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André David, Michael Dührssen, Adam Falkowski, Chris Hays, and Gino Isidori.

We acknowledge contributions and feedback from:
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1 Introduction1

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis2

chain:3

Data → Fiducial cross-sections → Pseudo-observables → Model-independent4

EFT → BSM Models .5

This note concerns model-independent interpretations of the data in the framework of6

effective field theory (EFT) beyond the Standard Model (SM), which is a part of the7

scope of the Working Group 2. The purpose of this note is to propose a common EFT8

language and conventions that could be universally used in LHC Higgs analyses and be9

implemented in numerical tools.10

In the EFT approach to physics beyond the SM, the basic assumption is that the11

mass scale Λ of non-SM particles is larger than the electroweak scale v, Λ � v. If12

this is the case, physics at energies E � Λ can be parametrized by the SM Lagrangian13

supplemented by new operators with canonical dimensions d larger than 4. The theory14

has the same field content and the same linearly realized SU(3) × SU(2) × U(1) local15

symmetry as the SM.1 The higher-dimensional operators are organized in a systematic16

expansion in d, where each consecutive term is suppressed by a larger power of Λ. The17

EFT Lagrangian can be written as18

LEFT = LSM +
∑
i

c
(5)
i

Λ
O(5)
i +

∑
i

c
(6)
i

Λ2
O(6)
i + · · · . (1.1)

1The latter assumption can be relaxed, leading to EFT with a non-linearly realized electroweak
symmetry. In this note, we will not discuss these theories.
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In this equation, LSM is the SM Lagrangian, which contains operators with d ≤4. The19

remaining terms parametrize effects of heavy particles beyond the SM. Each O
(d)
i is a20

gauge-invariant operator of canonical dimension d, and c
(d)
i is the corresponding Wilson21

coefficient. The contribution of each O
(d)
i to amplitudes of physical processes at the22

energy scale of order v scales2 as (v/Λ)d−4. Since v/Λ < 1 by construction, EFT typically23

describes small deviations from the SM predictions, except for observables that, within24

the SM, vanish or are suppressed by small parameters.25

All dimension-5 operators that can be constructed from the SM fields violate the26

lepton number. Experimental constraints dictate that their coefficients must be sup-27

pressed at a level which makes them unobservable at the LHC, and for this reason d=528

operators will not be discussed here. Consequently, the leading new physics effects are29

expected from operators with d=6 whose contributions scale as (v/Λ)2. We will ignore30

here the effects of operators with d > 6.31

In the rest of this note, we discuss in detail the set d=6 operators that can be32

constructed from the SM fields. We review various possible choices of these operators33

(the so-called basis) and their phenomenological effects. Only the operators that conserve34

the baryon and lepton numbers are considered. On the other hand, we do not impose35

any flavor symmetry. Also, we include CP violating operators in our discussion.36

In Section 2, to define our notation and conventions, we write down the SM La-37

grangian. Two popular bases of dimension-6 operators using the manifestly SU(2)×U(1)38

invariant formalism are described in Section 3. In Section 4 we introduce an effective39

Lagrangian summarizing the new interactions of the SM mass eigenstates that arise in40

the presence of dimension-6 operators beyond the SM. We also derive provide a map be-41

tween the couplings in that effective Lagrangian and Wilson coefficients of dimension-642

operators introduced in Section 3. In Section 5 we define a new basis of d=6 operators,43

the so-called Higgs basis, which is spanned by a subset of the independent couplings44

of the effective Lagrangian. This basis is particularly convenient for leading-order EFT45

analyses of LHC Higgs data.46

2 Standard Model Lagrangian47

The SM Lagrangian in our notation takes the form48

LSM = −1

4
Ga
µνG

a
µν −

1

4
W i
µνW

i
µν −

1

4
BµνBµν +DµH

†DµH + µ2
HH

†H − λ(H†H)2

+
∑
f∈q,`

if̄LγµDµfL +
∑

f∈u,d,e

if̄RγµDµfR

−
[
H̃†ūRyuqL +H†d̄RydV

†
CKMqL +H†ēRye`L + h.c.

]
. (2.1)

Here, Ga
µ, W i

µ, and Bµ denote the gauge fields of the SU(3) × SU(2) × U(1) local49

symmetry. The corresponding gauge couplings are denoted by gs, g, g′; we also define the50

electromagnetic coupling e = gg′/
√
g2 + g′2, and the Weinberg angle sθ = g′/

√
g2 + g′2.51

2Apart from the scaling with Λ, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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The field strength tensors are defined as Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , W

i
µν =52

∂µW
i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , Bµν = ∂µBν − ∂νBµ. The Higgs doublet is denoted as H,53

and we also define H̃i = εijH
∗
j . It acquires the VEV 〈H†H〉 = v2/2. In the unitary54

gauge we have H = (0, (v+ h)/
√

2), where h is the Higgs boson field. After electroweak55

symmetry breaking, the electroweak gauge boson mass eigenstates are defined as W± =56

(W 1∓ iW 2)/
√

2, Z = cθW
3−sθB, A = sθW

3 +cθB, where cθ =
√

1− s2
θ. The tree-level57

masses of W and Z bosons are given by mW = gv/2, mZ =
√
g2 + g′2v/2. The left-58

handed Dirac fermions qL = (uL, VCKMdL) and `L = (νL, eL) are doublets of the SU(2)59

gauge group, and the right-handed Dirac fermions uR, dR, eR are SU(2) singlets. All60

fermions are 3-component vectors in the generation space, and yf are 3×3 matrices. We61

work in the basis where the fermion mass matrix is diagonal with real, positive entries.62

In this basis, yf are diagonal, and the fermion masses are given by mfi = v[yf ]ii/
√

2.63

For a future use, we write down the equations of motions for the gauge fields following64

from Eq. (2.1):65

∂νBνµ = −ig
′

2
H†
←→
DµH − g′jYµ ,

∂νW
i
νµ + gεijkW j

νW
k
νµ = DνW

i
νµ = −ig

2
H†σi

←→
DµH − gjiµ,

DνG
a
νµ = −gsjaµ, (2.2)

where jYµ =
∑

f Yf f̄γµf , jiµ = q̄γµ
σi

2
PLq+¯̀γµ

σi

2
PL`, and jaµ = q̄γµT

aPLq are the fermionic66

currents corresponding to the U(1), SU(2), and SU(3) factors of the SM gauge group.67

Rewriting the Lagrangian in Eq. (2.1) in terms of the mass eigenstates after elec-68

troweak symmetry breaking, one finds the following mass terms:69

LSM
mass =

g2v2

4
W+
µ W

−
µ +

(g2 + g′2)v2

8
ZµZµ +

∑
f∈u,d,e

mf f̄f, (2.3)

the gauge boson couplings to fermions:70

LSM
vff = eAµ

∑
f∈u,d,e

Qf f̄γµf + gsG
a
µ

∑
f∈u,d

f̄γµT
af,

+
g√
2

(
W+
µ ūLγµVCKMdL +W+

µ ν̄LγµeL + h.c.
)

+
√
g2 + g′2Zµ

∑
f∈u,d,e,ν

(
T 3
f f̄LγµfL − s2

θQf f̄γµf
)
, (2.4)

the couplings of a single Higgs boson to gauge bosons and fermions:71

LSM
h =

h

v

[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
ZµZµ

]
− h

v

∑
f

mf f̄f (2.5)

the couplings involving two or more Higgs bosons72

LSM
hh =

h2

2v2

[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
ZµZµ

]
− m2

h

2v
h3 − m2

h

8v2
h4, (2.6)
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and the triple and quartic self-interactions of the vector bosons:73

LSM
tgc = ie

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Aν + AµνW

+
µ W

−
ν

]
+ igcθ

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + ZµνW

+
µ W

−
ν

]
− gsf

abc∂µG
a
νG

b
µG

c
ν . (2.7)

74

LSM
qgc =

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ g2s2

θ

(
W+
µ AµW

−
ν Aν −W+

µ W
−
µ AνAν

)
+ g2cθsθ

(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
− g2

sf
abcfadeGb

µG
c
νG

d
µG

e
µ. (2.8)

The couplings multiplying the SM interaction terms depend on a number of input pa-75

rameters: mh, mf , VCKM, gs, g, g′, v, all of which are known with a good precision.76

The last 3 parameters are customarily derived from the observable Fermi constant GF77

(more precisely, from the measured muon lifetime τµ = 192π3/G2
Fm

5
µ), Z boson mass78

mZ , and the low-energy electromagnetic coupling α(0). The tree-level relations between79

the input observables and the electroweak parameters are given by:80

GF =
1√
2v2

, α =
g2g′2

4π(g2 + g′2)
, mZ =

√
g2 + g′2v

2
. (2.9)

3 Bases of dimension-6 operators81

A basis of dimension-6 operators is a complete, non-redundant set of O
(6)
i in Eq. (1.1).82

Complete means that any dimension-6 operator is either a part of the basis or can be83

obtained from a combination of operators in the basis using equations of motion, inte-84

gration by parts, field redefinitions, and Fierz transformations. Non-redundant means85

it is a minimal such set. Any complete basis leads to the same physical predictions con-86

cerning possible new physics effects. Several bases have been proposed in the literature,87

and they may be convenient for specific applications. In this section we describe two88

popular choices in the existing literature. Later, in Section 5, we propose a new basis89

choice that is particularly convenient for leading-order LHC Higgs analyses in the EFT90

framework.91

3.1 Warsaw Basis92

Historically, a complete and non-redundant set of d=6 operators was first identified in93

Ref. [1], and is usually referred to as the Warsaw basis. For our purpose, it is more94

convenient to work with a variant of that basis which differs from the one in Ref. [1] by95

the following aspects:96

• We replace the operator |H†DµH|2 byOT = (H†
←→
DµH)2, whereH†

←→
DµH ≡ H†DµH−97

DµH
†H. The reason is that OT is more directly connected to violation of custodial98

symmetry among Higgs couplings.99
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H4D2 and H6

OH
[
∂µ(H†H)

]2
OT

(
H†
←→
DµH

)2

O6H (H†H)3

f2H3

[Oe]ij −
√
mimj
v (H†H − v2

2 )ēiH
†`j

[Ou]ij −
√
mimj
v (H†H − v2

2 )ūiH̃
†qj

[Od]ij −
√
mimj
v (H†H − v2

2 )d̄iH
†qj

V 3D3

O3G g3
sf

abcGaµνG
b
νρG

c
ρµ

O
3̃G

g3
sf

abcG̃aµνG
b
νρG

c
ρµ

O3W g3εijkW i
µνW

j
νρW k

ρµ

O
3̃W

g3εijkW̃ i
µνW

j
νρW k

ρµ

V 2H2

OGG
g2s
4 H

†H GaµνG
a
µν

O
G̃G

g2s
4 H

†H G̃aµνG
a
µν

OWW
g2

4 H
†HW i

µνW
i
µν

O
W̃W

g2

4 H
†H W̃ i

µνW
i
µν

OBB
g′2

4 H
†H BµνBµν

O
B̃B

g′2

4 H
†H B̃µνBµν

OWB gg′H†σiHW i
µνBµν

O
W̃B

gg′H†σiH W̃ i
µνBµν

f2H2D

[OH`]ij i¯̀iγµ`jH
†←→DµH

[O′H`]ij i¯̀iσ
kγµ`jH

†σk
←→
DµH

[OHe]ij iēiγµējH
†←→DµH

[OHq]ij iq̄iγµqjH
†←→DµH

[O′Hq]ij iq̄iσ
kγµqjH

†σk
←→
DµH

[OHu]ij iūiγµujH
†←→DµH

[OHd]ij id̄iγµdjH
†←→DµH

[OHud]ij iūiγµdjH̃
†DµH

f2V HD

[OeW ]ij g ¯̀
iσ
kHσµνejW

k
µν

[OeB]ij g′ ¯̀iHσµνejBµν

[OuG]ij gsq̄iH̃σµνT
aujG

a
µν

[OuW ]ij gq̄iσ
kH̃σµνujW

k
µν

[OuB]ij g′q̄iH̃σµνujBµν

[OdG]ij gsq̄iHσµνT
adjG

a
µν

[OdW ]ij gq̄iσ
kHσµνdjW

k
µν

[OdB]ij g′q̄iHσµνdjBµν

Table 1: Dimension-6 operators other than four-fermion operators in the Warsaw basis.
In this table, e, u, d are always right-handed fermions, while ` and q are left-handed. For
complex operators the complex conjugate operator is implicit.

