
NEW FPGA DESIGN AND
VERIFICATION TECHNIQUES

MICHAL HUSEJKO

IT-PES-ES

• Design:
• Part 1 – High Level Synthesis (Xilinx Vivado HLS)

• Part 2 – SDSoC (Xilinx, HLS + ARM)

• Part 3 – OpenCL (Altera OpenCL SDK)

• Verification:
• Part 4 – SystemVerilog and Universal Verification Methodology (UVM)

• Part 5 – Automatic build systems and Continuous Integration

• Part 6 – Open Source VHDL Verification Methodology (OSVVM) 2

NEW FPGA DESIGN AND
VERIFICATION TECHNIQUES

PART 1 – HIGH-LEVEL SYNTHESIS (XILINX VIVADO HLS)

4

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

5

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

6

HIGH-LEVEL PRODUCTIVITY DESIGN METHODOLOGY

7Xilinx UG1197, Figure 1-1

8

Xilinx UG1197, Figure 1-2

SYSTEM DESIGN

• System partitioning
• Platform IP (I/O logic, pre/post-processing)

• Design IP

• Platform design
• Separation of Platform and Design development

• Creating re-usable design, or platform to quickly
create derivatives

9

IP DESIGN

• The key productivity benefit is being able to simulate
as many C IP blocks as one C simulation during
development.

• IP developed from C/C++ is verified using the C/RTL
co-simulation feature of Vivado HLS, allowing the RTL
to be verified using the same C test bench used to
verify the C test bench

• IP developed from System Generator is verified using
the MathWorks Simulink design environment
provided in System Generator.

• For IP generated from RTL, you must create an RTL
test bench to verify the IP

10

11

12

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

13

CASE STUDY 1 – PLATFORM FOR PHYSICS
SIMULATIONS ON A FPGA

• FPGA accelerator for physics simulations

• Team work:
• Platform Integrator: Michal

• Design IP: Wojtek

• Initial algorithm: matrix multiplication on a
FPGA

14

CASE STUDY 1

• Platform Integrator: Michal

• Developing and integrating IPs.

• RIFFA (Verilog) – An open source IP from UCSA

• RIFFA to AXIS/HLS bridge (VHDL) – “developed” by Michal

• Platform testbenches written in SystemVerilog

• Few days of work (while learning RIFFA)

• Design IP: Wojtek

• Developing Design IP and handing it over to Platform integrator

• Matrix multiplication (C++) – based on XAPP 1170 from Xilinx

• IP testbench written in C++

• Few hours of work (while learning HLS)
15

CASE STUDY 1 - HLS DESIGN SPACE EXPLORATION

• More details in XAPP 1170

16

CASE STUDY 1

• Wojtek is interested in physics and not
in VHDL/PCIe/FPGA/etc.

• A platform with container for HLS core
has been developed for him.

• Verified with matrix multiplication

• Now that platform is verified it can be
re-used for more complicated
algorithms.

• Design IP designed and verified before
Platform was ready thanks to HLS

17

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

18

INTRODUCTION TO VIVADO HLS

• High-Level Synthesis

• Creates an RTL implementation from C level source code

• Implements the design based on defaults and user applied
directives

• Many implementation are possible from the same source
description

• Smaller designs, faster designs, optimal designs

• Enables design exploration

19

………………
………………

VHDL
Verilog

Vivado HLS

Constraints/ Directives

………………
………………

C, C++,
SystemC

RTL Export

IP-XACT Sys Gen PCore

C LANGUAGE SUPPORT

• Vivado HLS provides comprehensive support for C, C++, and SystemC.
Everything is supported for C simulation; however, it is not possible to
synthesize every description into an equivalent RTL implementation

• The two key principles to keep in mind when reviewing the code for
implementation in an FPGA are:

• An FPGA is a fixed size resource. The functionality must be fixed at compile time. Objects
in hardware cannot be dynamically created and destroyed

• All communication with the FPGA must be performed through the input and output
ports. There is no underlying Operating System (OS) or OS resources in an FPGA

20

UNSUPPORTED CONSTRUCTS

• Synthesis does not support …

• Systems calls: abort(), exit(), printf(), etc

• Dynamic objects: malloc(), alloc(), free(), new, delete

21

CONSTRUCTS WITH LIMITED SUPPORT

• Top-level function: templates are supported for synthesis but not for a top level function

• Pointer supports: some limitations to pointer casting and pointer arrays

• Recursion: supported through use of templates, you have to use termination class.

• Memory functions: memcpy() abd memset() supported but only with cost values.

