
Ivan Razumov, Grigory Latyshev, Dmitri Konstantinov

GENSER SFT Team
October 19, 2015

SFT Group Meeting

GENSER status

What is GENSER?

2

 The Generator Services project:

● work in collaboration with Monte Carlo (MC) generators
authors and LHC experiments in order to prepare
validated LCG compliant code for both the theoretical and
experimental communities at the LHC sharing the user
support duties

● provide assistance for the development of new object-
oriented generators and guarantee the maintenance of the
older packages on the LCG supported platforms

GENSER

3

The Generator Service project purpose is to provide the following

components for LHC community and experiments:

●MC generator libraries installed on CERN AFS and CVMFS

●compressed source files (tarballs)

●various tests of Monte Carlo generators

●service support for LCG release users

Generator Service

4

The idea is to cover entire year with 2-3 months long shifts

GENSER team (~ 1 FTE):

● Mikhail Ilyushin (IHEP, Protvino)

● Mikhail Kirsanov (INR, Troitsk)

● Dmitri Konstantinov (IHEP, Protvino)

● Grigory Latyshev (IHEP, Protvino)

● Ivan Razumov (IHEP, Protvino)

Funding: 50% CERN, 50% Russian

We have been providing this service successfully for the last ~10 years!

 Team

5

6

How GENSER works?

• GENSER code is fully integrated in SFT LCGCMake system:
• same GIT repository - https://gitlab.cern.ch/sft/lcgcmake
• generators are usual ‘packages’ in terms of lcgcmake

• all generators requested by experiments are part of official
LCG release (central installation managed by Patricia)

• a life cycle of LCG releases is too long and we are often
requested to update a set of existing LCG installations with
newly released generator/tool (managed by GENSER)

GENSER software stack

7

● for new generator:
● add/update instructions for generator in

lcgcmake
● download the tarfile to SFT/GENSER local source

repository.
● add new version into steering tool chain file.

● for new LCG release:
● prepare new toolchain file with all requested

versions

Generator integration

8

● A few lines in CMakeLists.txt required to
describe installation steps and dependencies
of a new packages

● Explicit handling of dependencies

Build instructions in lcgcmake

9

● All packages(externals + generators) are kept
in one steering ‘toolchain’ file:

Steering tool chain

10

Flexibility: syntax allows to pass ‘key=value’ pairs to
package build function
Each generator has 1 main and N extra versions in
release

Build instructions

11
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-
LCGSoft-CMake-system.md

● Simple steps like ‘./configure; make; make install’

git clone https://gitlab.cern.ch/sft/lcgcmake.git

mkdir build; cd build

source /afs/cern.ch/sw/lcg/contrib/gcc/4.8/x86_64-slc6/setup.sh

cmake \
 -DLCG_VERSION=78 \
 -DCMAKE_INSTALL_PREFIX=../install \
 -DLCG_INSTALL_PREFIX=/afs/cern.ch/sw/lcg/releases \
 ../lcgcmake

make help will prints all available targets
make -jN package ...

Requirements: Unix (or MacOS), cmake >=2.8, autotools (for some packages

https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md
https://gitlab.cern.ch/sft/lcgcmake.git

12

Tests: making sure
everything works as

it should

Nightly builds(Jenkins) + monitoring
(CDash)

● Automated building of the entire software stack
everyday
● problems immediately visible
● several platforms are tested

13

● the generator tests are run
after each nightly build

● all generator are covered
at least by a simple tests –
compile simple code with
the library and run it

● A few popular generators
have rivet-based tests for
comparing results with
previous versions

Testing

14

Simple SHERPA test:

Implementation of tests

15

Adding tests by ‘add_test’ function in lcgcmake

● Rivet is a generator-agnostic validation system for MC generators.

● More simply, it’s a tool to produce physics plots from an MC

generator code which can produce HepMC events. All the “major”

generators can do this one way or another: C++ Pythia 8, Sherpa,

Herwig++ out of the box, Fortran PYTHIA 6, HERWIG+JIMMY, etc.

via AGILe.

● This is useful for validating generators – only need to write the

analysis once and it can be used to validate and compare every

generator that should be able to simulate it.