• For Yukawa-type d=6 operators H|H|2f̄f we subtracted v2 from |H|2in the defi-100

nition, so that they do not contribute to fermion mass terms. This way we avoid101

tedious rotations of the fermion fields to bring them back to the mass eigenstate102

basis. Moreover, we isolated factor of fermion masses in the definition, for a103

more direct connection to minimal flavor violating scenarios. Starting with the104

Yukawa couplings −Hf̄ ′R(Y ′f + c′fH
†H/v2)f ′L we can bring them to the form in105

Eq. (2.1) and Table 1 by defining f ′L,R = UL,RfL,R,
√
mimj[cf ]ij/v = [U †Rc

′
fUL]ij,106

Yf = U †R(Y ′f + c′f/2)UL, where UL,R are unitary rotations to the mass eigenstate107

basis.108

For other operators, we often use a different notation and normalizations than the orig-109

inal reference.110

The Lagrangian in the Warsaw basis is given by111

Lwarsaw = LSM +
1

Λ2

∑
i

ĉiOi, (3.1)

where the SM Lagrangian LSM was introduced in Section 2, Λ is the EFT expansion112

parameter identified with the mass scale of new particles in the UV theory, Oi are113

the dimension-6 operators summarized in Table 1 and Table 2, and ĉi are the Wilson114

coefficient multiplying the operator Oi. Note that observables calculated in the EFT115
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(L̄L)(L̄L) and (L̄R)(L̄R)

O`` (¯̀γµ`)(¯̀γµ`)

Oqq (q̄γµq)(q̄γµq)

O′qq (q̄γµσ
iq)(q̄γµσ

iq)

O`q (¯̀γµ`)(q̄γµq)

O′`q (¯̀γµσ
i`)(q̄γµσ

iq)

Oquqd (q̄ju)εjk(q̄
kd)

O′quqd (q̄jT au)εjk(q̄
kT ad)

O`equ (¯̀je)εjk(q̄
ku)

O′`equ (¯̀jσµνe)εjk(q̄
kσµνu)

O`edq (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee (ēγµe)(ēγµe)

Ouu (ūγµu)(ūγµu)

Odd (d̄γµd)(d̄γµd)

Oeu (ēγµe)(ūγµu)

Oed (ēγµe)(d̄γµd)

Oud (ūγµu)(d̄γµd)

O′ud (ūγµT
au)(d̄γµT

ad)

(L̄L)(R̄R)

O`e (¯̀γµ`)(ēγµe)

O`u (¯̀γµ`)(ūγµu)

O`d (¯̀γµ`)(d̄γµd)

Oqe (q̄γµq)(ēγµe)

Oqu (q̄γµq)(ūγµu)

O′qu (q̄γµT
aq)(ūγµT

au)

Oqd (q̄γµq)(d̄γµd)

O′qd (q̄γµT
aq)(d̄γµT

ad)

Table 2: Four-fermion operators in the Warsaw basis [1]. In this table, e, u, d are always
right-handed fermions, while ` and q are left-handed. A flavor index is implicit for each
fermion field. For complex operators the complex conjugate operator is implicit.

depend only on the combination ĉi/Λ
2. Therefore, working with the low-energy EFT,116

it is more convenient to redefine ĉi → ciΛ
2/v2. In the following we will display all the117

formulas using the redefined Wilson coefficients ci.118

3.2 SILH basis119

Another d=6 basis choice commonly used in the literature is the SILH basis [3, 11].3120

The SILH Lagrangian is written as121

LSILH = LSM +
1

v2

∑
i

siOi. (3.2)

3For the sake of this note, the SILH basis is understood simply as a particular choice of a non-
redundant set of d=6 operators whose Wilson coefficients are arbitrary. We do not assume any hierarchy
of the Wilson coefficients motivated by particular strongly coupled UV completions that was discussed
in Refs. [3, 11]. As in the case of the Warsaw basis, in this note we use a different notation and
normalization than in the original references.
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Compared to the Warsaw basis defined in Section 3.1, the SILH basis of dimension-6122

operators introduces the following nine new operators:123

OW =
ig

2

(
H†σi

←→
DµH

)
DνW

i
µν ,

OB =
ig′

2

(
H†
←→
DµH

)
∂νBµν ,

OHW = ig
(
DµH

†σiDνH
)
W i
µν ,

OHB = ig′
(
DµH

†DνH
)
Bµν ,

OH̃W = ig
(
DµH

†σiDνH
)
W̃ i
µν ,

OH̃B = ig′
(
DµH

†DνH
)
B̃µν ,

O2W = DµW
i
µνDρW

i
ρν ,

O2B = ∂µBµν∂ρBρν ,

O2G = DµG
a
µνDρG

a
ρν . (3.3)

Consequently, in order to have a non-redundant set of operators, 9 operators present124

in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic125

operators OWW , O
W̃W

, OWB, OW̃B, 2 vertex operators [OH`]11, [O′H`]11, and 3 four-126

fermion operators [O``]1221, [O``]1122, [O′uu]3333. The remaining operators are the same as127

in the Warsaw basis, and we use the normalizations in Table 1.4128

3.3 Map between Warsaw and SILH bases129

One way to derive the translation is to first transform the operators in Eq. (3.3) to the130

Warsaw basis using integration by parts, Fierz transformations, and the equations of131

4The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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motion Eq. (2.2). This way, one can derive the following operator equalities:132

OHB = OB −
1

4
OWB −OBB,

OHW = OW −
1

4
OWB −OWW ,

OH̃B = −1

4
OW̃B −OB̃B,

OH̃W = −1

4
OW̃B −OW̃W

,

OB = g′2

[
−1

4
OT +

1

2

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii

]
,

OW = g2

[
−1

4
OH +OHD +

1

4

∑
f∈q,`

∑
i

[O′Hf ]ii

]
,

O2B = g′2

[
−1

4
OT +

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii +
∑

f1f2∈q,u,d,`,e

Yf1Yf2
∑
i,j

[Of1f2 ]ii;jj

]
,

O2W = g2

[
−1

4
OH +OHD +

1

2

∑
f∈q,`

∑
i

[O′Hf ]ii

+
∑
ij

(
1

2
[O``]ij;ji −

1

4
[O``]ii;jj +

1

2
[O`q]ii;jj +

1

4
[Oqq]ii;jj

)]
,

O2G = g2
s

∑
i,j

[
1

4
[O′qq]ij;ji +

1

4
[Oqq]ij;ji −

1

6
[Oqq]ii;jj + 2[O′qu]ii;jj + 2[O′qd]ii;jj

+ 2[O′ud]ii;jj +
1

2
[O′uu]ij;ji −

1

6
[O′uu]ii;jj +

1

2
[O′dd]ij;ji −

1

6
[O′dd]ii;jj

]
. (3.4)

The operator OHD = |H|2|DµH|2 appearing above is present neither in the Warsaw nor133

in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field134

and the Yukawa couplings as H → H(1 + ε|H|2/v2), yf → yf (1− ε/2). To lowest order135

in ε, this rescaling generates the following terms in the Lagrangian136

∆L = ε

(
2OHD +OH − 4λO6H +

√
2
∑

f∈u,d,e

∑
i

[Of ]ii

)
. (3.5)

Thus, to get rid of the OHD operator generated by the transformation from the SILH137

to the Warsaw basis we need to choose ε = −g2(sW + sHW + s2W )/2. Effectively, this138

amount to replacing in Eq. (3.4):139

OHD → −
1

2
OH + 2λO6H −

1√
2

∑
f∈u,d,e

∑
i

[Of ]ii. (3.6)

We are ready to give the translation between the Wilson coefficient in the SILH and140
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Warsaw basis:141

cH = sH −
3g2

4
(sW + sHW + s2W ) ,

cT = sT −
g′2

4
(sB + sHB + s2B) ,

c6H = s6H + 2λg2 (sW + sHW + s2W ) ,

cWB = −1

4
(sHB + sHW ) ,

cBB = sBB − sHB,
cWW = −sHW ,

c̃WB = −1

4
(s̃HB + s̃HW ) ,

c̃BB = s̃BB − s̃HB,
c̃WW = −s̃HW , (3.7)

142

[cHf ]ij = [sHf ]ij +
g′2Yf

2
(sB + sHB + 2s2B) δij,

[c′Hf ]ij = [s′Hf ]ij +
g2

4
(sW + sHW + 2s2W ) δij, (3.8)

143

[cf ]ij = [sf ]ij − δij
g2

√
2

(sW + sHW + s2W ) , (3.9)
144

[c``]iiii = [s``]iiii +
1

4

(
g′2s2B + g2s2W

)
,

[c``]iijj = [s``]iijj +
1

2

(
g′2s2B − g2s2W

)
, i < j,

[c``]ijji = [s``]ijji + g2s2W , i < j, (3.10)

where it is implicit that [sH`]11 = [s′H`]11 = [s``]1221 = [s``]1122 = 0. For the 4-lepton145

operators one should take into account that [O``]jiij ≡ [O``]ijji and [O``]jjii ≡ [O``]iijj.146

The translation of other 4-fermion Wilson coefficients apart from the one in Eq. (3.10)147

can be easily derived from Eq. (3.4), but it will not be needed in the following. For the148

Wilson coefficients not listed above the translation is trivial: ci = si.149

4 Phenomenological effective Lagrangian150

In Section 3 we introduced d=6 operators in the SU(2)×U(1) invariant notation. At that151

point, the connection between the new operators and phenomenology is not obvious. In152

this section we relate the Wilson coefficients of dimension-6 operators to the parameters153

of the effective Lagrangian describing the interactions of SM mass eigenstates after154

electroweak symmetry breaking. The effective Lagrangian is of the form155

Leff = LSM + ∆Ld=6, (4.1)

where LSM is the SM Lagrangian introduced in Section 2, and ∆Ld=6, contains new156

interactions beyond the SM induced by the d=6 operators.5 The effect of ∆Ld=6 is157