• Any code which is not supported for synthesis,
or for which only limited support is provided,
must be modified before it can be synthesized

22

HARDWARE OPTIMIZED C LIBRARIES

• Arbitrary Precision Data Types

• HLS Stream Library

• Math Functions

• Linear Algebra Functions

• DSP Functions

• Video Functions

• IP Library

23

HIGH LEVEL SYNTHESIS BASICS

• High-level synthesis includes the following phases:
• Control logic extraction

• Scheduling

• Binding

• High-level synthesis synthesizes the C code as follows
• Top-level function arguments synthesize into RTL I/O ports

• C functions synthesis into blocks in the RTL hierarchy

• Loops in the C functions are kept rolled by default

• Arrays in the C code synthesize into block RAM
24

25

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL)

Technology
Library

User
Directives

CONTROL LOGIC EXTRACTION

26

SCHEDULING AND BINDING

27

UNDERSTANDING VIVADO HLS

28

………………
………………

VHDL
Verilog

Vivado HLS

Constraints/ Directives

………………
………………

C, C++,
SystemC

RTL Export

IP-XACT Sys Gen PCore

VIVADO HLS DESIGN FLOW

• Compile, execute (simulate), and debug the C algorithm

• Note: In high-level synthesis, running the compiled C program is referred to as C simulation.
Executing the C algorithm simulates the function to validate that the algorithm is functionally
correct.

• Synthesize the C algorithm into an RTL implementation, optionally using user optimization
directives

• Generate comprehensive reports and analyse the design

• Verify the RTL implementation using pushbutton flow

• Package the RTL implementation into a selection of IP formats

29

30

IMPORTANCE OF TESTBENCH

• Post-synthesis verification is automated through the C/RTL co-simulation feature which reuses the pre-synthesis
C test bench to perform verification on the output RTL

• The following is required to use C/RTL co-simulation feature successfully:

• The test bench must be self-checking and return a value of 0 if the test passes or returns a non-zero value if the test fails

• The correct interface synthesis options must be selected

• Any simulators must be available in the search path

31

32

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

33

HLS OPTIMIZATION METHODOLOGY

• Default constraints are usually leading to an RTL which is not exactly what you want …

• Constraints can be provided either as Tcl constraints file or as pragmas inside C/C++ source file

• Step 1 – Initial optimizations

• Step 2 – Pipeline for performance

• Step 3 – Optimize structures for performance

• Step 4 – Reduce latency

• Step 5 – Reduce area

34

STEP 1 – INITIAL OPTIMIZATIONS

• INTERFACE – specifies how RTL ports are created from function description

• DATA_PACK – packs the data fields of a struct into a single scalar with a wider
word width

• LOOP_TRIPCOUNT – used for loops which have variable bounds

35

INTERFACE

36

STEP 2 – PIPELINE FOR PERFORMANCE

• PIPELINE – allow concurrent execution of operations with a loop or function

• DATAFLOW – enables task level pipelining, allowing functions and loops to
execute concurrently

• RESOURCE – specifies a resource to implement a variable in the RTL

37

PIPELINE

38

STEP 3 – OPTIMIZE STRUCTURES FOR PERFORMANCE

• ARRAY_PARTITION – partitions large arrays into multiple smaller arrays or into
individual registers

• DEPENDENCE - used to provide additional information that can overcome
loop-carry dependencies

• INLINE – inlines function, removing all function hierarchy. Used to enable logic
optimization across function boundaries.

• UNROLL – Unroll for-loops

39

ARRAY_PARTITION

40

UNROLL

41

STEP 4 – REDUCE LATENCY

• LATENCY – allows a minimum and maximum latency constraint to be specified

• LOOP_FLATTEN – allows nested loops to be collapsed

• LOOP_MERGE – merge consecutive loops and reduce overall latency

42

LOOP_MERGE

43

STEP 5 – REDUCE AREA

• ALLOCATION – specifies a limit for the number of operations, cores or
functions

• ARRAY_MAP – combines multiple smaller arrays into a single large array

• ARRAY_RESHAPE – reshapes an array from one with many elements to one
with greater word-width

• ... and more …

44

ALLOCATION

45

VIVADO HLS GUI

46

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

47

CASE STUDY 2 – CMS ECAL DATA CONCENTRATOR
CARD (DCC)

48

DCC – PRODUCTION SYSTEM

• Firmware in: 9x VirtexII Pro, 2x Stratix, and 1x Acex FPGAs

• Production design described in mixture of SystemVerilog, VHDL and Quartus
Schematics

• DCC design SV/VHDL ~ 17’500 lines of code

• DCC testbench in SV ~ 3000 lines of code

49

DCC FIRMWARE – HLS IMPLEMENTATIONS

• Targeted for Zynq and Virtex-7 FPGA devices

• Written in C and C++ languages, and compiled to Verilog, then instantiated
inside FPGA as a single component and connected to Platform (PCIe, VC709)
through AXIS interfaces.

• Do not include some other functionality of a production DCC (TCC, TTS. VME).

