

Vector boson production and CMS performance at \sqrt{s} =13 TeV

K. Bierwagen Massachusetts Institute of Technology

On behalf of the CMS Collaboration

LPCC Seminar December 8, 2015

W and Z production at 13 TeV

- Serves as Standard Model precision test
- Standard candle for detector and physics commissioning
- Constrain parton distribution functions

445 physics papers submitted

- + 24 papers based on cosmic rays
- + 15 detector performance papers
- + 1 CMS detector paper

79 papers dedicated to Standard Model physics Many more in the pipeline

http://cms-results.web.cern.ch/cms-results/public-results/publications-vs-time/

July 2015

CMS Preliminary

- Upgrades to detector and trigger
- Improved online/offline reconstruction
- Higher integrated luminosity expected for 2016
- Increased physics potential

CMS Integrated Luminosity Per Day, pp, 2015, $\sqrt{s}=$ 13 TeV

Data included from 2015-06-03 08:41 to 2015-11-03 06:25 UTC

Detector Performance

Fraction (%)

All sub-detector operating with active detector fraction higher than Run1

Run2 PAS and publications

Run2 PAS and Publication							
SQ-15-001	Pseudorapidity distribution of charged hadrons in proton-proton collisions at \sqrt{s} = 13 TeV	PLB 751 (2015) 143	22 nd July 2015				
SQ-15-002	Measurement of long-range near-side two-particle angular correlations in pp collisions at √s= 13 TeV	Submitted to PRL	11 th October 2015				
OP-15-003	Measurement of the top quark pair production cross section in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to PRL	18 th October 2015				
XO-15-001	Search for narrow resonances decaying to dijets in pp Collisions at √s= 13 TeV	Submitted to PRL	3 rd December 2015				
OP-15-010	First measurement of the differential cross section for ttbar production in the dilepton final state at \sqrt{s} = 13 TeV	CMS approved	August 2015				
OP-15-005	Measurement of the inclusive and differential tt production cross sections in lepton+jets final states at 13 TeV	CMS approved	September 2015				
OP-15-004	Measurement of the t-channel single top-quark cross section at 13 TeV	CMS approved	September 2015				
OP-15-013	Measurement of differential top quark pair production cross sections in a fiducial volume as a function of event variables in pp collisions at √s= 13 TeV	CMS approved	November 2015				
MP-15-004	Measurement of inclusive W and Z boson production cross sections in pp collisions at \sqrt{s} = 13 TeV	CMS approved	November 2015				
SQ-15-007	Underlying event measurements with leading particles and jets in pp collisions at \sqrt{s} = 13 TeV	CMS approved	November 2015				

F

F

Т

Ε

T

Τ

Т

S

F

Cross Section Measurement

Fiducial cross section

- Acceptance
- Theory uncertainties
 - Measure fiducial cross section (within detector acceptance)
 - Measure total cross section (extrapolated to full phase space)

Luminosity Calibration

 Luminosity estimation relies on precise rate measurements using dedicated devices (Luminometers)

assachusetts Institute of Technology

 Rates converted to luminosity by means of constant calibration factor (visible cross section)

$$\mathcal{L} \cdot \sigma_{\rm vis} = R$$

 Calibration constant determined using Van der Meer (VDM) scan technique, measuring inst. luminosity from machine parameters

$$\mathcal{L} = f N_1 N_2 \iint \rho_1(x, y) \rho_2(x, y) \, dx \, dy$$

Bunch current measurements

Measured from scan curve

Preliminary Luminosity Calibration

 Multiple CMS sub-detectors used to understand beam and detector systematics

assachusetts Institute of Technology

- CMS luminosity measurement based on 4 sub-detectors and luminosity algorithms
 - CMS Pixel Detector (offline), based on pixel cluster counting
 - Hadronic Forward Calorimeter (online), based on occupancy
 - Pixel Luminosity Telescope (online), based on occupancy
 - BCM1F diamond sensors (online), based on number of MIPs
- VDM-calibrated-BCM1F used as primary offline luminometer for physics for 2015 50 ns recorded data

Preliminary

Source	Uncertainty
Uncertainty from VDM	2.6 %
Luminometer linearity and stability	4%
Total [50ns]	4.8%

- Muon Channel:
 - p₂>25 GeV and |η|<2.4
 - Z selection: opposite charge, 60 GeV < M_{uu} < 120 GeV
 - W selection: reject second muon with p₁>10 GeV

