 90$ #### **Event activity:** - For p+Pb collisions, both E_TPb in the FCal on Pb-going side and the number of charged particles with p_T > 0.4 GeV in ID, N_{ch}rec are used - For pp collisions, only N_{ch}^{rec} is used ATLAS-CONF-2016-026, ATLAS, PRL 116, 172301 (2016) #### N_{ch}^{rec} - number of tracks at primary vertex near-side ridge To quantify the strength of the ridge, the "per-trigger-particle yield" is defined as: $$Y(\Delta\phi) \equiv C(\Delta\phi) \times \left(\frac{\int B(\Delta\phi)d\Delta\phi}{N^a \int d\Delta\phi}\right)$$ With increasing N_{ch}^{rec} , the minimum at $\Delta \varphi = 0$ fills in, and the "ridge " peak appears and increases #### **Template fit function:** # **Template-fitting method** ATLAS, PRL 116, 172301 (2016) Fit function successfully describes Y distributions in all N_{ch}^{rec} intervals If $v_{n,n}\cos(n\Delta\phi)$ modulation arises from modulation of the single-particle ϕ distributions, then $v_{n,n}$ should factorize: $$V_{n,n} = V_n V_n$$ The factorization was crosschecked in different p_⊤-ranges # Energy and N_{ch} rec Dependence of v₂ First measurements with the new template fitting method showed that v₂ very weakly depends on energy and multiplicity in pp collisions # System Size, Energy and N_{ch} rec Dependence of v_n - v_n^{pp} very weakly depends on energy and multiplicity - v_n^{pp} and v_n^{p+Pb} are similar at low multiplicity, but v_n^{p+Pb} increases with N_{ch}^{rec} - $v_2 >> v_3 >> v_4$ for all systems ## p_T Dependence of v_n $$v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)}$$ - v₂(p_T) shows a rise & fall, trend characteristic for collective flow observed in PbPb - $v_2(p_T)$ in 5.02 and 13 TeV pp collisions agree v_{3,4}(p_T) in p+Pb collisions are similar to v_{3,4}(p_T) in 13 TeV pp collisions but a faster increase is observed for p+Pb system #### v₄/v₂² Ratio in 13 TeV pp and 5.02 TeV p+Pb Collisions The ratio is constant for both systems but is higher in pp than in p+Pb collisions stronger non-linear coupling in pp #### **Summary** - Using a template fit method ATLAS has observed elliptic, triangular and quadrangular harmonics in 5.02 and 13 TeV pp collisions - v_n^{pp} are almost constant with multiplicity and energy - v_n^{pp} and v_n^{p+Pb} are similar at low multiplicity, but v_n^{p+Pb} increase with multiplicity - v₂^{pp} and v₂^{p+Pb} have similar p_T dependence - v₄/v₂² ratios in pp and pPb collisions are constant with multiplicity - Larger ratio for pp is observed due to larger non-linear contribution to v₄