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• Design:
• Part 1 – High Level Synthesis (Xilinx Vivado HLS) 

• Part 2 – SDSoC (Xilinx, HLS + ARM)

• Part 3 – OpenCL (Altera OpenCL SDK)

• Verification:
• Part 4 – SystemVerilog and Universal Verification Methodology (UVM)

• Part 5 – Automatic build systems and Continuous Integration 

• Part 6 – Open Source VHDL Verification Methodology (OSVVM) 2
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HIGH-LEVEL PRODUCTIVITY DESIGN METHODOLOGY

7Xilinx UG1197, Figure 1-1
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SYSTEM DESIGN

• System partitioning
• Platform IP (I/O logic, pre/post-processing)

• Design IP

• Platform design
• Separation of Platform and Design development

• Creating re-usable design, or platform to quickly 
create derivatives
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IP DESIGN

• The key productivity benefit is being able to simulate 
as many C IP blocks as one C simulation during 
development.

• IP developed from C/C++ is verified using the C/RTL 
co-simulation feature of Vivado HLS, allowing the RTL 
to be verified using the same C test bench used to 
verify the C test bench

• IP developed from System Generator is verified using 
the MathWorks Simulink design environment 
provided in System Generator.

• For IP generated from RTL, you must create an RTL 
test bench to verify the IP
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CASE STUDY 1 – PLATFORM FOR PHYSICS 
SIMULATIONS ON A FPGA

• FPGA accelerator for physics simulations

• Team work:
• Platform Integrator:  Michal

• Design IP: Wojtek

• Initial algorithm: matrix multiplication on a 
FPGA
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CASE STUDY 1

• Platform Integrator:  Michal

• Developing and integrating IPs.

• RIFFA (Verilog) – An open source IP from UCSA

• RIFFA to AXIS/HLS bridge (VHDL) – “developed” by Michal

• Platform testbenches written in SystemVerilog

• Few days of work (while learning RIFFA)

• Design IP: Wojtek

• Developing Design IP and handing it over to Platform integrator

• Matrix multiplication (C++) – based on XAPP 1170 from Xilinx

• IP testbench written in C++

• Few hours of work (while learning HLS)
15



CASE STUDY 1 - HLS DESIGN SPACE EXPLORATION

• More details in XAPP 1170
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CASE STUDY 1

• Wojtek is interested in physics and not 
in VHDL/PCIe/FPGA/etc.

• A platform with container for HLS core 
has been developed for him.

• Verified with matrix multiplication

• Now that platform is verified it can be 
re-used for more complicated 
algorithms.

• Design IP designed and verified before 
Platform was ready thanks to HLS
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INTRODUCTION TO VIVADO HLS

• High-Level Synthesis

• Creates an RTL implementation from C level source code

• Implements the design based on defaults and user applied 
directives

• Many implementation are possible from the same source 
description

• Smaller designs, faster designs, optimal designs

• Enables design exploration
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C LANGUAGE SUPPORT

• Vivado HLS provides comprehensive support for C, C++, and SystemC. 
Everything is supported for C simulation; however, it is not possible to 
synthesize every description into an equivalent RTL implementation

• The two key principles to keep in mind when reviewing the code for 
implementation in an FPGA are:

• An FPGA is a fixed size resource. The functionality must be fixed at compile time. Objects 
in hardware cannot be dynamically created and destroyed

• All communication with the FPGA must be performed through the input and output 
ports. There is no underlying Operating System (OS) or OS resources in an FPGA
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UNSUPPORTED  CONSTRUCTS

• Synthesis does not support …

• Systems calls: abort(), exit(), printf(), etc

• Dynamic objects: malloc(), alloc(), free(), new, delete
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CONSTRUCTS WITH LIMITED SUPPORT

• Top-level function: templates are supported for synthesis but not for a top level function

• Pointer supports: some limitations to pointer casting and pointer arrays

• Recursion: supported through use of templates, you have to use termination class.

• Memory functions: memcpy() abd memset() supported but only with cost values.