- Electron Channel:
 - E_{τ} >25 GeV and $|\eta|$ <2.5, excluding 1.44< $|\eta|$ <1.5
 - Z selection: 60 GeV < M_{_}<120 GeV
 - W selection: reject second electron with E₁>10 GeV

Muon Performance

Muon Performance

Reconstruction and Identification Efficiency

- Efficiency estimated using tag-and-probe technique
- Reconstruction efficiency in good agreement between data and MC, scale factors close to 1

Di-electron spectrum

Events selected in the di-electron data sets

Events

Electron Performance

Reconstruction Efficiency

Identification Efficiency

- Efficiency estimated using tag-and-probe technique
- ID and reconstruction efficiency in good agreement between data and MC, scale factors close to 1

- Estimated using tag-and-probe technique
 - Tag satisfying lepton selection
 - Tag+probe mass: 60 GeV<mll<120 GeV
 - Count passing and failing probes to estimate efficiency

$$\epsilon = \frac{N_{pass}}{N_{pass} + N_{fail}}$$

- In case of non-negligible background, simultaneous fit to mass distribution in passing and failing categories
- Efficiency factorized, each estimated wrt previous selection
- Lepton efficiencies binned in $[p_{\tau},\eta]$
- Main systematic uncertainties
 - Choice of signal and background shape
 - Different binning
- Statistics of tag-and-probe sample affects systematic uncertainty

- Fraction of events passing the fiducial requirements
 - Central value estimated using aMC@NLO with NNPDF3.0
- AMC@NLO (+Pythia 8 parton shower) is accurate to NLO perturbative QCD effects
 - Parton shower to model soft, non-perturbative QCD effects
- Effect on the acceptances due to missing effects and choice of models
 - Higher order QCD corrections
 - Soft QCD corrections (resummation)
 - Higher order EWK corrections
 - PDF choice (NNPDF 3.0 used)
 - Parton shower model for FSR (Pythia 8)
- The corrections are small->no additional corrections applied
 - Differences taken as systematic uncertainties

- Higher order QCD corrections [NNLO] and resummation
 - Compare ResBos/DYRES [NNLO and NNLL] with the baseline acceptance
- PDF uncertainties
 - Uncertainties due to error PDF sets and α_{s}
- Missing QCD corrections beyond NNLO
 - Use FEWZ 3.1 to estimate the uncertainty by varying the factorization and renormalization scales: $\mu_R = \mu_F = \{M, 2M, M/2\}$
- FSR modeling and higher order EWK corrections
 - Use Horace for FSR modeling and compare to Pythia 8 FSR modeling
 - Compare Horace with full NLO EWK corrections to Horace with just FSR correction

Z events yields computed by counting events in mass window

Z Signal Extraction

Very small background contribution, estimated from simulation

W Signal Extraction

- W signal yield estimated from fit to MET distribution
- Accurate MET measurement essential to distinguish signal from background
- New method for pile-up mitigation at single particle level (PUPPI)
- Compute weight per particle to discriminate PU
- Discard small-weight or small-E_T particles
- Calculate E_T^{miss} as negative weighted vector sum of particles

JHEP 10 (2014) 59, arXiv:1407.6013

- Evaluate MET performance
- Obtained accurate MET model
 by recoil calibration
 - Parametrize parallel (u₁) and perpendicular (u₂) components of recoil as function of boson p₁
 - Correct recoil in W simulation using data/MC corrections obtained in Z events

Missing Energy Performance

40.03 pb¹ (13 TeV)

MET from PF and PF PUPPI inputs for data and simulation

CMS-DP-2015-034

Resolution of perpendicular recoil U_ for PF and PF PUPPI inputs versus number of reconstructed primary vertices

W→ev Signal Extraction

Signal Yield: 122320±980 Acceptance: 0.43±0.01 Efficiency: 0.58±0.02 Signal Yield: 98200±950 Acceptance: 0.44±0.01 Efficiency: 0.60±0.02

W→µv Signal Extraction

Signal Yield: 167710±830 Acceptance: 0.44±0.01 Efficiency: 0.78±0.01 Signal Yield: 131250±910 Acceptance: 0.46±0.01 Efficiency: 0.79±0.01