5Note that, after electroweak symmetry breaking, the canonical dimensions of some interaction terms
∆Ld=6 is smaller than 6 due to insertions of the Higgs field VEV v.
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either to shift the coupling strength away from the SM predictions or to introduce new158

tensor structures of interactions that are absent in the SM Lagrangian. A subset of these159

interactions is relevant to describe new physics effects in Higgs searches at the LHC.160

By construction, Leff has the following features:161

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular,162

there is no kinetic mixing between the Z boson and the photon.163

#2 Tree-level relations between the electroweak parameters and input observables are164

the same as the SM ones in Eq. (2.9). In particular, the photon and the gluon165

interact with fermions as in Eq. (2.4), and there is no correction to the Z boson166

mass term.167

#3 Two-derivative self-interactions of the Higgs boson are absent.168

#4 For each fermion pair, the coefficient of the vertex-like Higgs interaction term169

h
v
Vµf̄γµf is equal to the vertex correction to the respective Vµf̄γµf interaction.170

These conditions greatly simplify the connection between the parameters of the La-171

grangian and collider observables. In general, dimension-6 operators can induce inter-172

action terms that do not respect these features. However, the conditions #1-#4 can173

always be achieved, without any loss of generality, by using equations of motion, inte-174

grating by parts, and redefining the fields and couplings. Below, we discuss the required175

set of transformations starting from the Warsaw basis. An analogous procedure could176

be executed starting from the SILH basis; alternatively, the map between the SILH basis177

and the phenomenological effective Lagrangian can be derived using the results for the178

Warsaw basis obtained below together with the Warsaw-to-SILH translation given in179

Section 3.3,180

We need to bring the Warsaw basis Lagrangian to a form that satisfies the condi-181

tions #1-#4. To begin with, the operator OWB leads to a kinetic mixing between the182

hypercharge and SU(2) gauge bosons, OWB → −1
2
gg′W 3

µνBµν . To get rid of it, one has183

to use the equations of motion in Eq. (2.2):184

−cWB
gg′

2
W 3
µνBµν = −cWB

gg′

2

(
−2s2

θBµ∂νW
3
νµ − 2c2

θW
3
µ∂νBνµ + gc2

θε
3jkW j

µW
k
µBµν

)
→ cWBe

2
[

(v+h)2

4

(
gW 3

µ − g′Bµ

)2 − gW 3
µj

Y
µ − g′Bµj

3
µ −

g2

2g′
ε3jkW j

µW
k
νBµν − g′ε3jkBµW

j
νW

k
νµ

]
= cWBe

2
[

(g2+g′2)(v+h)2

4
Z2
µ − eAµjem

µ +
√
g2 + g′2Zµ

(
j3
µ − c2

θj
em
µ

)]
+ icWB

g2g′

(g2+g′2)3/2

[
g2(gAµν − g′Zµν)W+

µ W
−
ν − g′2(gAµ − g′Zµ)(W+

µνW
−
ν −W−

µνW
+
ν )
]
, (4.2)

where jem
µ = j3

µ + jYµ is the electromagnetic current. Next, the operators OBB, OWW ,185

and OGG change the normalization of the kinetic terms of the gauge bosons. To recover186

the canonical normalization we redefine the gauge fields as187

Bµ → Bµ

(
1 +

cBBg
′2

4

)
, W i

µ → W i
µ

(
1 +

cWWg
2

4

)
, Ga

µ → Ga
µ

(
1 +

cGGg
2
s

4

)
. (4.3)

The operator ÕGG contributes to the QCD θ-term which, for phenomenological reasons,188

should be extremely small. Therefore, we assume that this contribution if present,189
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precisely cancels against the θ-term in the SM Lagrangian such that |θSM + θG̃G| <190

10−10. The operator OH changes the normalization of the Higgs boson kinetic term,191

and also induces Higgs boson self-interactions that contain two derivatives. To recover192

the canonical normalization and remove the 2-derivative self-interactions we redefine the193

Higgs field as194

h→ h

(
1− cH −

h

v
cH −

h2

3v2
cH

)
. (4.4)

The relation between the Higgs VEV v0 and the mass parameter in the SM Lagrangian195

is affected by the O6H operator:196

v2
0 =

µ2
H

λ

(
1 +

3

4λ
c6H

)
, (4.5)

while the relation between the Higgs boson mass and the quartic coupling in the SM197

Lagrangian is affected by both O6H and OH :198

m2
h = 2v2

0

(
λ− 2cHλ−

3

2
c6H

)
. (4.6)

We still need to ensure the condition #2 which requires that the tree-level relations199

between the couplings and the observables employed to determine them must be the200

same as in the SM. This is a non-trivial requirement, because dimension-6 operators201

affect the observables used to extract these parameters. We have seen that the operator202

OWB shifts the electric charge and the Z boson mass. Similarly, the operator OT shifts203

the Z boson mass term. Furthermore, one of the O`` operators leads to the 4-fermion204

coupling v−2[c``]1221(ν̄µ,Lγρνe,L)(ēLγρµL) that contributes to the muon decay at the linear205

level and thus effectively shifts the Fermi constant. Finally, the leptonic vertex operators206

OH` change the couplings of W to electrons and muons, and thus also effectively shift207

the Fermi constant. To undo these effects, we need to ensure that the photon and the208

gluon couple to the electromagnetic and strong currents as in Eq. (2.4). Furthermore,209

the Z boson mass term in the Lagrangian should be as in Eq. (2.3), and the tree-level210

µ→ eν̄eνµ decay width should be given by Γ =
m5
µ

384π3v4
. This is achieved by the following211

redefinition of the coupling constants and the VEV:212

gs → gs

(
1− cGG

g2
s

4

)
,

g → g

(
1− cWW

g2

4
− cWB

g2g′2

g2 − g′2
+ (cT − δv)

g2

g2 − g′2

)
,

g′ → g′
(

1− cBB
g′2

4
+ cWB

g2g′2

g2 − g′2
− (cT − δv)

g′2

g2 − g′2

)
,

v0 → v (1 + δv) , (4.7)

where δv = ([c′H`]11 + [c′H`]22)/2− [c``]1221/4.213

One last transformation is needed satisfy the condition #4. At this point, the coef-214

ficients of the contact hV ff and h2V ff interactions differ from the vertex corrections215

to the V ff interactions by flavor universal terms depending only on the electric charge216

and the isospin of the fermions. It is possible to get rid of the latter using equations of217
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motion for the gauge bosons, so as to trade them into zero- and two-derivative Higgs218

boson interactions with gauge bosons of the form hVµVµ and hVµ∂νVµν . To this end, we219

add and subtract the following Lagrangian term:220

∆L =

(
2
h

v
+
h2

v2

)
[Ladd − Ladd, eom]

Ladd =
g√
2

g2

g2 − g′2
(
cT − δv − g′2cWB

) (
W+
µ j
−
µ + h.c.

)
+

√
g2 + g′2

1

g2 − g′2
(
(cT − δv)(g2j3

µ + g′2jYµ )− g2g′2cWB(j3
µ + jYµ )

)
Zµ

(4.8)

where Ladd, eom is Ladd with the fermionic currents jµ eliminated in favor of bosonic221

terms using the equations of motion in Eq. (2.2). This step ensures the the coefficients222

of the vertex-like Higgs contact interactions hV ff and h2V ff in the Lagrangian are223

proportional to the vertex correction to the SM V ff interactions.224

After all these transformations, the conditions #1-#4 are satisfied. We can proceed225

to listing the corrections to the SM in ∆Ld=6 in this representation. We will focus on226

interaction terms that are relevant for LHC phenomenology. Coefficients of all interac-227

tion terms in ∆Ld=6 are O(1/Λ2) in the EFT expansion, and will ignore all O(1/Λ4)228

and higher contributions. To facilitate presentation, we split ∆Ld=6 into the following229

parts,230

∆Ld=6 = ∆Lmass+∆Lvertex+Ldipole+∆Ltgc+∆Lqgc+∆Lh+Lhvff+Lhdvff+∆Lh,self+∆Lh2+Lother.
(4.9)

Below we define each term in order of appearance. In this section we give the Lagrangian231

in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero; see232

Appendix B for a generalization to the Rξ gauge.233

4.1 Quadratic terms234

By construction, there are no corrections to quadratic terms of the SM mass eigenstates235

with the exception of the shift of the W boson mass in Eq. (2.3):236

∆Lmass = 2δm
g2v2

4
W+
µ W

−
µ . (4.10)

The relation between δm and the Wilson coefficients in the Warsaw and SILH bases is237

given by238

δm =
1

g2 − g′2
[
−g2g′2cWB + g2cT − g′2δv

]
= − g2g′2

4(g2 − g′2)

(
sW + sB + s2W + s2B −

4

g′2
sT +

2

g2
[s′H`]22

)
. (4.11)

4.2 Gauge boson interactions with fermions239

Two types of corrections to the SM gauge boson interactions with fermions may be240

introduced by dimension-6 operators. One is the so-called vertex corrections, which241
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shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.4):242

∆Lvertex =
g√
2

(
W+
µ ν̄Lγµδg

W`
L eL +W+

µ ūγµδg
Wq
L dL +W+

µ ūRγµδg
Wq
R dR + h.c.

)
+

√
g2 + g′2Zµ

[ ∑
f∈u,d,e,ν

f̄Lγµδg
Zf
L fL +

∑
f∈u,d,e

f̄Rγµδg
Zf
R fR

]
, (4.12)

where all the δg are 3× 3 Hermitian matrices in the generation space, except for δgWq
R243

which is a general 3 × 3 complex matrix. The vertex corrections to W and Z boson244

couplings to fermions are expressed by the Wilson coefficients in the Warsaw basis as245

δgW`
L = c′H` + f(1/2, 0)− f(−1/2,−1),

δgZνL =
1

2
c′H` −

1

2
cH` + f(1/2, 0),

δgZeL = −1

2
c′H` −

1

2
cH` + f(−1/2,−1),

δgZeR = −1

2
cHe + f(0,−1), (4.13)

246

δgWq
L = c′HqVCKM + f(1/2, 2/3)− f(−1/2,−1/3),

δgWq
R = −1

2
cHud,

δgZuL =
1

2
c′Hq −

1

2
cHq + f(1/2, 2/3),

δgZdL = −1

2
V †CKMc

′
HqVCKM −

1

2
V †CKMcHqVCKM + f(−1/2,−1/3),

δgZuR = −1

2
cHu + f(0, 2/3),

δgZdR = −1

2
cHd + f(0,−1/3), (4.14)

where247

f(T 3, Q) = I3

[
−QcWB

g2g′2

g2 − g′2
+ (cT − δv)

(
T 3 +Q

g′2

g2 − g′2

)]
, (4.15)
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and I3 is the 3× 3 identity matrix. The analogous expression in the SILH basis read248

δgZνL =
1

2
s′H` −

1

2
sH` + f̂(1/2, 0),

δgZeL = −1

2
s′H` −

1

2
sH` + f̂(−1/2,−1),

δgZeR = −1

2
sHe + f̂(0,−1),

δgZuL =
1

2
s′Hq −

1

2
sHq + f̂(1/2, 2/3),

δgZdL = −1

2
V †CKMs

′
HqVCKM −

1

2
V †CKMsHqVCKM + f̂(−1/2,−1/3),

δgZuR = −1

2
sHu + f̂(0, 2/3),

δgZdR = −1

2
sHd + f̂(0,−1/3),

δgW`
L = s′H` + f̂(1/2, 0)− f̂(−1/2,−1),

δgWq
L = s′HqVCKM + f̂(1/2, 2/3)− f̂(−1/2,−1/3),

δgWq
R = −1

2
sHud, (4.16)

where249

f̂(T 3, Q) ≡ 1

4

[
g2s2W + g′2s2B + 4sT − 2[s′H`]22

]
T 3

+
g′2

4(g2 − g′2)

[
−(2g2 − g′2)s2B − g2(s2W + sW + sB) + 4sT − 2[s′H`]22

]
Q.

