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* Design:
e Part 1 - High Level Synthesis (Xilinx Vivado HLS)
e Part 2 —-SDSoC (Xilinx, HLS + ARM)
e Part 3—OpenCL (Altera OpenCL SDK)

e Verification:
e Part 4 — SystemVerilog and Universal Verification Methodology (UVM)

e Part 5 — Automatic build systems and Continuous Integration

e Part 6 —Open Source VHDL Verification Methodology (OSVVM)
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HIGH-LEVEL PRODUCTIVITY DESIGN METHODOLOGY

Traditional RTL Methodology — Algorithmic Design Methodology

Flatform & IP Reuse
Z Based IP Design

= l.'_f-:}nﬁglh. ralGn y
IFIntegration  /

.Iﬁ-l
Y, Design /
“ Closure /

I~ _I.I

Xilinx UG1197, Figure 1-1



Flatform Creation & Verification
C IP Development

System Creation

Platform Design
cCIP

Partitioning

System Generator |P
RTLIP
Catalog IP

System Implementation
System Verification

Xilinx UG1197, Figure 1-2




SYSTEM DESIGN

CtdA Engine

e System partitioning
e Platform IP (I/O logic, pre/post-processing)
* Design IP

e Platform design
e Separation of Platform and Design development

e Creating re-usable design, or platform to quickly
create derivatives



|IP DESIGN

The key productivity benefit is being able to simulate
as many C IP blocks as one C simulation during
development.

e |P developed from C/C++ is verified using the C/RTL
co-simulation feature of Vivado HLS, allowing the RTL
to be verified using the same C test bench used to
verify the C test bench

e |P developed from System Generator is verified using
the MathWorks Simulink design environment
provided in System Generator.

* For IP generated from RTL, you must create an RTL
test bench to verify the IP
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CASE STUDY 1 — PLATFORM FOR PHYSICS
SIMULATIONS ON A FPGA

e FPGA accelerator for physics simulations

e Team work:
e Platform Integrator: Michal

e Design IP: Wojtek

e [nitial algorithm: matrix multiplication on a
FPGA
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CASE STUDY 1

e Platform Integrator: Michal

e Developing and integrating IPs.
e RIFFA (Verilog) — An open source IP from UCSA
e RIFFA to AXIS/HLS bridge (VHDL) — “developed” by Michal

DESIGN IP '

e Platform testbenches written in SystemVerilog

e Few days of work (while learning RIFFA)

Platform

e Design IP: Wojtek
e Developing Design IP and handing it over to Platform integrator
e Matrix multiplication (C++) — based on XAPP 1170 from Xilinx
e |P testbench written in C++
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CASE STUDY 1 - HLS DESIGN SPACE EXPLORATION

= Timing analysis:

More details in XAPP 1170

Resource Usage
DSP48E
solution5  solutionb
Component 20 40
Expression

FIFO

Memory

Multiplexer
Register
ShiftMemory
Total

solution’

B0

solutiond
10.00

solution?
10.00

solutionS  solution
10.00 10.00

Clock Period (ns)

Required

C Estimate

YHOL Estimate - :

Verilog Estimate - z

= Uverall performance (clock cycles):
solutions  solutionb

Throughput{I) 8351 4259

8351 4259

solution8
1194
1190

solution?

Latency

FF LUT
solutionf solutiond  solutionb solutionf  solutionS solutiond solution?  solutiond
160 1392 2784 5568 11136 2844 5688 11376 22752
0 0 a 0 202 124 89 13

solution?
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CASE STUDY 1

* Wojtek is interested in physics and not
in VHDL/PCle/FPGA/etc.

e A platform with container for HLS core
has been developed for him.

e Verified with matrix multiplication

* Now that platform is verified it can be
re-used for more complicated
algorithms.

* Design IP designed and verified before
Platform was ready thanks to HLS

Protocol

Converter

Protocol

Converter

DESIGN IP !

Platform
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INTRODUCTION TO VIVADO HLS

e High-Level Synthesis
e Creates an RTL implementation from C level source code

* Implements the design based on defaults and user applied
directives

 Many implementation are possible from the same source
description

* Smaller designs, faster designs, optimal designs
* Enables design exploration

VHDL
Verilog

RTL Export

Sys Gen




C LANGUAGE SUPPORT

e Vivado HLS provides comprehensive support for C, C++, and SystemC.
Everything is supported for C simulation; however, it is not possible to
synthesize every description into an equivalent RTL implementation

 The two key principles to keep in mind when reviewing the code for
implementation in an FPGA are:

 An FPGA is a fixed size resource. The functionality must be fixed at compile time. Objects
in hardware cannot be dynamically created and destroyed

e All communication with the FPGA must be performed through the input and output
ports. There is no underlying Operating System (OS) or OS resources in an FPGA