Electron Channel

Source	W^+	W^-	W	W^{+}/W^{-}	Ζ	W^+/Z	W^-/Z	W/Z
Lepton charge, reco. & id. [%]		2.0	2.1	0.6	2.5	1.2	1.0	1.0
Bkg. subtraction / modeling [%]		1.4	1.4	0.9	0.6	1.5	1.5	1.5
$E_{\rm T}^{\rm miss}$ scale and resolution		5	shape		NA		shape	
Electron scale and resolution		5	shape		NA		shape	
Total experimental [%]	2.5	2.5	2.5	1.1	2.6	1.9	1.8	1.8
Theoretical uncertainty [%]	1.6	1.4	1.4	1.9	1.6	1.9	1.9	1.7
Lumi [%]	4.8	4.8	4.8	NA	4.8	NA	NA	NA
Total [%]	5.6	5.6	5.6	2.1	5.7	2.7	2.6	2.5

Muon Channel

Source	W^+	W^-	W	W^{+}/W^{-}	Ζ	W^+/Z	W^-/Z	W/Z
Lepton charge, reco. & id. [%]		1.7	1.8	0.3	2.2	0.6	0.6	0.6
Bkg. subtraction / modeling [%]		0.6	0.6	0.4	0.6	0.8	0.8	0.8
$E_{\rm T}^{\rm miss}$ scale and resolution		5	shape		NA		shape	
Muon scale and resolution		5	shape		NA		shape	
Total experimental [%]	2.0	1.8	1.9	0.5	2.3	1.1	1.1	1.1
Theoretical Uncertainty [%]	2.0	1.7	1.3	2.3	1.5	2.0	1.9	1.6
Lumi [%]	4.8	4.8	4.8	NA	4.8	NA	NA	NA
Total [%]	5.6	5.4	5.3	2.3	5.5	2.3	2.2	1.9

- Experimental precision comparable with theoretical uncertainties
- Uncertainty on preliminary luminosity calibration dominates, cancels in the ratios

- Measurement of W and Z cross sections in electron and muon channel yield a test of lepton universality
- Results in muon and electron decay channel compatible

Results

 Theoretical predictions at NNLO from FEWZ using NNPDF3.0 PDF set

Results

- Uncertainties include contributions from α_s , heavy quark masses, and missing higher orders
- Results have been combined assuming lepton universality
- Ratios are particular interesting as several uncertainties cancel
- Very good agreement with NNLO SM predictions

Total inclusive cross sections

Channel		$\sigma \times \mathcal{B}$ [pb] (total)	NNLO [pb]
	$e^+\nu$	$11390 \pm 90 (\text{stat}) \pm 340 (\text{syst}) \pm 550 (\text{lumi})$	
W^+	$\mu^+\nu$	$11350 \pm 60 ({ m stat}) \pm 320 ({ m syst}) \pm 550 ({ m lumi})$	11330^{+320}_{-270}
	$\ell^+ \nu$	$11370 \pm 50 (\text{stat}) \pm 230 (\text{syst}) \pm 550 (\text{lumi})$	
	$e^{-\nu}$	$8680 \pm 80 (\text{stat}) \pm 250 (\text{syst}) \pm 420 (\text{lumi})$	
W ⁻	$\mu^-\nu$	$8510\pm60(\mathrm{stat})\pm210(\mathrm{syst})\pm410(\mathrm{lumi})$	8370^{+240}_{-210}
	$\ell^- \nu$	$8580 \pm 50 ({ m stat}) \pm 160 ({ m syst}) \pm 410 ({ m lumi})$	54 140
1.11.11.1	eν	$20070 \pm 120 (\text{stat}) \pm 570 (\text{syst}) \pm 960 (\text{lumi})$	
W	μν	$19870 \pm 80 (\text{stat}) \pm 460 (\text{syst}) \pm 950 (\text{lumi})$	19700^{+560}_{-470}
	$\ell \nu$	$19950 \pm 70 (\text{stat}) \pm 360 (\text{syst}) \pm 960 (\text{lumi})$	
	e ⁺ e ⁻	$1920 \pm 20 (\text{stat}) \pm 60 (\text{syst}) \pm 90 (\text{lumi})$	
Z	$\mu^+\mu^-$	$1900 \pm 10 ({ m stat}) \pm 50 ({ m syst}) \pm 90 ({ m lumi})$	1870^{+50}_{-40}
	$\ell^+\ell^-$	1910 ± 10 (stat) ± 40 (syst) ± 90 (lumi)	
Quan	tity	Ratio (total)	NNLO
	е	1.313 ± 0.016 (stat) ± 0.028 (syst)	
R_{W^+/W^-}	μ	1.334 ± 0.011 (stat) ± 0.031 (syst)	$1.354^{+0.011}_{-0.012}$
	l	1.323 ± 0.010 (stat) ± 0.021 (syst)	
	е	$5.94 \pm 0.07 ({ m stat}) \pm 0.16 ({ m syst})$	~
$R_{W^+/Z}$	μ	$5.98 \pm 0.05 ({ m stat}) \pm 0.14 ({ m syst})$	$6.06^{+0.04}_{-0.05}$
3	l	5.96 ± 0.04 (stat) ± 0.10 (syst)	
R _{W⁻/Z}	е	$4.52 \pm 0.06 ({ m stat}) \pm 0.12 ({ m syst})$	
	μ	$4.49\pm0.04(\mathrm{stat})\pm0.10(\mathrm{syst})$	$4.48^{+0.03}_{-0.02}$
	l	4.50 ± 0.03 (stat) ± 0.08 (syst)	
R _{W/Z}	e	$10.46 \pm 0.11 ({ m stat}) \pm 0.26 ({ m syst})$	
	μ	$10.47 \pm 0.08 ({ m stat}) \pm 0.20 ({ m syst})$	$10.55_{-0.06}^{+0.07}$
	l	10.46 ± 0.06 (stat) ± 0.16 (syst)	

