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Monte Carlo sampling
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 Simulation vs. integration
Sampling techniques
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Results and Errors:
 Statistical errors (single histories, batches)
 Figure of merit



Phase space:
• Phase space: a concept of classical Statistical Mechanics
• Each Phase Space dimension corresponds to a particle degree of 

freedom
• 3 dimensions correspond to Position in (real) space: x, y, z
• 3 dimensions correspond to Momentum: px, py, pz

(or Energy and direction: E, θ, ϕ)
• More dimensions may be envisaged, corresponding to other possible 

degrees of freedom, such as quantum numbers: spin, etc. 
• Another degree of freedom is the particle type itself (e-, p,γ..)
• Time can also be considered as a coordinate, or it can be 

considered as an independent variable
• Each particle is represented by a point in phase space
• The number of particles in an infinitesimal phase-space region  is 

• Where f is a probability density function  (α=extra  degrees)
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Particle Transport
 Particle transport is represented by the evolution of f(x,p,t,α)

due to transport, scattering, external forces, particle production, 
particle absorption/decay 

 The most general description of  particle transport is the 
Boltzmann equation, an integro-differential equation based on 
balance in phase space

 Any solution of the Boltzmann equation needs the definition of a 
Source and one or more Detectors :

 The source provides the intitial particle distribution function in a 
given phase space region, the detector is a phase space region 
where the modified f(x,p,t,α) is to be calculated 

 In general:

 Where G is a multi-dimensional operator that encompasses all 
the microscopic processes 
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Particle Transport
 For our discussion here, three concepts have to be retained:
1. The solution of any particle transport problem is a multi-

dimensional integral 
2. Particle transport is a stochastic problem, where all quantities 

and processes are described by probability distributions
3. The  “solution” or “estimator” will again be the integral of the 

particle  distribution function over the  phase space region of 
interest:
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Complexity
 Simple example: a uniform monochromatic beam  attenuated by a uniform 

shielding layer of thickness T
 The source term: a flux Ψ(E, θ,r) =dN/dΩ/dE/dS= C δ(E-E0) δ(θ- θ 0)
 Suppose that the particle are absorbed according to a macroscopic 

absorption cross section Σt =  interaction probability per cm  = σtNAρ/A 
 In an infinitesimal thickness dt the probability to be absorbed is P= Σ dt
 dΨ(t)= -Ψ(t)P = -Ψ(t) Σt dt
 Ψ(s) = ∫T0Ψ(t) exp(- Σt  S) dt : an eq. that is solved by the exponential 

function 
 Ψ(T) = Ψ(0) exp(- Σt  T)                EASY !!
 Now .. Suppose that the particles are not absorbed, but scattered 

according to some energy-dependent dσ (Ε, θ)/dΩ , exiting with E′= g(E,θ)  
where g is defined by the kinematics. 

 d Ψ(E’, θ’)= ∫( Ψ(E, θ,s) NAρ/A dσ (Ε, θ’’)/dΩ )d θ dE where θ’’ = θ’’- θ in 3d
 Ψ(T,E, θ ) = ∫ d Ψ(E’, θ’)= …
 Now..suppose that the original beam was not monochromatic, or that 

particles can also be produced..or that the geometry is not uniform and 
the dimensions of the integral will explode .
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Another way to solve
 The solution of the Boltzmann equation involves complex 

integrations in many variables
 Particle non-conserving terms have also to be introduced
 Non-homogeneities of the problem further increase the 

complexity
 “Direct” numerical solutions can become prohibitive
 Another way to solve the transport equation is the Monte Carlo 

method:
Instead of INTEGRATING  the probability functions, SAMPLE 

randomly from these distribution  
 The mathematical foundation of the Monte Carlo method is in the 

Central limit theorem:
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Mean of a distribution (1)

 In one dimension:
Given a variable x, distributed according to a function f(x), the mean or 
average of another function of the same variable A(x) over an interval [a,b] 
is given by:
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Mean of a distribution (2)
 In several dimensions:
Given n variables x,y,z,... distributed according to the (normalized) 

functions f’(x), g’(y), h’(z)..., the mean or average of a function of those 
variables A(x,y,z) over an n-dimensional domain D is given by:
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Often impossible to calculate with traditional methods, but we can sample 
N values of A with probability f’·g’·h’...and divide the sum of the sampled 
values by N:
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Each term of the sum is distributed like A (Analog Monte Carlo)
In this case the integration is also a simulation!