20



UNSUPPORTED CONSTRUCTS

e Synthesis does not support ...
e Systems calls: abort(), exit(), printf(), etc

 Dynamic objects: malloc(), alloc(), free(), new, delete



CONSTRUCTS WITH LIMITED SUPPORT

* Top-level function: templates are supported for synthesis but not for a top level function
e Pointer supports: some limitations to pointer casting and pointer arrays
e Recursion: supported through use of templates, you have to use termination class.

e Memory functions: memcpy() abd memset() supported but only with cost values.

wvoid hier funcd(din_t &, din_t B, dout_t *C, dout_t *D)

e Any code which is not supported for synthesis, U dintt apb, ambs
Or for WhICh Only |Im|ted Support IS prOVIdEdI sumsub_func (&A, &B, &apb, &amb) ;
must be modified before it can be synthesized Hindel et

shift func(&apb, &amb,C,D) ;




HARDWARE OPTIMIZED C LIBRARIES

Arbitrary Precision Data Types
e HLS Stream Library

e Math Functions

e Linear Algebra Functions

* DSP Functions

e Video Functions

e |P Library
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HIGH LEVEL SYNTHESIS BASICS

* High-level synthesis includes the following phases:
e Control logic extraction
e Scheduling
e Binding

* High-level synthesis synthesizes the C code as follows
e Top-level function arguments synthesize into RTL I/O ports
e C functions synthesis into blocks in the RTL hierarchy
e Loops in the C functions are kept rolled by default

e Arrays in the C code synthesize into block RAM
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CONTROL LOGIC EXTRACTION

oo(int in[3], char a, char b, char <, int cut[3]) {

I oi++)

y out_data

—» out_addr
—»in_addr —= out_ce

~—»in_ce —= out_we




SCHEDULING AND BINDING

return v

, char b,

char c)

Clock Cycle

Scheduling

Initial Binding
Phase

Target Binding
Phase




UNDERSTANDING VIVADO HLS




VIVADO HLS DESIGN FLOW

e Compile, execute (simulate), and debug the C algorithm

* Note: In high-level synthesis, running the compiled C program is referred to as C simulation.
Executing the C algorithm simulates the function to validate that the algorithm is functionally
correct.

e Synthesize the C algorithm into an RTL implementation, optionally using user optimization
directives

e Generate comprehensive reports and analyse the design
e Verify the RTL implementation using pushbutton flow
e Package the RTL implementation into a selection of IP formats

ivado ilinx

System

s
Generator




C, C++, Constraints/
SystemC, Directives

C Simulation

RTL
Adapter

RTL Simulation

OpenCL API C

C Synthesis

Vivado HLS

]
v

Vivado Kilinx

. System
Design Generator Platform

Suite Studio
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IMPORTANCE OF TESTBENCH

* Post-synthesis verification is automated through the C/RTL co-simulation feature which reuses the pre-synthesis
C test bench to perform verification on the output RTL

* The following is required to use C/RTL co-simulation feature successfully:
* The test bench must be self-checking and return a value of 0 if the test passes or returns a non-zero value if the test fails
 The correct interface synthesis options must be selected

e Any simulators must be available in the search path
WrapC Simulation Post-Checking
Simulation

Test Bench AutoTB Test Bench

Result Result
Checking Checking

RTL Module




WrapC Simulation

Test Bench

Result
Checking

AutoTB

RTL Module

Post-Checking
Simulation

Test Bench

Result
Checking
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HLS OPTIMIZATION METHODOLOGY

e Default constraints are usually leading to an RTL which is not exactly what you want ...

e Constraints can be provided either as Tcl constraints file or as pragmas inside C/C++ source file
e Step 1 - Initial optimizations
e Step 2 — Pipeline for performance
e Step 3 — Optimize structures for performance
e Step 4 — Reduce latency

e Step 5—Reduce area
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STEP 1 —INITIAL OPTIMIZATIONS

 INTERFACE — specifies how RTL ports are created from function description

e DATA PACK — packs the data fields of a struct into a single scalar with a wider
word width

e LOOP_TRIPCOUNT — used for loops which have variable bounds
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INTERFACE

Argument
Type

ap_ ctrID—" +ap ctrl

B=F=
A_TVALID
B_TVALID
AA_TREADY ‘

pA_TDATA[31:0]
ap_clk[ ap_clk
ap_rst_n[ > ap_ret_n

BE_TREADY 4
B_TDATA[31:0]w

vold example(int A[50], int B[50]) {
//5et the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i
B[i]




STEP 2 — PIPELINE FOR PERFORMANCE

 PIPELINE — allow concurrent execution of operations with a loop or function

e DATAFLOW - enables task level pipelining, allowing functions and loops to
execute concurrently

e RESOURCE - specifies a resource to implement a variable in the RTL
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PIPELINE