- Theoretical predictions at NNLO from FEWZ using NNPDF3.0 PDF set
 - Uncertainties include contributions from α_s, heavy quark masses, and missing higher orders
- Results have been combined assuming lepton universality
- Ratios are particular interesting as several uncertainties cancel
- Very good agreement with NNLO SM predictions

Total inclusive cross sections

- Handle to constrain PDFs
- Measurement agrees with different PDF predictions within uncertainties

Theory: FEWZ (NNLO), NNPDF3.0

 $5040 \pm 20_{stat} \pm 100_{svst} \pm 240_{lum} \text{ pb}$

 $3900 \pm 30_{stat} \pm 70_{svst} \pm 190_{lum} \text{ pb}$

 $8950 \pm 40_{stat} \pm 170_{svst} \pm 430_{lum} \text{ pb}$

 $\begin{array}{l} 690 \pm 10_{_{stat}} \pm 20_{_{syst}} \pm 30_{_{lum}} \ pb \\ 680 \pm 20 \ pb \end{array}$

 $1.29 \pm 0.01_{stat} \pm 0.01_{syst}$

 $7.33 \pm 0.06_{stat} \pm 0.08_{syst}$

5030 ± 170 pb

3840 ± 140 pb

8870 ± 300 pb

 1.31 ± 0.03

 $7.43 \pm 0.16^{\circ}$

43 pb⁻¹ (13 TeV)

Fiducial inclusive cross sections

Electron Channel

Muon Channel

- Fiducial cross sections disentangle experimental and theoretical effects
- Very good agreement with NNLO SM predictions

Fiducial inclusive cross section ratios

- Fiducial cross sections provides more stringent comparisons between measurement and predictions using different PDF sets
- Measurement in good agreement with different PDF predictions

Fiducial inclusive cross sections

Measurement in good agreement with different PDF predictions

Predicted increase of cross sections with centre-of-mass energy confirmed by measurements

- New opportunities with CMS at 13 TeV
- All sub-detectors calibrated and commissioned
- Good data quality allows for precision measurements already with first data
- First 13 TeV results published and many more in the pipeline
- Already achieved excellent accuracy for measurement of W and Z boson production
 - Measurement limited by preliminary luminosity calibration

Back-Up

- Both W and Z analysis rely on single lepton triggers
- Offline Selection:
 - Electrons:
 - p_{T} >25 GeV, $|\eta|$ <2.5, excluding 1.44< $|\eta|$ <1.5
 - Isolation: $\Sigma p_{\tau}^{i} < 0.15 p_{\tau}^{el}$ (sum over particle flow candidates within cone of $\Delta R=0.3$)
 - Muons:
 - p_T>25 GeV, |η|<2.4
 - Isolation: $\Sigma p_{T}^{i} < 0.12 p_{T}^{mu}$ (sum over particle flow candidates within cone of $\Delta R=0.4$)
 - W selection:
 - Veto against 2nd lepton
 - No MET cut, use MET to discriminate signal from background
 - Z selection:
 - 60 GeV<m_<120 GeV