• Any code which is not supported for synthesis, 
or for which only limited support is provided, 
must be modified before it can be synthesized
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HARDWARE OPTIMIZED C LIBRARIES

• Arbitrary Precision Data Types

• HLS Stream Library

• Math Functions

• Linear Algebra Functions

• DSP Functions

• Video Functions

• IP Library
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HIGH LEVEL SYNTHESIS BASICS

• High-level synthesis includes the following phases:
• Control logic extraction

• Scheduling

• Binding

• High-level synthesis synthesizes the C code as follows
• Top-level function arguments synthesize into RTL I/O ports

• C functions synthesis into blocks in the RTL hierarchy

• Loops in the C functions are kept rolled by default

• Arrays in the C code synthesize into block RAM
24



25

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL)

Technology 
Library

User 
Directives



CONTROL LOGIC EXTRACTION
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SCHEDULING AND BINDING
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UNDERSTANDING VIVADO HLS
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VIVADO HLS DESIGN FLOW

• Compile, execute (simulate), and debug the C algorithm

• Note: In high-level synthesis, running the compiled C program is referred to as C simulation. 
Executing the C algorithm simulates the function to validate that the algorithm is functionally 
correct.

• Synthesize the C algorithm into an RTL implementation, optionally using user optimization 
directives

• Generate comprehensive reports and analyse the design

• Verify the RTL implementation using pushbutton flow

• Package the RTL implementation into a selection of IP formats
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IMPORTANCE OF TESTBENCH

• Post-synthesis verification is automated through the C/RTL co-simulation feature which reuses the pre-synthesis 
C test bench to perform verification on the output RTL

• The following is required to use C/RTL co-simulation feature successfully:

• The test bench must be self-checking and return a value of 0 if the test passes or returns a non-zero value if the test fails

• The correct interface synthesis options must be selected

• Any simulators must be available in the search path
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HLS OPTIMIZATION METHODOLOGY

• Default constraints are usually leading to an RTL which is not exactly what you want …

• Constraints can be provided either as Tcl constraints file or as pragmas inside C/C++ source file

• Step 1 – Initial optimizations

• Step 2 – Pipeline for performance

• Step 3 – Optimize structures for performance

• Step 4 – Reduce latency

• Step 5 – Reduce area
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STEP 1 – INITIAL OPTIMIZATIONS

• INTERFACE – specifies how RTL ports are created from function description

• DATA_PACK – packs the data fields of a struct into a single scalar with a wider 
word width

• LOOP_TRIPCOUNT – used for loops which have variable bounds
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INTERFACE
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STEP 2 – PIPELINE FOR PERFORMANCE

• PIPELINE – allow concurrent execution of operations with a loop or function

• DATAFLOW – enables task level pipelining, allowing functions and loops to 
execute concurrently

• RESOURCE – specifies a resource to implement a variable in the RTL
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PIPELINE
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STEP 3 – OPTIMIZE STRUCTURES FOR PERFORMANCE

• ARRAY_PARTITION – partitions large arrays into multiple smaller arrays or into 
individual registers

• DEPENDENCE - used to provide additional information that can overcome 
loop-carry dependencies

• INLINE – inlines function, removing all function hierarchy. Used to enable logic 
optimization across function boundaries.

• UNROLL – Unroll for-loops
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ARRAY_PARTITION
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UNROLL
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STEP 4 – REDUCE LATENCY

• LATENCY – allows a minimum and maximum latency constraint to be specified

• LOOP_FLATTEN – allows nested loops to be collapsed

• LOOP_MERGE – merge consecutive loops and reduce overall latency
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LOOP_MERGE
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STEP 5 – REDUCE AREA

• ALLOCATION – specifies a limit for the number of operations, cores or 
functions

• ARRAY_MAP – combines multiple smaller arrays into a single large array

• ARRAY_RESHAPE – reshapes an array from one with many elements to one 
with greater word-width

• ... and more …

44



ALLOCATION

45



VIVADO HLS GUI
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CASE STUDY 2 – CMS ECAL DATA CONCENTRATOR 
CARD (DCC)
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DCC – PRODUCTION SYSTEM