(4.17)

Another type of gauge boson interactions with fermions, which does occur in the SM250

Lagrangian, are the so-called dipole interactions, We parametrize them as follows:251

Ldipole = − 1

4v

[
gs
∑
f∈u,d

f̄σµνT
adGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdAffAµν +
√
g2 + g′2

∑
f∈u,d,e

f̄σµνdZffZµν

+
√

2g
(
d̄LσµνdWuuRW

−
µν + ūLσµνdWddRW

+
µν + ν̄LσµνdWeeRW

+
µν + h.c.

)
+gs

∑
f∈u,d

f̄σµνT
ad̃GffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃AffÃµν +
√
g2 + g′2

∑
f∈u,d,e

f̄σµν d̃ZffZ̃µν

]
,

(4.18)

where σµν = i[γµ, γν ]/2, and dAf , d̃Af , dZf , d̃Zf are Hermitian 3 × 3 matrices, while252

dWf are general complex 3 × 3 matrices. The field strength tensors are defined as253

Xµν = ∂µXν − ∂νXµ, and X̃µν = εµνρσ∂ρXσ. The coefficients dvf are related to the254

14



Wilson coefficients in the Warsaw basis as255

dGf − id̃Gf = −2
√

2cfG,

dAf − id̃Af = −2
√

2 (ηfcfW + cfB) ,

dZf − id̃Zf = − 2
√

2

g2 + g′2
(
g2ηfcfW − g′2cfB

)
,

dWf = −2
√

2cfW , (4.19)

where ηu = +1, ηd,e = −1, and the formulas in the SILH basis are the same with ci → si.256

4.3 Gauge boson self-interactions257

The corrections to the cubic interactions of gauge bosons in Eq. (2.7) are parametrized258

as259

∆Ltgc = ie
[
δκγAµνW

+
µ W

−
ν + κ̃γÃµνW

+
µ W

−
ν

]
+ igcθ

[
δg1,z

(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + δκz ZµνW

+
µ W

−
ν + κ̃z Z̃µνW

+
µ W

−
ν

]
+ i

e

m2
W

[
λγW

+
µνW

−
νρAρµ + λ̃γW

+
µνW

−
νρÃρµ

]
+ i

gcθ
m2
W

[
λzW

+
µνW

−
νρZρµ + λ̃zW

+
µνW

−
νρZ̃ρµ

]
+

c3G

v2
g3
sf

abcGa
µνG

b
νρG

c
ρµ +

c̃3G

v2
g3
sf

abcG̃a
µνG

b
νρG

c
ρµ, (4.20)

The couplings of electroweak gauge bosons follow the customary parametrization of260

Ref. [7]. The anomalous triple gauge couplings of electroweak gauge bosons are related261

to the Wilson coefficients in the Warsaw basis as262

δg1,z =
g2 + g′2

g2 − g′2
(
−g′2cWB + cT − δv

)
,

δκγ = g2cWB,

δκz = −2cWB
g2g′2

g2 − g′2
+
g2 + g′2

g2 − g′2
(cT − δv) ,

λγ = −3

2
g4c3W ,

λz = −3

2
g4c3W ,

κ̃γ = g2c̃WB,

κ̃z = −g′2c̃WB,

λ̃γ = −3

2
g4c̃3W ,

λ̃z = −3

2
g4c̃3W . (4.21)
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The analogous relations for the SILH basis read263

δg1z = − g2 + g′2

4(g2 − g′2)

[
(g2 − g′2)sHW + g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

δκγ = −g
2

4
[sHW + sHB] ,

δκz = −1

4

(
g2sHW − g′2sHB

)
− g2 + g′2

4(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

λz = −3

2
g4s3W , λγ = λz,

δκ̃γ = −g
2

4
[s̃HW + s̃HB] ,

δκ̃z =
g′2

4
[s̃HW + s̃HB] ,

λ̃z = −3

2
g4s̃3W , λ̃γ = λ̃z. (4.22)

The quartic gauge interactions can be parametrized as264

∆Lqgc = δgW 4

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ δgW 2Z2g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ δgW 2ZAg

2cθsθ
(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
− g2

2

λW 4

m2
W

(
W+
µνW

−
νρ −W−

µνW
+
νρ

) (
W+
µ W

−
ρ −W−

µ W
+
ρ

)
− g2c2

θ

λW 2Z2

m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Zρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Zρ
]

− e2λW 2A2

m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Aρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Aρ
]

− egcθ
λW 2AZ

m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Zρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Zρ
]

− egcθ
λW 2ZA

m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Aρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Aρ
]

+ 3g3
s

c4G

v2
fabcf cdeGa

µνG
b
νρG

d
ρG

e
µ + CP odd, (4.23)

where CP odd stands for analogous terms with λz → λ̃z, c4G → c̃4G, and one of the265

field strength tensors replaced by the dual one. The parameters in Eq. (4.23) can be266

expressed by the corrections to the triple gauge couplings267

δgW 4 = δgW 2Z2 = δgW 2ZA = δg1,z,

λW 4 = λW 2Z2 = λW 2A2 = λW 2AZ = λW 2ZA = λz,

c4G = c3G, (4.24)

and analogous formulas hold for the CP-odd couplings with λ→ λ̃ and c→ c̃.268
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4.4 Single Higgs couplings269

This part is the most relevant one from the point of view of the LHC Higgs phenomenol-270

ogy. First, we define the following single Higgs boson couplings to a pair of the SM271

fields:272

∆Lh =
h

v

[
2δcwm

2
WW

+
µ W

−
µ + δczm

2
ZZµZµ

−
∑

f∈u,d,e

∑
ij

√
mfimfj [δyf ]ij

[
cosφfij f̄ifj − i sinφfij f̄iγ5fj

]
+cww

g2

2
W+
µνW

−
µν + c̃ww

g2

2
W+
µνW̃

−
µν + cw2g

2
(
W−
µ ∂νW

+
µν + h.c.

)
+cgg

g2
s

4
Ga
µνG

a
µν + cγγ

e2

4
AµνAµν + czγ

e
√
g2 + g′2

2
ZµνAµν + czz

g2 + g′2

4
ZµνZµν

+cz2g
2Zµ∂νZµν + cγ2gg

′Zµ∂νAµν

+c̃gg
g2
s

4
Ga
µνG̃

a
µν + c̃γγ

e2

4
AµνÃµν + c̃zγ

e
√
g2 + g′2

2
ZµνÃµν + c̃zz

g2 + g′2

4
ZµνZ̃µν

]
,

(4.25)

where all the couplings above are real. The terms in the first two lines shift the SM273

couplings in Eq. (2.5), while the remaining terms introduce Higgs couplings to matter274

with a tensor structure that is absent in the SM Lagrangian. Note that, using equations275

of motion, we could get rid of certain 2-derivative interactions between the Higgs and276

gauge bosons: hZµ∂νZνµ, hZµ∂νAνµ, and hW±
µ ∂νW

∓
νµ. These interactions would then be277

traded for contact interactions of the Higgs, gauge bosons and fermions in Eq. (4.30).278

However, one of the defining features of our effective Lagrangian is that the coefficients of279

the latter couplings are equal to the corresponding vertex correction in Eq. (4.12). This280

form can be always obtained, without any loss of generality, starting from an arbitrary281

dimension-6 Lagrangian provided the 2-derivative hVµ∂νVνµ are kept in the Lagrangian.282

Note that we work in the limit where the neutrinos are massless and the Higgs boson283

does not couple to the neutrinos. In the EFT context, the couplings to neutrinos induced284

by dimension-5 operators are proportional to neutrino masses, therefore they are far too285

small to have any relevance for LHC phenomenology.286

The shifts of the Higgs couplings to W and Z bosons are related to the Wilson287

coefficients in the Warsaw and SILH basis by288

δcw = −cH − cWB
4g2g′2

g2 − g′2
+ 4cT

g2

g2 − g′2
− δv3g2 + g′2

g2 − g′2

= −sH −
g2g′2

g2 − g′2

[
sW + sB + s2W + s2B −

4

g′2
sT +

3g2 + g′2

2g2g′2
[s′H`]22

]
,

δcz = −cH − 3δv

= −sH −
3

2
[s′H`]22, (4.26)

The Yukawa interactions are related to the Wilson coefficients in the Warsaw and289
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SILH basis by290

[δyf ]ij cosφfij =
1√
2

Re[cf ]ij − δij (cH + δv)

=
1√
2

Re[sf ]ij − δij
[
sH +

1

2
[s′H`]22

]
,

[δyf ]ij sinφfij =
1√
2

Im[cf ]ij

=
1√
2

Im[sf ]ij. (4.27)

The two-derivative Higgs couplings to gauge bosons are related to the Wilson coef-291

ficients in the Warsaw basis by292

cgg = cGG,

cγγ = cWW + cBB − 4cWB,

czz =
g4cWW + g′4cBB + 4g2g′2cWB

(g2 + g′2)2
,

cz2 = − 2

g2
(cT − δv) ,

czγ =
g2cWW − g′2cBB − 2(g2 − g′2)cWB

g2 + g′2
,

cγ2 =
2

g2 − g′2
(
(g2 + g′2)cWB − 2cT + 2δv

)
,

cww = cWW ,

cw2 =
2

g2 − g′2
(
g′2cWB − cT + δv

)
.

(4.28)

and the same for the CP-odd couplings c̃gg, c̃γγ, c̃zγ, c̃zz, c̃ww, with c → c̃ on the right293

hand side. The analogous expressions for the SILH basis read294

cgg = sGG,

cγγ = sBB,

czz = − 1

g2 + g′2
[
g2sHW + g′2sHB − g′2s2

θsBB
]
,

cz2 =
1

2g2

[
g2(sW + sHW + s2W ) + g′2(sB + sHB + s2B)− 4sT + 2[s′H`]22

]
,

czγ =
sHB − sHW

2
− s2

θsBB,

cγ2 =
sHW − sHB

2
+

1

g2 − g′2
[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

cww = −sHW ,

cw2 =
sHW

2
+

1

2(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
, (4.29)

Next, couplings of the Higgs boson to a gauge field and two fermions (which are not295

present in the SM Lagrangian) can be generated by dimension-6 operators. The vertex-296
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like contact interactions between the Higgs, electroweak gauge bosons, and fermions are297

parametrized as:298

Lhvff =
√

2g
h

v
W+
µ

(
ūLγµδg

hWq
L dL + ūRγµδg

hWq
R dR + ν̄Lγµδg

hW`
L eL

)
+ h.c.