(A) Without Function Pipelining

(B) With Function Pipelining
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STEP 3 — OPTIMIZE STRUCTURES FOR PERFORMANCE

e ARRAY_PARTITION — partitions large arrays into multiple smaller arrays or into
individual registers

e DEPENDENCE - used to provide additional information that can overcome
loop-carry dependencies

e INLINE —inlines function, removing all function hierarchy. Used to enable logic
optimization across function boundaries.

e UNROLL - Unroll for-loops
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ARRAY_PARTITION

my_array_0[10][6]
my_array[10](6][4] - partition dimension 3 — My_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array[10][6][4] — partiion dimension 1 —pe my_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

[ o [ 1 ]2 ] . [N3][N2]NA|

my_array[10][6][4] —m= partition dimension 0 —pe 10x6xd = 240 registers
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UNROLL

Rolled Loop

Read b[3] Read b[2] Read b[1] Read b(0]
Read c[3] Read d2] Read c[1] Read 0]

Partially Unrolled Loop

Read b[3]
Read c[3]
Read b[2]
Read c[Z]

Read b[1]
Read 1]
Read b(0]
Read ¢[0]

Unrolled Loop

Read b[3]
Read c[3]
Read b[2]
Read c[2]
Read b[1]
Read c[1]
Read b[0]
Read c[0]

Write a[3]

Wrrite a[2]

Wite o1 Wt ol
Wioa | Wrsalol

Wiie 2] | Writoal1] ] ~Wrie 0]




STEP 4 — REDUCE LATENCY

e LATENCY - allows a minimum and maximum latency constraint to be specified
e LOOP FLATTEN — allows nested loops to be collapsed

e LOOP_MERGE — merge consecutive loops and reduce overall latency
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LOOP_MERGE

(A) Without Loop
Merging

1 cycle

4 cycles

1 cycle

4 cycles

1 cycle

(B) With Loop
Merging

1 cycle

1 cycle
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STEP 5 —REDUCE AREA

ALLOCATION - specifies a limit for the number of operations, cores or
functions

ARRAY_MAP — combines multiple smaller arrays into a single large array

ARRAY RESHAPE —reshapes an array from one with many elements to one
with greater word-width

... and more ...
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ALLOCATION

dout_t array_arith (dio_t d[317]) {
static int acc;
int i;
#pragma HLS ALLOCATION instances=mul limit=256 operation

for (1i=0;1i<317;1i++) [
#pragma HLS UNROLL

* d[i]:

rerumn acc;

45



VIVADO HLS

File Edit Project Solution Window Help

?*,} Debug

{5 Explorer 23 < 7 O 2)]) matrix_multiply_hw_csynth.rpt

=5 hls_fp_matrix_mult_prj
hi Includes
= Source
L] mmult_accel_core.cpp
fim Test Bench
= solution1
& constraints
< directives.tcl
script.tel
k= syn
= report
[;’fl matrix_multiply_hw_cs
= systemc
= verilog
= vhdl
(3 solution2
(3 solution3
(3 solutiond
[£3 solution5
(3 soluticnb
(3 solution?
3 solution8
3 solution8_full

User Assignments
=4 Product Family: yng
] part: xc72020clg484-1
% Top Model name: matrix_multiply_hw

)

Target clock peried (ns): 10.00

{7} Clock uncertainty (ns):  1.25
Performance Estimates
= Summary of timing analysis
i$3 Estimated clock period (ns): 8.09
=) Summary of overall latency (clock cycles)
© Best-case latency: 329793

< Average-case latency: 329793

= Worst-case latency: 329793
-| Summary of loop latency (clock cycles)
+ 11

Area Estimates

= Summary

BRAM_18K DSP48E
Component - 5
Expression -
FIFO -
Memory
Multiplexer
Register
ShiftMemory -
Total 464
Available ; 2 106400
Utilization (%) ~0
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CASE STUDY 2 — CMS ECAL DATA CONCENTRATOR

CARDADEE
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Receiver Block #1
Input Handler #1 to #8

L]
.

Receiver Block #1
Input Handler #9 #16

Receiver Block #3
Input Handler # & #68

Receiver Block 3
Input Handler #69 & #70
(monitoring)

BUILDER
BLOCK

BUILDER BUILDER
BLOCK BLOCK
251048 491070

[rcctom |
DAQ oFIFO BOARD Il

coNmROL. i

REFCLK
DAQ oFIFO ETECIK

518 MB/s
64b - 66MHz

DAQ oFIFO

DAQ oFIFO
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DCC - PRODUCTION SYSTEM

Firmware in: 9x Virtexll Pro, 2x Stratix, and 1x Acex FPGAs

Production design described in mixture of SystemVerilog, VHDL and Quartus
Schematics

DCC design SV/VHDL ~ 17’500 lines of code
DCC testbench in SV ~ 3000 lines of code
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DCC FIRMWARE — HLS IMPLEMENTATIONS

* Targeted for Zyng and Virtex-7 FPGA devices

 Written in C and C++ languages, and compiled to Verilog, then instantiated

inside FPGA as a single component and connected to Platform (PCle, VC709)
through AXIS interfaces.