Total Inclusive Cross Section

Total Inclusive Cross Section Ratios

Fiducial Inclusive Cross Sections

Fiducial inclusive cross sections

Channel		$\sigma imes \mathcal{B}$ [pb] (fiducial)	NNLO [pb]
W^+	$e^+\nu$	$4900 \pm 40 (\text{stat}) \pm 120 (\text{syst}) \pm 240 (\text{lumi})$	4870^{+160}_{-140}
vv	$\mu^+\nu$	$5040 \pm 20 (\text{stat}) \pm 100 (\text{syst}) \pm 240 (\text{lumi})$	5030^{+180}_{-160}
W 1-	$e^-\nu$	$3830 \pm 40 (\text{stat}) \pm 90 (\text{syst}) \pm 180 (\text{lumi})$	3690^{+150}_{-110}
vv	$\mu^-\nu$	$3900 \pm 30 (\text{stat}) \pm 70 (\text{syst}) \pm 190 (\text{lumi})$	3840^{+160}_{-120}
147	eν	$8730 \pm 50 (\text{stat}) \pm 220 (\text{syst}) \pm 420 (\text{lumi})$	8570^{+340}_{-240}
VV	μν	$8950 \pm 40 (\text{stat}) \pm 170 (\text{syst}) \pm 430 (\text{lumi})$	8870^{+350}_{-240}
7	e ⁺ e ⁻	$640 \pm 10 (\text{stat}) \pm 20 (\text{syst}) \pm 30 (\text{lumi})$	620^{+20}_{-20}
L	$\mu^+\mu^-$	$690 \pm 10 (\text{stat}) \pm 20 (\text{syst}) \pm 30 (\text{lumi})$	680^{+30}_{-20}
Quantity		Ratio (fiducial)	NNLO
R_{W^+/W^-}	e	$1.28 \pm 0.02 ({ m stat}) \pm 0.01 ({ m syst})$	$1.32^{+0.03}_{-0.03}$
	μ	1.29 ± 0.01 (stat) ± 0.01 (syst)	$1.31^{+0.03}_{-0.03}$
$R_{W^+/Z}$	e	$7.65 \pm 0.09 ({ m stat}) \pm 0.15 ({ m syst})$	$7.82^{+0.17}_{-0.16}$
	μ	$7.33 \pm 0.06 ({ m stat}) \pm 0.08 ({ m syst})$	$7.43^{+0.17}_{-0.16}$
$R_{W^-/Z}$	e	$5.97 \pm 0.08 (\text{stat}) \pm 0.11 (\text{syst})$	$5.92^{+0.12}_{-0.11}$
	μ	$5.67 \pm 0.05 ({ m stat}) \pm 0.06 ({ m syst})$	$5.67^{+0.11}_{-0.11}$
R _{W/Z}	e	13.62 ± 0.14 (stat) ± 0.25 (syst)	$13.74^{+0.26}_{-0.25}$
	μ	$13.00\pm0.10(\mathrm{stat})\pm0.14(\mathrm{syst})$	$13.10_{-0.23}^{+0.24}$

- Fiducial cross sections disentangle experimental and theoretical effects
- Very good agreement with NNLO SM predictions

Massachusetts Institute of Technology

Fiducial Inclusive Cross Sections

Fiducial Inclusive Cross Sections

Massachusetts Institute of Technology Fiducial Inclusive Cross Section Ratios

Theory: FEWZ (NNLO)

Electron channel

6.2

 $\sigma_W^{fid}/\sigma_Z^{fid}$

43 pb⁻¹ (13 TeV)

5.8

6.0

Vector boson production - Katharina Bierwagen

Fiducial Inclusive Cross Sections

Massachusetts Institute of Technology Fiducial Inclusive Cross Section Ratios

W→ev Signal Extraction (8TeV)

W⁺→e⁺v

W→e¯v

 $W \rightarrow \mu \nu$ Signal Extraction (8 TeV)

$$W^+ \rightarrow \mu^+ \nu$$