+ 2
h

v

√
g2 + g′2Zµ

[ ∑
f=u,d,e,ν

f̄Lγµδg
hZf
L fL +

∑
f=u,d,e

f̄Rγµδg
hZf
R fR

]
, (4.30)

As discussed before, by construction, the coefficients of these interaction are equal to299

the corresponding vertex correction in Eq. (4.12):300

δghzf = δgZf , δghWf = δgWf . (4.31)

The dipole-type contact interactions of the Higgs boson are parametrized as:301

Lhdvff = − h

4v2

[
gs
∑
f∈u,d

f̄σµνT
adhGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdhAffAµν +
√
g2 + g′2

∑
f∈u,d,e

f̄σµνdhZffZµν

+
√

2g
(
d̄LσµνdhWuuRW

−
µν + ūLσµνdhWddRW

+
µν + ν̄LσµνdhWeeRW

+
µν + h.c.

)
+gs

∑
f∈u,d

f̄σµνT
ad̃hGffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃hAffÃµν +
√
g2 + g′2

∑
f∈u,d,e

f̄σµν d̃hZffZ̃µν

]
,

(4.32)

where dhAf , d̃hAf , dhZf , d̃hZf are Hermitian 3 × 3 matrices, while dhWf are general302

complex 3× 3 matrices. The coefficients are simply related to the corresponding dipole303

interactions in Eq. (4.18):304

dhV f = dV f . (4.33)

Dimension-6 operators can also induce single Higgs couplings to 3 gauge bosons, but305

we do not display them in this note.306

4.5 Higgs boson self-couplings307

Corrections to the Higgs boson self-couplings in the SM are parametrized as308

∆Lh,self = −δλ3vh
3 − δλ4h

4. (4.34)

The relation between the cubic corrections and the Wilson coefficients in the Warsaw309

and SILH basis is given by310

δλ3 = −λ (3cH + δv)− c6H

= −λ
(

3sH +
1

2
[s′H`]22

)
− s6H . (4.35)

The correction to the quartic Higgs boson term in Eq. (4.34) can be expressed as311

δλ4 =
3

2
δλ3 −

m2
h

6v2
δcz. (4.36)

Self-interactions with more than 4 fields can also arise from dimension-6 operators,312

but we do not display them in this note.313
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4.6 Couplings of two or more Higgs bosons314

To describe double Higgs production at the LHC we need, apart from a subset of the315

single Higgs couplings introduced in Section 4.4 and the cubic Higgs self-interaction in316

Eq. (4.34), the interactions between two Higgs bosons and two other SM fields. They317

are parametrized as follows:318

∆Lhh =
h2

v2

(
δc(2)
z

g2 + g′2

2
ZµZµ + δc(2)

w g2W+
µ W

−
µ

)
− h2

2v2

∑
f ;ij

√
mfimfj

[
f̄i,R[y

(2)
f ]ijfj,L + h.c.

]
.

+
h2

8v2

(
c(2)
gg g

2
sG

a
µνG

a
µν + 2c(2)

wwg
2W+

µνW
−
µν + c(2)

zz (g2 + g′2)ZµνZµν + 2c(2)
zγ gg

′ZµνAµν + c(2)
γγ e

2AµνAµν
)

+
h2

8v2

(
c̃(2)
gg g

2
sG

a
µνG̃

a
µν + 2c̃(2)

wwg
2W+

µνW̃
−
µν + c̃(2)

zz (g2 + g′2)ZµνZ̃µν + 2c̃(2)
zγ gg

′ZµνÃµν + c̃(2)
γγ e

2AµνÃµν

)
− h2

2v2

(
g2c(2)

w2(W+
µ ∂νW

−
νµ +W−

µ ∂νW
+
νµ) + g2c(2)

z2Zµ∂νZνµ + gg′c(2)
γ2Zµ∂νAνµ

)
. (4.37)

All double Higgs couplings arising from d=6 operators can be expressed by the single319

Higgs couplings:320

δc(2)
z = δcz, δc(2)

w = δcz + 3δm,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij,
c(2)
vv = cvv, c̃(2)

vv = c̃vv, v ∈ {g, w, z, γ},
c(2)
v2 = cv2, v ∈ {w, z, γ}. (4.38)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V 3 or321

h2ffV contact interactions. We do not display them in this note.322

4.7 Other terms323

In the subsections above we wrote down interaction terms in the effective Lagrangian that324

are relevant for SM precision tests and for Higgs searches at the LHC. The remaining325

terms, which are not explicitly displayed in this note, are contained in Lother. They326

include 4-fermion terms, couplings of a single Higgs boson to 3 or more gauge bosons,327

dipole-like interactions of two gauge bosons and two fermions, and interaction terms328

with 5 or more fields. Currently, these terms are not relevant for single and double329

Higgs production and decay at the LHC. If phenomenological interest is presented, any330

of the terms in Lother can be explicitly written down in this note.331

5 Higgs basis332

In principle, there is no theoretical obstacle to present the results of LHC Higgs analyses333

as constraints on the Wilson coefficients in the Warsaw or SILH basis. However, this334

procedure may not be the most efficient one. One difficulty is that, in those bases, one335

needs to consider a large number of parameters, however the LHC Higgs observables336

depend only on a smaller number of linear combinations of the Wilson coefficients. An-337

other practical difficulty is that some of these linear combinations are already stringently338
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constrained by electroweak precisions tests, such that they cannot yield observable ef-339

fects at the LHC. In this section we propose a more convenient parametrization of the340

effective Lagrangian with d=6 operators, along the lines of the EFT primaries in Ref. [2].341

The salient features of our proposal are the following. The goal is to parametrize the342

d=6 operators in a way that can be more directly connected to observable quantities343

in Higgs physics. We call this parametrization the Higgs basis. Technically, the Higgs344

basis can be defined as a linear transformation from the Warsaw or SILH basis into the345

coefficients of certain interaction terms of the mass eigenstates (in particular the W,346

Z, and the Higgs bosons) in the effective Lagrangian. In practice, we will define the347

Higgs basis by choosing a subset of the couplings multiplying interaction terms in the348

effective Lagrangian Eq. (4.1) defined in Section 4. We will refer to this subset as the349

independent couplings. The number of independent couplings is the same as the num-350

ber of independent operators in the Warsaw or SILH basis. They define the space of351

all possible deformations of the SM Lagrangian in the presence of d=6 operators. The352

independent couplings include the single Higgs couplings to gauge bosons and fermions,353

such that the parameters of the Higgs basis can be easily related to LHC Higgs observ-354

ables. Furthermore, the vertex corrections to the Z boson interactions with fermions are355

among the independent couplings so that the stringent constraints from the Z and W356

partial decay widths can be incorporated in a transparent way.357

The number of interaction terms in the effective Lagrangian of Eq. (4.1) is larger358

than the number of Wilson coefficients in a dimension-6 EFT basis. Due to this fact,359

some of the parameters in ∆Ld=6 can be expressed by the independent couplings; we360

call them the dependent couplings. The relations between dependent and independent361

couplings can be inferred from the matching between the effective Lagrangian and the362

Warsaw or SILH basis in Section 3. These relations hold at the level of the dimension-6363

Lagrangian, and they are in general not respected in the presence of dimension-8 and364

higher operators. Of course, the choice which couplings are independent and which365

are dependent is a subjective choice dictated by convenience. In our case, the choice366

of the independent couplings was motivated by their direct connection to observables367

constrained by electroweak precision tests and Higgs searches. However, other choices368

can be envisaged and may be more convenient for other applications.369

5.1 Independent couplings370

We select a subset of couplings in the effective Lagrangian of Eq. (4.1) that has a 1-to-1371

mapping to the Wilson coefficients in the Warsaw or SILH basis (or any other dimension-372

6 basis). This subset of independent couplings defines the Higgs basis. It can be used373

on par with any other basis to describe the effect of dimension-6 operators on physical374

observables.375

The first group of independent couplings are the ones affecting the W boson mass376

and the Z and W boson couplings to fermions:377

δm, δgZeL , δgZeR , δgW`
L , δgZuL , δgZuR , δgZdL , δgZdR , δgWq

R ,

dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd, d̃Gu, d̃Gd, d̃Ae, d̃Au, d̃Ad, d̃Ze, d̃Zu, d̃Zd.

(5.1)

Here the mass correction δm is defined in Eq. (4.10), the vertex corrections δgi are378
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defined in Eq. (4.12), and the dipole moments di are defined in Eq. (4.18). While they379

are free parameters from the EFT point of view, precision measurements constrain them380

to be small. In particular, most of the parameters in the first line are constrained to be381

. 10−2 − 10−4 [10]. The remaining parameters are constrained by measurements of the382

magnetic and electric dipole moments. Therefore, even if combinations of dimension-6383

operators defined by the independent couplings in Eq. (5.1) affect the Higgs observables,384

it is well-motivated to neglect them in LHC Higgs analyses whose precision is worse than385

the existing constraints.386

The second group of independent couplings are the ones describing the interactions387

of the Higgs boson with the SM gauge boson, fermions, and with itself:388

cgg, δcz, cγγ, czγ, czz, cz2, c̃gg, c̃γγ, c̃zγ, c̃zz,

δyu, δyd, δye, sinφu, sinφd, sinφ`, δλ3. (5.2)

They are defined by Eq. (4.25), except for the last one which is defined in Eq. (4.37). As389

opposed to the ones in Eq. (5.1), the combinations of Wilson coefficients corresponding390

to the independent couplings in Eq. (5.2) are weakly constrained by SM precision tests.391

In fact, the strongest limits on these couplings typically come from Higgs searches. An392

important task of the LHC collaborations is to provide model-independent limits on the393

parameters in Eq. (5.2).394

The third group of independent couplings are related to gauge bosons self-couplings:395

λz, λ̃z, c3G, c̃3G. (5.3)

They are defined in Eq. (4.20). These couplings do not affect Higgs searches, and they396

are only weakly constrained by SM precision tests.397

To complete the definition of the Higgs basis, one has to include the independent398

couplings corresponding to 4-fermion operators. We choose to parametrize them by the399

same set of Wilson coefficients as in the Warsaw basis:400

c``, cqq, c
′
qq, c`q, c

′
`q, cquqd, c

′
quqd, c`equ, c

′
`equ, c`edq,

c`e, c`u, c`d, cqe, cqu, c
′
qu, cqd, c

′
qd, cee, cuu, cdd, ceu, ced, cud, c

′
ud. (5.4)