Central Limit theorem

Central limit theorem:
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MC Mathematical foundation
The Central Limit Theorem is the mathematical foundation of the Monte 
Carlo method. In words:

Given any observable A, that can be expressed 
as the result of a convolution of random 
processes, the average value of A can be 
obtained by sampling many values of A according 
to the probability distributions of the random 
processes.

MC is indeed an integration method that allows to solve multi-
dimensional integrals by sampling from a suitable stochastic 
distribution.

The precision of MC estimator depends on the number of samples:
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Integration? Or simulation? 

Why, then, is MC often considered a simulation
technique?

• Originally, the Monte Carlo method was not a 
simulation method, but a device to solve a 
multidimensional integro-differential equation by  
building a stochastic process such that some 
parameters of the resulting distributions would 
satisfy that equation

• The equation itself did not necessarily refer to a 
physical process, and if it did, that process was not 
necessarily stochastic



Integration efficiency
• Traditional numerical integration methods (e.g., Simpson) converge to the 

true value as N-1/n, where N = number of “points” (intervals) and n = number 
of dimensions

• Monte Carlo converges as N-1/2, independent of the number of dimensions

• Therefore:
 n = 1  MC is not convenient
 n = 2  MC is about equivalent to traditional methods 
 n > 2  MC converges faster (and the more so the greater the 

dimensions) 
• the dimensions are those of the largest number of “collisions” per history
• Note that the term “collision” comes from low-energy neutron/photon 

transport theory. Here it should be understood in the extended meaning of 
“interaction where the particle changes its direction and/or energy, or 
produces new particles” 



The Monte Carlo method 

Invented by John von Neumann, Stanislaw Ulam and  
Nicholas Metropolis (who gave it its name), and  
independently by Enrico Fermi

N. Metropolis            S. Ulam J. von Neumann          E. Fermi



The ENIAC
Electronic Numerical Integrator And Computer



Simulation: in special cases

• It was soon realized, however, that when the  
method was applied to an equation describing a 
physical stochastic process, such as neutron 
diffusion, the model (in this case a random walk) 
could be identified with the process itself

• In these cases the method (analog Monte Carlo) 
has become known as a simulation technique, 
since every step of the model corresponds to an 
identical step in the simulated process



Particle transport
 Particle transport is a typical physical process described by 

probabilities (cross sections = interaction probabilities per unit 
distance)

 Therefore it lends itself naturally to be simulated by Monte 
Carlo

 Many applications, especially in high energy physics and 
medicine, are based on simulations where the history of each 
particle (trajectory, interactions) is reproduced in detail 

 However in other types of application, typically shielding design, 
the user is interested only in the expectation values of some 
quantities (fluence and dose) at some space point or region, 
which are calculated as solutions of a mathematical equation

 This equation (the Boltzmann equation), describes the statistical 
distribution of particles in phase space and therefore does 
indeed represent a physical stochastic process 

 But in order to estimate the desired expectation values it is not 
necessary that the Monte Carlo process be identical to it



Integration without simulation
 In many cases, it is more efficient to replace the 

actual process by a different one resulting in the 
same average values but built by sampling from 
modified distributions

 Such a biased process, if based on mathematically 
correct variance reduction techniques, converges to 
the same expectation values as the unbiased one

 But it cannot provide information about the higher 
moments of statistical distributions (fluctuations and 
correlations) 

 In addition, the faster convergence in some user-
privileged regions of phase space is compensated by a 
slower convergence elsewhere



Analog Monte Carlo

In an analog Monte Carlo calculation, not only the mean of the 
contributions converges to the mean of the actual distribution, but 
also the variance and all moments of higher order:
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Then, partial distributions, fluctuations and correlations are all 
faithfully reproduced: in this case (and in this case only!) we have a 
real simulation



Random sampling: the key to Monte Carlo

The central problem of the Monte Carlo method:
Given a Probability Density Function (pdf), f(x), generate a sample 

of x’s distributed according to f(x) (x can be multidimensional)

The use of random sampling techniques is the distinctive feature of Monte Carlo

Solving the integral Boltzmann transport equation by Monte Carlo consists of:
• Geometry and material description of the problem

• Random sampling from probability distributions of the outcome of physical 
events 

f(x)

x
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(Pseudo)random numbers
 The basis of all Monte Carlo integrations are random numbers, i.e. 