50

DCC HLS – TESTING PLATFORM

• Re-used MMULT platform for VC709

• Performed DCC HLS functional tests in hardware

51

DCC HLS

• DCCv1 HLS design:
• Contains around ~ 1000 lines of code + 30 pragmas

• Code was not modified after initial coding, only additional compiler pragmas
were added (inside external pragma file) for design space exploration

• DCCv2 HLS design – complete code rewrite of DCCv1
• Uses data streaming interfaces instead of arrays (DCCv1)

• Contains around ~1000 lines of code and 20 pragmas

• Coding style was tailored towards processing of data streams

52

DCC HLS

53

DCCV1 HLS – STEP 1 – DEFAULT HLS CONSTRAINTS

• Serial implementation
• C functions synthetized into HDL hierarchical blocks
• No initiation interval specified, minimize latency then minimize area.
• Loops are “rolled” – serial execution
• Arrays synthetized into BRAMs
• Serial execution of tasks –

very high latency,
but small device utilization

54

DCCV1 HLS – STEP 2 – PARALLELIZE TASKS

• Execute tasks in parallel - Loop unrolling to create multiple independent
operations, rather than single collection of operations

55

DCCV1 HLS – STEP 3 – PIPELINE FUNCTIONS

• Loop pipelining - concurrently execute the operations

• Loop flattening - flatten nested loops

• Loop rewinding - if the loop runs "continuously", rewind consecutive
appearances to fill the gaps

56

DCCV1 HLS – STEP 4 – PARTITION ARRAYS

• FPGA has thousands of dual port BRAM memories – utilize them to improve
throughput (more RAM ports, vectorized operations) and lower latency

• Step 3 + Apply array partitioning on internal arrays, splitting single array onto
Nx BRAMs, virtually creating N port BRAM

57

DCCV1 HLS – STEP 5 – PIPELINE TASKS

• Pipeline tasks’ execution

• Partially overlapping computations

58

DCCV1 HLS – RESULTS

• All design space exploration done with HLS compiler directives stored in
external Tcl file

• Not a single line of C code was changed

59

DCCV2 HLS – COMPLETE CODE REWRITE

• Interfaces: multi-dimensional arrays converted to hls::stream

• All functions rewritten – migrated from loops (FOR) to FSMs (SWITCH)

• Resource usage (8x FE channels): LL/FF=4k, DSP=8, BRAM=0;

60

AGENDA

• Xilinx High-Level Productivity Design Methodology

• Case study 1 – Matrix Multiplication in FPGA (Physics)

• Overview of Vivado HLS tool

• HLS optimization methodology

• Case study 2 – CMS ECAL Data Concentrator Card (DCC)

• Conclusions

61

SUMMARY

• It seems that Vivado HLS is working 
• Proven with some algebra (mmult) and DSP (FIR)

• Does also work for packet processing

• The tool has still some bugs, which are blocking full adoption of High-
Level Productivity Design Methodology (i.e. array of hls::stream)

• If there is an interest in community we could try to organize some
training

62

HLS LEARNING RESOURCES/TRAINING

• Vivado High-Level Productivity Design Methodology Guide (UG11977)

• Vivado HLS User Guide (UG902)

• Vivado HLS Tutorial (UG871)

• Application notes (XAPP 1170, 1209)

• Vivado Design Suite Puzzlebook – HLS (UG1170) – Xilinx non-public document

63

HLS LEARNING RESOURCES/TRAINING

• High-Level Synthesis using Vivado HLS Course (a XUP course)

• System design using Vivado /Zynq (a XUP course)

• SDSoC course (a XUP course)

64

	New FPGA design and verification Techniques
	Slide Number 2
	New FPGA design and verification Techniques
	Slide Number 4
	Agenda
	Agenda
	High-Level Productivity Design Methodology
	Slide Number 8
	System Design
	IP Design
	Slide Number 11
	Slide Number 12
	Agenda
	CASE Study 1 – Platform for physics simulations on a FPGA
	CASE Study 1
	CASE Study 1 - HLS Design space exploration
	CASE Study 1
	Agenda
	Introduction to Vivado HLS
	C Language support
	Unsupported constructs
	Constructs with limited support
	Hardware optimized C libraries
	High Level Synthesis Basics
	Slide Number 25
	Control Logic Extraction
	Scheduling and Binding
	Understanding Vivado HLS
	Vivado HLS design flow
	Slide Number 30
	Importance of Testbench
	Slide Number 32
	Agenda
	HLS Optimization Methodology
	Step 1 – Initial optimizations
	INTERFACE
	Step 2 – Pipeline for performance
	PIPELINE
	Step 3 – Optimize structures for performance
	ARRAY_PARTITION
	UNROLL
	Step 4 – Reduce latency
	LOOP_MERGE
	Step 5 – Reduce area
	ALLOCATION
	Vivado HLS GUI
	Agenda
	Case Study 2 – CMS ECAL Data Concentrator Card (DCC)
	DCC – production system
	DCC firmware – HLS implementations
	DCC HLS – testing Platform
	DCC HLS
	DCC HLS
	DCCv1 HLS – Step 1 – Default HLS Constraints
	DCCv1 HLS – Step 2 – Parallelize tasks
	DCCv1 HLS – Step 3 – Pipeline functions
	DCCv1 HLS – Step 4 – Partition Arrays
	DCCv1 HLS – Step 5 – Pipeline tasks
	DCCv1 HLS – Results
	DCCV2 HLS – Complete code rewrite
	Agenda
	Summary
	HLS Learning resources/Training
	HLS Learning resources/Training