The parameters cff have 4 flavor indices. The non-trivial question of which combination401

of flavor indices constitutes an independent set was worked out in Ref. [8]. In the Higgs402

basis we take the same choice of independent 4-fermion couplings as in that reference,403

with one exception. As explained in the next subsection, in the Higgs basis the coupling404

[c`]1221 is a dependent coupling that can be expressed by δm and δgi. Therefore [c`]1221405

is not among the independent couplings defining the Higgs basis.406

5.2 Dependent couplings407

The remaining couplings in the effective Lagrangian are called the dependent couplings408

because, at the level of a dimension-6 EFT Lagrangian, they can be expressed by the409

independent couplings defining the Higgs basis. To obtain the relations between the410

dependent and independent couplings one can use the matching between the Warsaw411

basis and the effective Lagrangian worked out in Section 3.1. The procedure is to solve412
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for the Warsaw basis Wilson coefficients in terms of the independent couplings and413

eliminate the former from the expressions for the dependent couplings.414

We start with the dependent couplings in Eq. (4.25) describing the single Higgs boson415

interactions with matter. They can be expressed in terms of the independent couplings416

as6
417

δcw = δcz + 4δm,

cww = czz + 2s2
θczγ + s4

θcγγ,

c̃ww = c̃zz + 2s2
θ c̃zγ + s4

θ c̃γγ,

cw2 =
1

g2 − g′2
[
g2cz2 + g′2czz − e2s2

θcγγ − (g2 − g′2)s2
θczγ

]
,

cγ2 =
1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − e2cγγ − (g2 − g′2)czγ

]
. (5.5)

The coefficients of W-boson dipole interactions in Eq. (4.18) are related to those of the418

Z and the photon as419

ηfdwf = dzf − id̃zf + s2
θ(dAf − id̃Af ), (5.6)

where ηu = 1 and ηd,e = −1. The coefficients of the dipole-like Higgs couplings in420

Eq. (4.32) are simply related to the corresponding dipole moments:421

dhvf = dvf , d̃hvf = d̃vf , v ∈ {g, w, z, γ}. (5.7)

The correction to the quartic Higgs boson term in Eq. (4.34) is given by422

δλ4 =
3

2
δλ3 −

m2
h

6v2
δcz. (5.8)

Coefficients of all interaction terms with two Higgs bosons in Eq. (4.37) are dependent423

couplings. The can be expressed in terms of the independent couplings as:424

δc(2)
z = δcz, δc(2)

w = δcz + 3δm,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij,
c(2)
vv = cvv, c̃(2)

vv = c̃vv, v ∈ {g, w, z, γ},
c(2)
v2 = cv2, v ∈ {w, z, γ}. (5.9)

The dependent vertex corrections are expressed in terms of the independent ones as425

δgZνL = δgZeL + δgW`
L , δgWq

L = δgZuL VCKM − VCKMδg
Zd
L . (5.10)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-426

nos) as our independent couplings, because in the flavor non-universal case the former are427

more directly constrained by experiment (in particular, in leptonic W decays measured428

at LEP).429

6The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [11].
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Next, all but two triple gauge couplings in Eq. (4.20) are dependent couplings ex-430

pressed in terms of the independent couplings as431

δg1,z =
1

2(g2 − g′2)

[
cγγe

2g′2 + czγ(g
2 − g′2)g′2 − czz(g2 + g′2)g′2 − cz2(g2 + g′2)g2

]
δκγ = −g

2

2

(
cγγ

e2

g2 + g′2
+ czγ

g2 − g′2

g2 + g′2
− czz

)
,

κ̃γ = −g
2

2

(
c̃γγ

e2

g2 + g′2
+ c̃zγ

g2 − g′2

g2 + g′2
− c̃zz

)
,

δκz = δg1,z − t2θδκγ, κ̃z = −t2θκ̃γ,
λγ = λz, λ̃γ = λ̃z. (5.11)

Note that δg1,z, δκγ, and κ̃γ are dependent couplings here, unlike in Ref. [2]. Our432

motivation is that the Higgs basis should be parametrized such that the connection433

with Higgs observables is the simplest. However, for the sake of studying WW and434

WZ production a different set of independent couplings would be more convenient. For435

example, one could choose the independent couplings as δg1,z, δκγ, λz, κ̃γ, λ̃z, and436

consider cz2, czz, and c̃zz as dependent couplings expressed in terms of this set.437

The corrections to quartic gauge boson self-couplings in Eq. (4.23) are all dependent.438

They can be expressed by corrections to triple gauge couplings as439

δgW 4 = δgW 2Z2 = δgW 2ZA = δg1,z,

λW 4 = λW 2Z2 = λW 2A2 = λW 2AZ = λW 2ZA = λz,

c4G = c3G, (5.12)

Finally, we discuss how the Wilson coefficient [c``]1221 of the 2-electron-2-muon oper-440

ator is expressed by the independent couplings. One feature of the effective Lagrangian441

Eq. (4.1) is that the tree-level relations between the SM electroweak parameters and442

input observables are not affected by new physics. On the other hand, one of the four-443

fermion couplings in the Lagrangian,444

LD=6
4f ⊃ [c``]1221(¯̀

1,Lγρ`2,L)(¯̀
2,Lγρ`1,L) (5.13)

does affect the relation between the parameter v and the muon decay width from which445

GF = 1/
√

2v2 is determined:446

Γ(µ→ eνν)

Γ(µ→ eνν)SM

≈ 1 + 2[δgWe
L ]11 + 2[δgWe

L ]22 − 4δm− [c``]1221. (5.14)

Therefore, the muon decay width is unchanged with respect to the SM when [c``]1221 is447

related to δm and δg as448

[c``]1221 = 2δ[gWe
L ]11 + 2[δgWe

L ]22 − 4δm. (5.15)

In other words, due to the fact that we defined δm as an independent coupling in the449

Higgs basis , [c``]1221 has to be a dependent coupling. Of course, one could equivalently450

choose [c``]1221 to define the Higgs basis, and remove δm from the list of independent451

couplings.452
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5.3 Summary and comments453

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (5.1),454

(5.2), (5.3), (5.4). In total, the Higgs basis, as any complete basis at the dimension-6455

level, is parametrized by 2499 independent real couplings [8]. One should not, however,456

be intimidated by this number. The point is that a much smaller subset in Eq. (5.2) is457

adequate for EFT analyses of Higgs data at leading order in new physics parameters.458

For example, to describe single Higgs production and decay processes in full generality459

one needs 10 bosonic and 2 × 3 × 3 × 3 = 54 fermionic couplings. Furthermore, 31 of460

these couplings are CP-odd, therefore they affect the Higgs signal strength measurement461

only at the quadratic level, while flavor off-diagonal Yukawa couplings only affect exotic462

Higgs decays. In the limit where fermionic couplings respect the minimal flavor violation463

paradigm, 9 parameters are enough to describe leading order EFT corrections to the464

existing Higgs signal strength measurements at the LHC. In the Higgs basis, these 9465

parameters are:466

cgg, δcz, cγγ, czγ, czz, cz2, δyu, δyd, δye. (5.16)

We conclude with a number of comments.467

• The Higgs basis is particularly well suited for data analyses performed using tree-468

level (LO) EFT calculations. On the other hand, existing one-loop EFT calcu-469

lations have been performed in the Warsaw basis, therefore the Warsaw basis is470

currently the most natural choice as far as analyses beyond LO are concerned. In471

order to facilitate the transition between the two bases, and in order to provide a472

proper definition of the Higgs basis, the complete mapping between these two bases473

is provided. It is straightforward to extend this mapping to any other complete474

basis, and we provide a detailed mapping also in the case of the SILH basis, that is475

particularly useful within specific model-dependent approaches. At the same time,476

the independent couplings can be easily connected to Higgs pseudo-observables at477

the amplitude level, as defined e.g. in Ref. [9].478

• The choice of independent couplings in the Higgs basis is made such that the479

constraints from the Z and W partial decay widths (measured with a per-mille480

precision by the LEP experiment) can be easily incorporated. These are among the481

most stringent constraints on EFT parameters, and they have an important impact482

on possible signals in Higgs searches. In particular, assuming vertex corrections483

are flavor blind, all the independent couplings in Eq. (5.1) are constrained to be484

smaller than O(10−3) (for the leptonic vertex corrections and δm ≡ δmW/mW ),485

or O(10−2) (for the quark vertex corrections) [4, 6, 12]. Dropping the assumption486

of flavor blindness, all the leptonic, bottom and charm quark vertex corrections487

are still constrained (assuming only d ≤ 6 operators contribute to the precision488

observables) at the level of O(10−2) or better [10]. In the LHC environment,489

experimental sensitivity is typically not sufficient to probe these parameters with490

a comparable accuracy. If that is indeed the case, the electroweak constraints on491

Z and W boson couplings to fermions can be imposed when analyzing LHC data,492

especially in the context of Higgs physics. Other precision observables, such as493

WW production or off-shell fermion scattering, lead to less stringent constraints494

that are not discussed in this note (see e.g. [4, 5, 6] for a recent discussion).495
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• The relations between independent and dependent couplings in Eqs. (5.5), (5.6),496

(5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.15) are consequences of the linear497

realization of electroweak symmetry breaking at the level of dimension-6 EFT498

operators. They are an essential part of the definition of the Higgs basis. If the499

independent and dependent couplings were unrelated, then LHiggs Basis would not500

be a dimension-6 basis but would belong to a more general class of theories. Such501

theories are outside of the scope of this note.502

• Customarily, the SM electroweak parameters are extracted from α(0), mZ and GF .503

One could also use mW instead of GF , as suggested in Ref. [4]. This formalism504

leads to the same relations between the independent and dependent couplings as505

written down here, except that δm = 0 by definition, and that [c``]1221 becomes an506

independent coupling. The downside of this formalism is that the SM predictions507

for all observables would have to be recalculated, as all existing high-precision508

calculations use GF as an input.509

• The number of independent couplings in Eq. (5.2) relevant for Higgs observables510

is still large. At the early stages of the LHC run-2 it may be reasonable to em-511

ploy simplified analyses with a smaller number of parameters. There are several512

motivated assumptions about the underlying UV theory that reduce the number513

of parameters:514

– Flavor universality, in which case the matrices mfδyf and sinφf reduce to a515

single number for each f = u, d, e.516

– Minimal flavor violation, in which case the dominant entries in δyf are [δyu]33517

and [δyd]33, while other diagonal entries are suppressed by the respective mass518

square ratio.519

– CP conservation, in which case all CP-odd couplings vanish: c̃i = 0 = sinφf .520

– Custodial symmetry, in which case δm = 0.7521

We stress that independent couplings should not be arbitrarily set to zero with-522

out an underlying symmetry assumption. Furthermore, the relations between the523

dependent and independent couplings should be consistently imposed, so as to524

preserve the weak SU(2) local symmetry.525

• The independent couplings are formally of order v2/Λ2, where Λ is the scale of new526

physics. For completeness, it is important to define the range of independent cou-527

plings such that the EFT description is valid. The rule of thumb is that this is the528

case when the dimensionless independent couplings are . 1; a more sophisticated529

discussion of this issue will be performed in another document.530

7Custodial symmetry implies several relations between Higgs couplings to gauge bosons: δcw = δcz,
cw2 = c2θcz2 + s2θcγ2, cww = czz + 2s2θczγ + s4θcγ , and c̃ww = c̃zz + 2s2θ c̃zγ + s4θ c̃γ . The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for δm = 0,
see Eq. (5.5).
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A More dictionaries531