random values of a variable distributed according to a pdf
 In real world: the random outcomes of physical processes
 In computer world: pseudo-random numbers
 The basic pdf is the uniform distribution: 101)( <ξ≤=ξf
• Pseudo-random numbers (PRN) are sequences that reproduce the 

uniform distribution, constructed from mathematical algorithms 
(PRN generators). • A PRN sequence looks random but it is not: it can be successfully 
tested for statistical randomness although it is generated 
deterministically• A pseudo-random process is easier to produce than a really random 
one, and  has the advantage that it can be reproduced exactly• PRN generators have a period, after which the sequence is identically 
repeated. However, a repeated number does not imply that the end of 
the period has been reached. Some available generators have 
periods >1061



Sampling from a distribution
Sampling from a discrete distribution:

Suppose we have a discrete random variable x, that can assume
values  x1 ,  x2,  …,  xn ,  … with probability p1 ,  p2,  …,  pn ,  …
 Assume ∑i p i = 1, or normalize it
 Divide the interval [0,1) in n subintervals, with limits

y0 = 0,  y1 = p1,  y2 = p1+p2, … .

 Generate a uniform pseudo-random number 
 Find the i th y-interval such that

y i -1 ≤ ξ < y i

 Select X = xi as the sampled value
 Since ξ is uniformly random:

iiiiii pyyyyPxP =−=<≤= −− 11 )()( ξ

Note the use of the 
cumulative probability!
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Sampling from a distribution
Example: simulate a throw of dice:

x1 = 2, x2 = 3, x3 = 4, ..., x11 = 12
y0 = 0, y1 = 1, y2 = 1+2 = 3, y3 = 3+3 = 6, ..., y11 = 35+1 = 36
Normalize:
y0 = 0, y1 = 1/36 = 0.028, y2 = 3/36 = 0.083, y3 = 0.167, ..., y11 = 1
Get a pseudorandom number ξ , e.g.: 0.125
ξ is found to be between y2 = 0.083 and y3 = 0.194
So, our sampled dice throw is x3 = 4



Sampling from a distribution
Sampling from a generic continuous distribution:

 Integrate the distribution function, f(x), analytically or 
numerically, and normalize to 1 to obtain the normalized 
cumulative distribution:

 Generate a uniform pseudo-random number ξ
 Get a sample of  f(x) by finding the inverse value X = F–1(ξ),

analytically or most often numerically by interpolation (table 
look-up)

 Since ξ is uniformly random:
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Again, we use the cumulative
probability: remember, MC is 
integration!



Sampling from a distribution
Example: sampling from an exponential distribution (this is frequently
needed in particle transport, to find the point of
next interaction or the distance to decay)

• Cumulative distribution: )e(1λdxeF(t) λ
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• Normalized:
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• Sample t by inverting: )1(ln ξλ −−=t

• But ξ is distributed like 1 – ξ. Therefore our sampled value is:

λλξλ 294.0745.0lnln =−=−=t

• If we are sampling the next interaction point, we will make a step of 

0.294 mfp

f(x) = e-x/λ , x є [0,∞)



The rejection technique

• Some distributions cannot be easily sampled by integration and 
inversion.

• Let f’(x) be one such distribution (normalized) that we want to sample 

• Let g’(x) be another normalized distribution function that can be 
sampled, such that Cg’(x) ≥ f’(x), for all x ∈ [xmin , xmax]

• Generate a uniform pseudo-random number ξ1 ∈ [0,1) to sample X
from g’(x)

• Generate a second pseudo-random number ξ2

• Accept X as a sample of f’(x) if ξ2 < f’(X)/Cg’(x) , otherwise re-sample 
ξ1 and ξ2

Sampling from a distribution:
the rejection technique



Sampling with the rejection technique
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• The probability of X  to be sampled from g’(x) is g’(X), the one that ξ2 passes  
the test is f’(X)/Cg’(X) : therefore the probability to have X sampled and 
accepted is the product of probabilities  g’(X) f’(X)/Cg’(X) = f’(X)/C

• The overall efficiency (probability accepted/rejected) is given by

f’(x) is normalized
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• Proof that the sampling is unbiased (i.e. X is a correct sample from f’(x)): 
the probability P(X) dx of sampling X is given by:

• g’(X) is generally chosen as a uniform (rectangular) distribution or 

a normalized sum of uniform distributions 

(a piecewise constant  function) f(x)

x

Cg’(x)