* Do not include some other functionality of a production DCC (TCC, TTS. VME).
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DCC HLS — TESTING PLATFORM

e Re-used MMULT platform for VC709

e Performed DCC HLS functional tests in hardware

RIFFA
PCIe| PCIe DMA

Engine




DCC HLS

e DCCv1 HLS design:

. Contains around ~ 1000 lines of code + 30 pragmas

. Code was not modified after initial coding, only additional compiler pragmas
were added (inside external pragma file) for design space exploration

e DCCv2 HLS design — complete code rewrite of DCCv1
. Uses data streaming interfaces instead of arrays (DCCv1)
. Contains around ~1000 lines of code and 20 pragmas

. Coding style was tailored towards processing of data streams
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DCC HLS

void dcc top (...

dcc sr(...

for (1=0; 1<TOWER NUM; i++)
dcc ih (...)

dcc em(...)

dcc eb(...)
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DCCV1 HLS = STEP 1 — DEFAULT HLS CONSTRAINTS

e Serial implementation

e Cfunctions synthetized into HDL hierarchical blocks
 Noinitiation interval specified, minimize latency then minimize area.
e Loops are “rolled” — serial execution

 Arrays synthetized into BRAMs S<FE + 1xSR

- ; : £ | | .
Serial execution of tasks s b 78 M 1H _+ - H -
very high latency,
but small device utilization

IH mr IH H’II—I )"II—I ~ EM M~ EB ™
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DCCV1 HLS — STEP 2 — PARALLELIZE TASKS

e Execute tasks in parallel - Loop unrolling to create multiple independent
operations, rather than single collection of operations

SxFE + 1xSR

SR *‘H IH = EM  EB —
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DCCV1 HLS —STEP 3 — PIPELINE FUNCTIONS

e Loop pipelining - concurrently execute the operations
e Loop flattening - flatten nested loops

e Loop rewinding - if the loop runs "continuously", rewind consecutive
appearances to fill the gaps

SxFE + 1xSR

SR *“[ I8 = EM =~ EB —
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DCCV1 HLS — STEP 4 — PARTITION ARRAYS

 FPGA has thousands of dual port BRAM memories — utilize them to improve
throughput (more RAM ports, vectorized operations) and lower latency

e Step 3 + Apply array partitioning on internal arrays, splitting single array onto
Nx BRAMs, virtually creating N port BRAM
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DCCV1 HLS —STEP 5 — PIPELINE TASKS

e Pipeline tasks’ execution

e Partially overlapping computations

8xFE + 1xSR

SR.
f‘IH|

EE |




DCCV1 HLS — RESULTS

e All design space exploration done with HLS compiler directives stored in
external Tcl file

 Not a single line of C code was changed

Design space exploration Latency Init Inter BRAM DSP48E  FF LUT
Stepl 26590 26590 12 988 1951
Step2 7960 7960 20 3555 6089
Step3 5192 5192 22203 27385

Stepd 1734 1734 25966 25091

StepS 1443 603 29999 28366
FPGA Device

e o , 3 b
utilization (%




DCCV2 HLS — COMPLETE CODE REWRITE

e Interfaces: multi-dimensional arrays converted to hls::stream
e All functions rewritten — migrated from loops (FOR) to FSMs (SWITCH)
e Resource usage (8x FE channels): LL/FF=4k, DSP=8, BRAM=0;
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SUMMARY

* |t seems that Vivado HLS is working ©

 Proven with some algebra (mmult) and DSP (FIR)

* Does also work for packet processing

 The tool has still some bugs, which are blocking full adoption of High-
Level Productivity Design Methodology (i.e. array of hls::stream)

e If there is an interest in community we could try to organize some
training
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HLS LEARNING RESOURCES/TRAINING

Vivado High-Level Productivity Design Methodology Guide (UG11977)

Vivado HLS User Guide (UG902)

Vivado HLS Tutorial (UG871)

Application notes (XAPP 1170, 1209)

Vivado Design Suite Puzzlebook — HLS (UG1170) — Xilinx non-public document

63



HLS LEARNING RESOURCES/TRAINING

e High-Level Synthesis using Vivado HLS Course (a XUP course)
e System design using Vivado /Zynqg (a XUP course)

e SDSoC course (a XUP course)
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