In this section we quote the linear transformation between the parameters defining the532

Higgs basis and the Wilson coefficients in several other bases of dimension-6 operators533

utilized in the literature.8 For simplicity, we assume here (unlike in the rest of this note)534

that the parameters are flavor blind. Moreover, we give the dictionary only for the subset535

of the Higgs basis parameters that can give observable contributions to single Higgs and536

electroweak diboson processes, given the constraints from electroweak precision tests.537

That set consists of 10 CP-even and 8 CP-odd parameters:538

cgg, δcz, cγγ, czγ, czz, cz2, δyu, δyd, δye, λz, (A.1)

539

c̃gg, c̃γγ, c̃zγ, c̃zz, sinφu, sinφd, sinφe, λ̃z. (A.2)

The dictionaries below allow one to translate results of any complete EFT Higgs analyses540

into constraints on the Higgs basis parameters (and, by consequence, between any pair541

of bases), as long as the full likelihood function in the space of Wilson coefficients is542

given.543

A.1 SILH’ basis544

The original SILH basis of Ref. [3] includes operators O2W , O2B and O2G, which lead to545

4-derivative corrections to the kinetic terms of the gauge fields. This may be inconvenient546

for some applications. A simple fix is to remove these operators in favor of the Warsaw547

basis 4-fermion operators [O``]1221, [O``]1122, and [O′u]3333. This construction was used548

in Ref. [4] and we refer to it as the SILH’ basis. One advantage of this choice is that549

electroweak precision constraints take a particularly simple form. Namely, the vanishing550

of the vertex correction δg and the W mass correction δm corresponds to setting sT =551

[s``]1221 = sHf = s′Hf = 0, and sB = −sW .552

The CP even Higgs basis parameters in Eq. (A.1) are related to the Wilson coefficients553

in the SILH’ basis by554

cgg = sGG,

δcz = −sH +
3

4
[s``]1221,

cγγ = sBB,

czγ =
sHB − sHW

2
− s2

θsBB,

czz = −c2
θsHW − s2

θsHB − s4
θsBB,

cz2 =
1

2
(sW + sHW ) +

g′2

2g2
(sB + sHB)− 2

g2
sT −

1

2g2
[s``]1221,

δyf cosφf =
1√
2

Re[sf ]− sH +
1

4
[s``]1221, j ∈ {u, d, e},

λz = −3

2
g4s3W . (A.1)

8On request, translation to other bases may be added in the future.
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The CP odd Higgs basis parameters in Eq. (A.2) are related to the Wilson coefficients555

in the SILH’ basis by556

c̃gg = s̃GG,

c̃γγ = s̃BB,

c̃zγ =
s̃HB − s̃HW

2
− s2

θs̃BB,

c̃zz = −c2
θs̃HW − s2

θs̃HB − s4
θs̃BB,

δyf sinφf =
1√
2

Im[sf ]. (A.2)

A.2 HISZ basis557

We consider a subset of bosonic operators introduced by Hagiwara et al. (HISZ) in558

Ref. [7]:559

ÔH,2 =
1

2

(
∂µ(H†H)

)2
,

ÔGG = − g2
s

32π2
H†HGa

µνG
a
µν ,

ÔWW = H†WµνWµνH,

ÔBB = H†BµνBµνH,

ÔW = DµH
†WµνDνH,

ÔB = DµH
†BµνDνH,

ÔWWW = Tr [WµνWνρWρµ] , (A.3)
560

OG̃G = − g2
s

32π2
H†HGa

µνG̃
a
µν ,

Ô
W̃W

= H†WµνW̃µνH,

ÔB̃B = H†BµνB̃µνH,

ÔW̃ = DµH
†W̃µνDνH,

Ô
W̃WW

= Tr
[
WµνWνρW̃ρµ

]
, (A.4)

where the electroweak field strength tensors are related to the one used in this note via:9561

Bµν = − i
2
g′Bµν , Ŵµν = − i

2
gσiW i

µν . (A.5)

We also consider the Yukawa operators562

Ôu =

(
H†H − v2

2

)
q̄LH̃

mu

v
uR, Ôd =

(
H†H − v2

2

)
q̄LH

md

v
dR, Ôe =

(
H†H − v2

2

)
¯̀
LH

me

v
eR,

(A.6)

9The additional minus sign in Eq. (A.5) is due to the fact that the covariant derivatives in Refs. [7]
are defined with the opposite sign to that used here. This amounts to rescaling the gauge fields as
Wµ → −Wµ, Bµ → −Bµ in the translation.
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where mf are 3 × 3 diagonal fermion mass matrices. The dimension-6 Lagrangian is563

given by564

LD=6
HISZ =

1

Λ2

[∑
i

fiÔi +
∑
j

(
fjÔj + h.c.

)
+ . . .

]
, (A.7)

where the first sum goes over the bosonic operators in Eq. (A.3) and Eq. (A.4), the565

second sum goes over the fermionic operators in Eq. (A.6), and the dots stands for566

remaining operators that complete the dimension-6 basis. The CP-even operators from567

this set (except ÔWWW ) are used by SFitter [13] to describe constraints on dimension-6568

operators from LHC Higgs data. Ref. [14] proposes to use the HISZ operators ÔW , ÔB,569

ÔWWW , ÔW̃ , and Ô
W̃WW

to describe constraints on dimension-6 operators from the pair570

production of electroweak gauge bosons.571

The CP even Higgs basis parameters in Eq. (A.1) are related to the Wilson coefficients572

in the HISZ basis by573

cgg = − 1

8π2
fGG

v2

Λ2
,

δcz = −1

2
fH,2

v2

Λ2
,

cγγ = (−fWW − fBB)
v2

Λ2
,

czγ =

(
1

4
fW −

1

4
fB − c2

θfWW + s2
θfBB

)
v2

Λ2
,

czz =

(
c2
θ

2
fW +

s2
θ

2
fB − c4

θfWW − s4
θfBB

)
v2

Λ2
,

cz2 =

(
−1

4
fW −

s2
θ

4c2
θ

fB

)
v2

Λ2
,

δyj cosφj =

(
−1

2
fH,2 −

Refj√
2

)
v2

Λ2
, j ∈ {u, d, e},

λz =
3g4

8

v2

Λ2
fWWW , (A.8)

The CP odd Higgs basis parameters in Eq. (A.2) are related to the Wilson coefficients574

in the HISZ basis by575

c̃gg = − 1

8π2
f̃GG

v2

Λ2
,

c̃γγ =
(
−f̃WW − f̃BB

) v2

Λ2
,

c̃zγ =

(
1

4
f̃W − c2

θf̃WW + s2
θf̃BB

)
v2

Λ2
,

c̃zz =

(
c2
θ

2
f̃W − c4

θf̃WW − s4
θf̃BB

)
v2

Λ2
,

δyj sinφj =

(
Imfj√

2

)
v2

Λ2
, j ∈ {u, d, e}, (A.9)
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For completeness, we also give the relation between the anomalous TGCs and the576

HISZ basis Wilson coefficients:577

δg1z =
g2 + g′2

8
fW

v2

Λ2

δκγ =
g2

8
(fW + fB)

v2

Λ2
, δκ̃γ =

g2

8
f̃W

v2

Λ2

λz =
3g4

8
fWWW

v2

Λ2
, λ̃z =

3g4

8
f̃WWW

v2

Λ2
. (A.10)

Inverting the transformations, the relation between the Wilson coefficients in the578

HISZ basis and the Higgs basis parameters reads579

fGG
v2

Λ2
= −8π2cgg,

fH,2
v2

Λ2
= −2δcz,

fW
v2

Λ2
= − 4

g2 − g′2
[
g2cz2 + g′2czz − s2

θe
2cγγ − s2

θ(g
2 − g′2)czγ

]
,

fB
v2

Λ2
=

4

g2 − g′2
[
g2cz2 + g2czz − c2

θe
2cγγ − c2

θ(g
2 − g′2)czγ

]
,

fWW
v2

Λ2
= − 1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − s2

θg
′2cγγ

]
,

fBB
v2

Λ2
=

1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − c2

θg
2cγγ

]
,

fWWW
v2

Λ2
=

8

3g4
λz, (A.11)

580

fj
v2

Λ2
=
√

2δcz −
√

2δyje
−iφj , j ∈ {u, d, e}, (A.12)

581

f̃GG
v2

Λ2
= −8π2c̃gg,

f̃W
v2

Λ2
= − 4

g2 − g′2
[
g′2c̃zz − s2

θe
2c̃γγ − s2

θ(g
2 − g′2)c̃zγ

]
,

f̃WW
v2

Λ2
= − 1

g2 − g′2
[
(g2 + g′2)c̃zz − s2

θg
′2c̃γγ

]
,

f̃BB
v2

Λ2
=

1

g2 − g′2
[
(g2 + g′2)c̃zz − c2

θg
2cγγ

]
,

f̃WWW
v2

Λ2
=

8

3g4
λ̃z. (A.13)

B Goldstone bosons and gauge fixing582

In the main body of this note we worked in the unitary gauge where the Goldstone boson583

degrees of freedom in the Higgs doublet are set to zero. This is enough for the sake of584
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tree-level EFT calculations. However, if the necessity arises to extend the calculations585

to a loop level, retrieving the Goldstone degrees of freedom is convenient, as this allows586

one to perform the standard gauge fixing procedure. This is done in this appendix.587

We parametrize the Higgs doublet as588

H =

(
iG+

1√
2

(v + h− iG3)

)
(B.1)

where G± and G3 are three Goldstone fields, that will be eaten by the W and Z bosons.589

In the Higgs basis, derivation of the Goldstone boson couplings follows exactly the same590

algorithm as the one applied before to derive the Lagrangian for physical fields: we591

first derive these couplings in the Warsaw basis, and then perform the field and coupling592

redefinitions that take us to the Higgs basis. Of course, all the Goldstone boson couplings593

are dependent ones, that is they can be expressed by the independent couplings defining594

the Higgs basis. As an illustration, below we display a subset of these couplings that595

are relevant for the 1-loop calculation of h→ V V ∗. These are596

1. Goldstone kinetic terms and their mixing with the electroweak gauge fields.597

2. Cubic interactions with one Higgs boson and one or two Goldstone fields.598

3. Cubic interactions with one or two Goldstone fields and one electroweak gauge599

field.600

4. Quartic interactions with one or two Goldstone fields and two electroweak gauge601

fields.602

The relevant part of the Lagrangian is parametrized as603

LG = Lkin
G + LS3

G + LS2V
G + LSV2

G + LSVdV
G + LS2V2

G + LS2dV2

G . (B.2)

where604

Lkin
G = ∂µG+∂µG−+

1

2
(∂µG3)2−βcW

gv

2

(
∂µG+W

−
µ + h.c.