• Firmware in: 9x VirtexII Pro, 2x Stratix, and 1x Acex FPGAs

• Production design described in mixture of SystemVerilog, VHDL and Quartus
Schematics

• DCC design SV/VHDL ~ 17’500 lines of code

• DCC testbench in SV ~ 3000 lines of code
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DCC FIRMWARE – HLS IMPLEMENTATIONS

• Targeted for Zynq and Virtex-7 FPGA devices

• Written in C and C++ languages, and compiled to Verilog, then instantiated 
inside FPGA as a single component and connected to Platform (PCIe, VC709) 
through AXIS interfaces.

• Do not include some other functionality of a production DCC (TCC, TTS. VME).
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DCC HLS – TESTING PLATFORM

• Re-used MMULT platform for VC709

• Performed DCC HLS functional tests in hardware
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DCC HLS

• DCCv1 HLS design:
• Contains around ~ 1000 lines of code + 30 pragmas

• Code was not modified after initial coding, only additional compiler pragmas 
were added (inside external pragma file) for design space exploration

• DCCv2 HLS design – complete code rewrite of DCCv1
• Uses data streaming interfaces instead of arrays (DCCv1)

• Contains around ~1000 lines of code and 20 pragmas

• Coding style was tailored towards processing of data streams
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DCC HLS
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DCCV1 HLS – STEP 1 – DEFAULT HLS CONSTRAINTS

• Serial implementation
• C functions synthetized into HDL hierarchical blocks
• No initiation interval specified, minimize latency then minimize area.
• Loops are “rolled” – serial execution
• Arrays synthetized into BRAMs
• Serial execution of tasks –

very high latency, 
but small device utilization
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DCCV1 HLS – STEP 2 – PARALLELIZE TASKS 

• Execute tasks in parallel - Loop unrolling to create multiple independent 
operations, rather than single collection of operations
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DCCV1 HLS – STEP 3 – PIPELINE FUNCTIONS

• Loop pipelining - concurrently execute the operations

• Loop flattening - flatten nested loops

• Loop rewinding - if the loop runs "continuously", rewind consecutive 
appearances to fill the gaps
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DCCV1 HLS – STEP 4 – PARTITION ARRAYS

• FPGA has thousands of dual port BRAM memories – utilize them to improve 
throughput (more RAM ports, vectorized operations) and lower latency

• Step 3 + Apply array partitioning on internal arrays, splitting single array onto 
Nx BRAMs, virtually creating N port BRAM
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DCCV1 HLS – STEP 5 – PIPELINE TASKS

• Pipeline tasks’ execution

• Partially overlapping computations
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DCCV1 HLS – RESULTS

• All design space exploration done with HLS compiler directives stored in 
external Tcl file

• Not a single line of C code was changed
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DCCV2 HLS – COMPLETE CODE REWRITE

• Interfaces: multi-dimensional arrays converted to hls::stream

• All functions rewritten – migrated from loops (FOR) to FSMs (SWITCH)

• Resource usage (8x FE channels): LL/FF=4k, DSP=8, BRAM=0;
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SUMMARY

• It seems that Vivado HLS is working 
• Proven with some algebra (mmult) and DSP (FIR)

• Does also work for packet processing

• The tool has still some bugs, which are blocking full adoption of High-
Level Productivity Design Methodology (i.e. array of hls::stream)

• If there is an interest in community we could try to organize some 
training
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HLS LEARNING RESOURCES/TRAINING

• Vivado High-Level Productivity Design Methodology Guide (UG11977)

• Vivado HLS User Guide (UG902)

• Vivado HLS Tutorial (UG871)

• Application notes (XAPP 1170, 1209)

• Vivado Design Suite Puzzlebook – HLS (UG1170) – Xilinx non-public document
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HLS LEARNING RESOURCES/TRAINING

• High-Level Synthesis using Vivado HLS Course (a XUP course)

• System design using Vivado /Zynq (a XUP course)

• SDSoC course (a XUP course)
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