The rejection technique: example
Let be f’(x) = (1+x2), x ∈ [-1,1]
We choose g’(x) to be constant, and:

Cg’(x) = max(f’(x)) = 2
To normalize it: 

We obtain C = 2/g’(x) = 4

Generate two uniform pseudo-random 
numbers ξ1, ξ2 ∈ [0,1)
Sample X uniformly: X = –1 + 2ξ1

Test: 
if (1+X2)/Cg’(x) = (1+X2)/2 > ξ2, accept X
otherwise re-sample ξ1, ξ2
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The efficiency is the ratio of the red area to the total



Particle transport Monte Carlo
Application of Monte Carlo to particle transport and interaction:

 Each particle is followed on its path through matter
 At each step the occurrence and outcome of interactions are 

decided by random selection from the appropriate probability 
distributions

 All the secondaries issued from the same primary are stored in a 
“stack” or “bank” and are transported before a new history is 
started

 The accuracy and reliability of a Monte Carlo depend on the 
models or data on which the probability distribution functions are 
based

 Statistical precision of results depends on the number of 
“histories"

 Statistical convergence can be accelerated by “biasing" 
techniques.



Particle transport Monte Carlo
Assumptions made by most MC codes:
 Static, homogeneous, isotropic, amorphous media and geometry 

Problems: e.g. moving targets*, atmosphere must be represented by 
discrete layers of uniform density, radioactive decay may take place in 
a geometry different from that in which the radionuclides were 
produced*. 
* These restrictions have been overcome in FLUKA

 Markovian process: the fate of a particle depends only on its 
actual present properties, not on previous events or histories

 Particles do not interact with each other
Problem: e.g. the Chudakov effect (charges cancelling in e+e– pairs)

 Particles interact with individual electrons / atoms / nuclei / 
molecules
Problem: invalid at low energies (X-ray mirrors)

 Material properties are not affected by particle reactions
Problem: e.g. burnup



Practical implementations

P1 P2 P3 P4 P5 P6 P7 P8 P9 .. PN

Track through geometry
Random distance to interaction

Continuous processes
Estimators

particle exits the problem before interaction
Estimators

particle dies
(below transport threshold,

discarded..)
Estimators

Interaction
Generate secondary particles 

Estimators

fill the “stack” with particle ID, E, x, θ….

take one particle from stack
and follow it

Empty stack: 
end “history”
start with new 
primary
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Statistical Errors:
• Can be calculated for single histories (not in FLUKA), or for 

batches of several histories

• Distribution of scoring contributions by single histories can be 
very asymmetric (many histories contribute little or zero)

• Scoring distribution from batches tends to Gaussian for             
N → ∞, provided σ2 ≠ ∞ (thanks to Central Limit Theorem)

• The standard deviation of an estimator calculated from batches 
or from single histories is an estimate of the standard deviation 
of the actual distribution (“error of the mean”)

• How good is such an estimate depends on the type of estimator 
and on the particular problem (but it converges to the true value 
for N → ∞)



Statistical Errors
 The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated in N batches, is:
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where:
ni = number of histories in the i th batch
n = Σni = total number of histories in the N batches

xi = average of x in the i th batch: 

where xij is the contribution to x of the jth history in the ith batch
In the limit N = n, ni =1, the formula applies to single history 
statistics
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Statistical Errors
Practical tips:

• Use always at least 5-10 batches of comparable size (it is not at 
all mandatory that they be of equal size)

• Never forget that the variance itself is a stochastic variable
subject to fluctuations

• Be careful about the way convergence is achieved: often 
(particularly with biasing) apparently good statistics with few 
isolated spikes could point to a lack of sampling of the most 
relevant phase-space part

• Plot 2D and 3D distributions! In those cases the eye is the best 
tool in judging the quality of the result



Statistical errors, systematic errors, and... mistakes

Statistical errors, due to sampling (in)efficiency
Relative error       Quality of Tally (from an old version of the MCNP Manual)
50 to 100%           Garbage
20 to 50% Factor of a few
10 to 20 Questionable

< 10%                 Generally reliable

 Why does a 30% σ mean an uncertainty of a “factor of a few”?
Because σ in fact corresponds to the sum (in quadrature) of two 
uncertainties: one due to the fraction of histories which don’t give 
a zero contribution, and one which reflects the spread of the 
non-zero contributions