)
−
√
g2 + g′2v

2
∂µG3Zµ, (B.3)

605

LS3

G = −m
2
h

v
βhcchG+G− −

m2
h

2v
βh33hG3G3 (B.4)

606

LS2V
G = βhcW

g

2
∂µh

(
G+W

−
µ + h.c.

)
+ βh3z

√
g2 + g′2

2
∂µhG3Zµ

+ iβ3cW
g

2
∂µG3

(
G+W

−
µ − h.c.

)
− β3hz

√
g2 + g′2

2
∂µG3hZµ

+ ie (∂µG+G− − h.c.)Aµ + iβccZ
g2 − g′2

2
√
g2 + g′2

(∂µG+G− − h.c.)Zµ

− βchW
g

2

(
∂µG+W

−
µ + h.c.

)
h− iβc3W

g

2

(
∂µG+W

−
µ − h.c.

)
G3, (B.5)

607

LSV2

G = iβcWA
egv

2

(
G+W

−
µ − h.c.

)
Aµ − iβcWZ

cθg
′2v

2

(
G+W

−
µ − h.c.

)
Zµ, (B.6)
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608

LSVdV
G = iηcWA

eg

2v

(
G+W

−
µν − h.c.

)
Aµν − iηcWA

eg′

2v

(
G+W

−
µν − h.c.

)
Zµν + (CP−odd).

(B.7)609

LS2V2

G = G+G−

(
e2AµAµ + βccAZ

e(g2 − g′2)√
g2 + g′2

AµZµ + βccZZ
(g2 − g′2)2

4(g2 + g′2)
ZµZµ + βccWW

g2

2
W+
µ W

−
µ

)

+ G3G3

(
β33WW

g2

4
W+
µ W

−
µ + β33ZZ

g2 + g′2

8
ZµZµ

)
+ iβchWA

eg

2

(
G+W

−
µ − h.c.

)
hAµ − βc3WA

eg

2

(
G+W

−
µ + h.c.

)
G3Aµ

− iβchWZ
eg′

2

(
G+W

−
µ − h.c.

)
hZµ + βc3WZ

eg′

2

(
G+W

−
µ + h.c.

)
G3Zµ

+ η′ccWWg
2
L

(
G+G+W

−
µ W

−
µ + h.c.

)
, (B.8)

LS2dV2

G = G+G−
(
ηccA2e2AµνAµν + ηccAZgg

′AµνZµν + ηccZ2(g2 + g′2)ZµνZµν + ηccW 2g2W+
µνW

−
µν

)
+ G3G3

(
η33AAe

2AµνAµν + η33AZgg
′AµνZµν + η33ZZ(g2 + g′2)ZµνZµν + η33WWg

2W+
µνW

−
µν

)
+ ηc3WAeg

(
G+W

−
µν + h.c.

)
G3Aµν + ηc3WZeg

′ (G+W
−
µ + h.c.

)
G3Zµν + (CP−odd).

(B.9)

Above, “CP-odd” stands for analogous terms with Vµν → Ṽµν , and η → η̃. Note the610

Goldstone kinetic terms in Eq. (B.3) are assumed to be canonically normalized. To611

achieve this, one needs to rescale the neutral Goldstone field as612

G3 → G3

(
1 + cT + 2cT

h

v

)
. (B.10)

Moreover, the Lagrangian in Eq. (B.2) does not contain 2-derivative cubic scalar self-613

interactions. To ensure this feature, the Higgs boson field redefinition in Eq. (4.4) has614

to be generalized to615

h→ h

(
1− cH − cH

h

v
− cH

h2

3v2

)
− cH

2G+G− +G3G3

v
− 2cT

G3G3

v
. (B.11)

The above field redefinitions are in addition to the steps described in Section 3.1. These616

include the gauge coupling rescaling and the use of the equations of motion (that are617

modified to include the Goldstone fields). The final step is to transform the couplings618

from the Warsaw to the Higgs basis using the dictionary provided in Section 3.1. At the619

end of the day, the coefficients in the Goldstone Lagrangian of Eq. (B.2) take the form620

βcW = 1 + δm, (B.12)

βhcc = 1 + g2cw2 + δcz + 2δm,

βh33 = 1 + g2cz2 + δcz, (B.13)
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βhcW = 1 + g2cw2 + δcz + 3δm,

βh3Z = 1 + g2cz2 + δcz,

β3cW = 1− 2g2cw2 +
3

2
g2cz2 − 3δm,

β3hZ = 1 + δcz,

βccZ = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βchW = 1 + δcz + 3δm,

βc3W = 1− g2

2
cz2 + δm, (B.14)

βcWA = 1 + δm,

βcWZ = 1 +
g2(g2 + g′2)

2g′2
(cz2 − cw2)− 2g2 + g′2

g′2
δm, (B.15)

ηcWA = ηcWZ = czz −
g2 − g′2

g2 + g′2
czγ − e2cγγ, (B.16)

βccAZ = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βccZZ = 1 +
(g2 + g′2)2

(g2 − g′2)2

(
−g

2(g2 − g′2)

g2 + g′2
cz2 + 3g2cw2 + 2δcz + 2

5g4 + 6g2g′2 + g′4

(g2 + g′2)2
δm

)
,

βccWW = 1 + 2g2cz2 + 2δcz + 2δm,

β33ZZ = 1 + 2g2cz2 + 2δcz,

β33WW = 1 + g2(cw2 + cz2) + 2δcz + 4δm,

βchWA = 1 + δcz + 3δm,

βc3WA = 1− g2

2
cz2 + δm,

βchWZ = 1 +
3

2

g2(g2 + g′2

g′2
(cz2 − cw2) + δcz − 3

2g2 + g′2

g′2
δm,

βc3WZ = 1 +
g4

2g′2
cz2 −

g2(g2 + g′2)

2g′2
cw2 −

2g2 + g′2

g′2
δm,

η′ccWW =
g2

2
(cw2 − cz2) + δm, (B.17)
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ηccAA = czz −
g2 − g′2

g2 + g′2
czγ +

(g2 − g′2)2

4(g2 + g′2)
cγγ,

η33AA =
1

8
cγγ,

ηccAZ =
g2 − g′2

g2 + g′2
czz −

g4 − 6g2g′2 + g′4

2(g2 + g′2)2
czγ −

e2(g2 − g′2)

(g2 + g′2)2
cγγ,

η33AZ =
czγ
4
,

ηccZZ =
(g2 − g′2)2

4(g2 + g′2)2
czz −

e2(g2 − g′2)

(g2 + g′2)2
czγ +

e4

(g2 + g′2)2
cγγ,

η33ZZ =
czz
8
,

ηccWW =
1

2
czz + s2

θczγ +
s4
θ

2
cγγ,

η33WW =
1

4
czz +

s2
θ

2
czγ +

s4
θ

4
cγγ,

ηc3WA = −1

2
czz +

g2 − g′2

2(g2 + g′2)
czγ +

e2

2(g2 + g′2)
cγγ,

ηc3WZ =
1

2
czz −

g2 − g′2

2(g2 + g′2)
czγ −

e2

2(g2 + g′2)
cγγ. (B.18)

With the Goldstone bosons degrees of freedom present in the Lagrangian, gauge621

fixing can be implemented as in any gauge theory. Below we show how to implement622

the linear Rξ gauge. For the electroweak sector, we introduce the following gauge fixing623

Lagrangian624

Lgf = − 1

2ξ

[
F 2
A + F 2

Z + 2F+F−
]
, (B.19)

where625

FA = ∂µAµ
(
1 + e2cWB

)
+ ∂µZµcWB

gg′(g2 − g′2)

g2 + g′2
,

FZ = ∂µZµ − ξ
√
g2 + g′2v

2
G3

(
1− 2cT + e2cWB

)
,

F± = ∂µW
±
µ − ξ

gv

2
G±. (B.20)

Above, the electroweak parameters g, g′, v and the Goldstone fields G±, G3 are the ones626

before the rescaling in Eq. (4.7) and Eq. (B.10). After the rescaling and going to the627

Higgs basis the quadratic terms in the gauge fixing Lagrangian become628

Lgf = − 1

2ξ

(∂µAµ)2 +

(
∂µZµ − ξ

√
g2 + g′2v

2
G3

)2

+ 2
∣∣∣∂µW+

µ − ξ
gv

2
(1 + δm)G+

∣∣∣2
 .

(B.21)
This way, the kinetic mixing between the Goldstone bosons and massive vector bosons629

in Eq. (B.3) is canceled after introducing the gauge fixing term. At the same time, the630
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Goldstone bosons acquire the gauge dependent masses:631

mG± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mG3 =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ . (B.22)

To derive Eq. (B.21) one needs to take into account that the gauge fixing term affects632

the equations of motion used in Eq. (4.2) and Eq. (4.8) to bring the Warsaw basis633

Lagrangian to the prescribed form of phenomenological effective Lagrangian. Due to634

this, the gauge fixing term affects not only quadratic terms in the Lagrangian, but also635

yields new interactions terms of the Goldstone bosons, Higgs boson, and gauge fields.636

Finally, the ghost Lagrangian can be obtained by the usual Fadeev-Popov procedure.637

In the Rξ gauge introduced above638

Lghost = −
∑

n∈(+,−,Z,γ)

[
c̄+
∂δF+

∂αn
+ c̄−

∂δF−
∂αn

+ c̄Z
∂δFZ
∂αn

+ c̄γ
∂δFA
∂αn

]
cn, (B.23)

where δF is the variation of the gauge fixing term under the infinitesimal SU(2)×U(1)639

gauge symmetry transformations parametrized by αn. Since the F ’s in Eq. (B.20) contain640

the original (unrescaled) gauge and Goldstone fields, their gauge transformations are the641

same as in the SM:642

δAµ = ∂µαγ + ie
(
W−
µ α

+ −W+
µ α
−) ,

δZµ = ∂µαZ + igcθ
(
W−
µ α

+ −W+
µ α
−) ,

δW+
µ = ∂µα+ − igα+ (cθZµ + sθAµ) + ig (cθαZ + sθαγ)W

+
µ , (B.24)

643

δh = −
√
g2 + g′2

2
G3αZ −

g

2
(G+α− +G−α+) ,

δG3 =

√
g2 + g′2

2
(v + h)αZ −

ig

2
(G+α− −G−α+) ,

δG+ =
g

2
(v + h− iG3)α+ + ieG+αγ + i

g2 − g′2

2
√
g2 + g′2

G+αZ . (B.25)

At this point the ghost kinetic and mass terms are not diagonal. To this end one needs644

to perform the transformation645

c̄Z → c̄Z (1 + δκγ) ,

cγ → cγ
(
1− s2

θδκγ
)
− cZ

g′(g2 − g′2)

g′(g2 + g′2)
,

cZ → cz
(
1− δg1,z + s2

θδκγ
)
. (B.26)

After this transformation the ghost kinetic and mass terms become diagonal and the646

kinetic terms are canonically normalized. Their gauge dependent masses of the ghosts647

are given by648

mc± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mcZ =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ , mcγ = 0.

(B.27)
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