16

What is Rivet

Exploiting the power of Rivet we have implemented:
● simple fast (~1000 events) tests - run every day
● validation website* running regression tests (~ 106

events) - run on demand

17

Validation tests based on Rivet

* http://genser.cern.ch

Displayed analyses:

● MC_GENERIC

● MC_IDENTIFIED

● MC_XS

● MC_TTBAR

● MC_ZJETS

(+GENSERZJETS)

18

A new tool: LCGEnv

● To make the generators and other packages
portable, all the “RPATH”s are stripped from
the produced executables/libraries

● This is not a problem for experiments, which
have dedicated environments for using LCG
software

● This is a problem for those who want to use
LCG software outside that environment

19

Motivation

rpath is a term in programming which refers to a run-time search path hard-coded in
an executable file or library, used during dynamic linking to find the libraries the
executable or library requires.

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
https://en.wikipedia.org/wiki/Executable_file

The “lcgenv” is a tool for advanced users who want to
use individual tools from the LCG release without
setting up the entire release:
● sets up all the dependencies needed for a package
● works with official LCG releases as well as local user builds
● optimized to work CVMFS installations
● supports sh- and csh-like shells
● is used in per-package environment scripts
The script is available on CERN AFS and SFT CVMFS.

It was tested by ATLAS and included in ATLAS UI

lcgenv -p /cvmfs/sft.cern.ch/lcg/releases/LCG_79 86_64-slc6-gcc48-opt ROOT

Solution

20

21

Status and Plans

● fulfilling requests from experiments and users
for addition of new generators and new
versions

● contribution to “lcgcmake” build system
development to meet latest requirements
(users and ours)

● preparation of LCG stack for “exotic”
platforms:
● MacOS - clang, Ubuntu-gcc, SLC-icc

(never ending effort…)

Status and plans

22

● сhaplin 1.2
● CRMC 1.5.3, 1.5.4
● сython 0.22
● Dpmjet 3.0-6
● evtGen R01-04-00
● FeynHiggs 2.10.2
● gg2VV 3.1.7
● HepUtils 1.0.0, 1.0.6, 1.0.7
● HYDJET++ 2.1
● JHU 4.8.1, 5.2.5, 5.6.3
● KKMC 4.22

Generators provided in 2015
● LoopTools 2.8
● MCUtils 1.1.0, 1.1.1, 1.1.2
● aMCatNLO 2.2.1, 2.2.2
● photos++ 3.60, 3.61
● powheg-box-v2 r3033, 3043
● professor 2.0.0
● pythia 8.204, 8.205, 8.210,

8.212
● Rivet 2.2.1, 2.3.0, 2.4.0
● SHERPA 2.2.0
● vinicia 1.1.00, 1.1.01, 1.1.02,

1.1.03, 1.2.00, 1.2.01, 1.2.02
● yoda 1.3.1, 1.4.0, 1.5.5

23

● There is a synergy between GENSER and SPI
teams

● GENSER has evolved from a standalone project
and has been contributing into a common
infrastructure

● Because we have more established and
experienced manpower this year, we plan to
extend GENSER team involvement in HepMC3
and Geant validation.

● The GENSER project is going well! Its results are
essential for experiments and HEP users!

● We have established direct contact with
experiments: they can rely on us

24

Conclusion

25

backup

Based on GENSER Rivet tests, but has larger
statistics:

● 1000 events are generated in nightly tests

● 100000 events are generated in validation tests

Needs to be ran manually, takes about 1-2 days.

Results can be viewed on

http://genser.cern.ch

26

Rivet validation

http://genser.cern.ch
http://genser.cern.ch

Build instructions

● Requirements:
● Unix
● CMake 2.9
● Compiler, autotools

(for some packages)

27
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-
LCGSoft-CMake-system.md

● Simple steps:
● checkout lcgcmake

from git
● create build area
● configure with cmake
● build with ‘make’

https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md
https://gitlab.cern.ch/sft/lcgcmake/blob/master/documentation.markdown/How-to-build-generators-with-LCGSoft-CMake-system.md

28

Rivet validation (2)

GENSER maintains Rivet-based tests for

● herwig++

● Sherpa

● pythia8

● pythia6

● herwig

reference.py -- ROOT-based tool for comparing test results and

reference results

29

Rivet-based tests