 The MCNP guideline is empirically based on experience, not on a 
mathematical proof. But it has been generally confirmed also working 
with other codes

 Small penetrations and cracks are very difficult to handle by MC, because 
the “detector” is too small and too few non-zero contributions can be 
sampled, even by biasing 



Statistical errors, systematic errors, and... mistakes
Systematic errors, due to code weaknesses

Apart from the statistical error, which other factors 
affect the accuracy of MC results? 

 physics: different codes are based on different physics models. 
Some models are better than others. Some models are better 
in a certain energy range. Model quality is best shown by 
benchmarks at the microscopic level (e.g. thin targets)

 artifacts: due to imperfect algorithms, e.g., energy deposited  
in the middle of a step*, inaccurate path length correction for 
multiple scattering*, missing correction for cross section and 
dE/dx change over a step*, etc. Algorithm quality is best     
shown by benchmarks at the macroscopic level (thick targets, 
complex geometries)

 data uncertainty: an error of 10% in the absorption cross  
section can lead to an error of a factor 2.8 in the  
effectiveness of a thick shielding wall (10 attenuation     
lengths). Results can never be better than allowed by available 
experimental data!

* Not in FLUKA!



Statistical errors, systematic errors, and... mistakes

Systematic errors, due to user ignorance
 Missing information:

 material composition not always well known. In particular 
concrete/soil composition (how much water content? Can be 
critical)

 beam losses: most of the time these can only be guessed.    
Close interaction with engineers and designers is needed

 presence of additional material, not well defined (cables, 
supports...)

 Is it worth to do a very detailed simulation when some 
parameters are unknown or badly known? 

Systematic errors, due to simplification
 Geometries that cannot be reproduced exactly (or would require 

too much effort)
 Air contains humidity and pollutants, has a density variable with 

pressure 



Statistical errors, systematic errors, and... mistakes

Code mistakes (“bugs”)
 MC codes can contain bugs:

 Physics bugs: I have seen pair production cross sections fitted by a 
polynomial... and oscillating instead of saturating at high energies, 
non-uniform azimuthal scattering distributions, energy non-
conservation...

 Programming bugs (as in any other software, of course)
User mistakes

 mis-typing the input: Flair is good at checking, but the final 
responsibility is the user’s

 error in user code: use the built-in features as much as possible!
 wrong units
 wrong normalization: quite common
 unfair biasing: energy/space cuts cannot be avoided, but must be done 

with much care
 forgetting to check that gamma production is available in the neutron 

cross sections (e.g. Ba cross sections)



END
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The angular flux Ψ
The angular flux Ψ is the most general radiometric quantity:

particle phase space density × velocity
or also

derivative of fluence Φ(x,y,z) with respect to 3 phase space 
coordinates: time, energy and direction vector

Ψ is fully differential, but most Monte Carlo estimators integrate 
it over one or more (or all) phase space dimensions: coordinates, 
time, energy, angle
Fluence Φ, on the opposite, is the most integral radiometric 
quantity:

where n = particle density in normal space, v = velocity, t = time
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Particle Transport
 Particle transport == evolution of the phase space densities due 

to   deterministic and  stochastic processes
 Most general solution: Boltzmann equation: integro-differential 

balance equation  in phase space
 The “solution” needs the definition of a source and a detector
 The “source will be a known distribution in phase space (i.e. a 

particle beam, or a volume filled with γ emitters..)
 The detector will be a region in phase space where we look for a 

solution. For instance, the neutron fluence after a shielding layer
 The transport from the source to the detector is defined by the 

combined probability of  production and destruction processes: 
scattering, decay, absorption, particle production…
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The Boltzmann Equation
 All particle transport calculations are (explicit or implicit) 

attempts to solve the Boltzmann Equation

 It is a balance equation in phase space: at any phase space point, 
the increment of angular flux Ψ in an infinitesimal phase space 
volume is equal to 

sum of all “production terms” 
minus

sum of all “destruction terms”
 Production: 

Sources, Translational motion “in”, “Inscattering'', Particle Production,
Decay “in”

 Destruction:
Absorption, Translational motion “out”, “Outscattering'', Decay “out”

(For convenience, we merge into a single term Particle Production and Decay
“in” and in a similar way we put together Absorption and Decay “out”)



The Boltzmann Equation

Σt = total macroscopic cross section = interaction probability per cm 
= 1/λ t = σtNAρ/A 

λ t = interaction mean free path   σt = interaction probability per 
atom/cm2

Σs = scattering macroscopic cross section = σsNAρ/A
This equation is in integro-differential form. But in Monte Carlo it is 
more convenient to put it into integral form, carrying out the 
integration over all possible particle histories.
A theorem of statistical mechanics, the Ergodic Theorem, says that 
the average of a function along the trajectories is equal to the 
average over all phase space. The trajectories “fill” all the available 
phase space.

time dependent absorption
sourcetranslation

scattering
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Visualizing a 2-D phase space...

pE ,

r

Translational motion: change of position,
no change of energy and direction

Scattering: no change of position,
change of energy and direction

In Out

Inscattering Outscattering

dE/dx: change of position and energy
(translation plus many small scatterings

No arrows upwards! (except for thermal neutrons)



The sources and the detectors
• To solve the Boltzmann Equation, we must define one or more source

and one or more detectors
• A source is a region of phase space: one or more particle types, a range 

of space coordinates, a distribution in angle, energy and time (but often 
the source is simply a monoenergetic monodirectional point source ― a 
“beam”!)

• Also a detector is a region of phase space, in which we want to find a 
solution of the Boltzmann equation

• We can look for solutions of different type: 
 at a number of (real or phase) space points
 averages over (real or phase) space regions
 projected on selected phase space hyperplanes
 time-dependent or stationary
........

• For each solution we must define a detector



Line integration of the Boltzmann Equation
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Let’s change coordinates along the line s in direction Ω:

where q indicates the scattering integral

P1(x1,y1,z1)
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“source” and “detector” 
are two regions of phase 
space

From source to detector without interaction

source S

detector
Ψ=Ψ0

uncollided term Ψ0

β-Se
ds-

Se 0
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∫ Σ
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t dβ
0
∫ Σ= = optical thickness

e-β = probability to reach detector 
without absorption nor scattering

E, Ω



source S

detector
Ψ=Ψ1+Ψ0

From source to detector with one scattering

once-collided term Ψ1
obtained by summing 
(= integrating)
all contributions from 
phase space points
reached by 
uncollided particles
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(K: integral 
operator)
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Neumann series

The solution of the Boltzmann equation in 
integral form is obtained by summing:

 the uncollided term Ψ0
 the once-collided term Ψ1 = KΨ0
 the twice-collided term Ψ2 = KΨ1

etc...
Each term is derived from the previous one, 
adding one scattering

Notice that analytical shielding formulae are 
written as: xEBDD Σ−= e )( 0

where D (dose) is assumed to be proportional to Φ (fluence)
D0e-Σx is the uncollided term
B (build-up factor) is the sum of all collided terms 

Neumann series:
Ψ0 = Se−β

Ψ1= K Ψ0
Ψ2= K Ψ1
.................
Ψn= K Ψn-1



Integration efficiency
• Traditional numerical integration methods (e.g., Simpson) converge to the 

true value as N-1/n, where N = number of “points” (intervals) and n = number 
of dimensions

• Monte Carlo converges as N-1/2, independent of the number of dimensions

• Therefore:
 n = 1  MC is not convenient
 n = 2  MC is about equivalent to traditional methods 
 n > 2  MC converges faster (and the more so the greater the 

dimensions) 
• With the integro-differential Boltzmann equation the dimensions are the 7 of 

phase space, but we use the integral form: the dimensions are those of the 
largest number of “collisions” per history (the Neumann term of highest 
order) 

• Note that the term “collision” comes from low-energy neutron/photon 
transport theory. Here it should be understood in the extended meaning of 
“interaction where the particle changes its direction and/or energy, or 
produces new particles” 



Sampling a uniform isotropic radiation field

Several problems (e.g. concerning 
cosmic rays or phantom dosimetry
require to simulate a uniform isotropic 
radiation field over a region of space

This can be obtained as follows:
 select a random point on the 

surface a sphere of radius R 
surrounding the region 

 sample a random inward direction 
from a cosine distribution

 send the particle from point R in 
the selected direction



Sampling a uniform isotropic radiation field

Why the cosine distribution?

The solid angle dΩ ’ subtended by 
the element of sphere surface at 

random point P0  from a generic 

point P1   is = dΩ cosθ , where dΩ

is the solid angle subtended in the 

direction of the normal in P0

θ

P1

P0

•

•

•
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