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Lecture I

The Standard Model Higgs Boson

Outline

• The Standard Model before 4 July 2012—what was missing?

• mass generation and the Goldstone boson

• The significance of the TeV scale—Part 1

• Electroweak symmetry breaking dynamics of the Standard Model (SM)

• Discovery of the Higgs boson

• Observed properties of the Higgs boson



Particle 
content
of the 
Standard
Model

Something is 
missing…



What was missing?

The theory of W± and Z gauge bosons must be gauge invariant ; otherwise

the theory is mathematically inconsistent. You may have heard that “gauge

invariance implies that the gauge boson mass must be zero,” since a mass

term of the form m2Aa
µA

µa is not gauge invariant.

So, what is the origin of the W± and Z boson masses? Gauge bosons are

massless at tree-level, but perhaps a mass may be generated when quantum

corrections are included. The tree-level gauge boson propagator G0
µν (in the

Landau gauge) is:

G0
µν(p) =

−i

p2

(
gµν −

pµpν
p2

)
.

The pole at p2 = 0 indicates that the tree-level gauge boson mass is zero.

Let’s now include the radiative corrections.



The polarization tensor Πµν(p) is defined as:

−→ −→p p
µ ν iΠµν(p) ≡ i(pµpν − p2gµν)Π(p

2)

where the form of Πµν(p) is governed by covariance with respect to Lorentz

transformations, and is constrained by gauge invariance, i.e. it satisfies

pµΠµν(p) = pνΠµν(p) = 0.

The renormalized propagator is the sum of a geometric series

+ + + . . . =
−i(gµν−pµpν

p2
)

p2[1+Π(p2)]

The pole at p2 = 0 is shifted to a non-zero value if:

Π(p2) ≃
p2→0

−g2v2

p2
.

Then p2[1 + Π(p2)] = p2 − g2v2, yielding a gauge boson mass of gv.



Interpretation of the p2 = 0 pole of Π(p2)

The pole at p2 = 0 corresponds to a propagating massless scalar. For

example, the sum over intermediate states includes a quark-antiquark pair

with many gluon exchanges, e.g.,

This is a strongly-interacting system—it is possible that one of the

contributing intermediate states is a massless spin-0 state (due to the strong

binding of the quark/antiquark pair).

We know that the Z and W± couple to neutral and charged weak currents

Lint = gZj
Z
µZ

µ + gW (jWµ W+µ + h.c.) ,

which are known to create neutral and charged pions from the vacuum, e.g.,

〈0|jZµ (0)|π0〉 = ifπpµ .



Here, fπ = 93 MeV is the amplitude for creating a pion from the vacuum. In

the absence of quark masses, the pions are massless bound states of qq̄ [they

are Goldstone bosons of chiral symmetry which is spontaneously broken by

the strong interactions]. Thus, the diagram:

π0

Z0 Z0

yields the leading contribution as p2 → 0 [shown in red] to the pµpν of Πµν,

iΠµν(p) = ig2Zf
2
π

(
gµν −

pµpν
p2

)
.

Remarkably, the latter is enough to fix the corresponding gµν part of Πµν

[thank you, Lorentz invariance and gauge invariance!]. It immediately follows

that

Π(p2) = −g2Zf
2
π

p2
,

and therefore mZ = gZfπ. Similarly mW = gWfπ.



Gauge boson mass generation and the Goldstone boson

We have demonstrated a mass generation mechanism for gauge bosons that

is both Lorentz-invariant and gauge-invariant! This is the essence of the

Higgs mechanism. The p2 = 0 pole of Π(p2) corresponds to a propagating

massless scalar state called the Goldstone boson. We showed that the W and

Z are massive in the Standard Model (without Higgs bosons!!). Moreover,

the ratio mW

mZ
=

gW
gZ

≡ cos θW ≃ 0.88

is remarkably close to the measured ratio. Unfortunately, since gZ ≃ 0.37 we

find mZ = gZfπ = 35 MeV, which is too small by a factor of 2600.

There must be another source for the gauge boson

masses, i.e. new fundamental dynamics that generates

the Goldstone bosons that are the main sources of mass

for the W± and Z.



How do Goldstone bosons arise?

Suppose a Lagrangian exhibits a continuous global symmetry. If the vacuum

state of the theory breaks the global symmetry, then the spectrum contains

a massless scalar state—the Goldstone boson. This is a rigorous result of

quantum field theory.

Goldstone’s theorem can be exhibited in a model of elementary scalar

dynamics. Suppose I have a multiplet of real scalar fields φi with Lagrangian

L = 1
2∂µφi∂

µφi − V (φi) ,

which is invariant under an orthogonal transformation, φi → Oijφj. Working

infinitesimally, φi → φi + δφi, where

δφi = −iθaT a
ijφj .

The generators iT a are real antisymmetric matrices and the θa are real

parameters.



Note that the kinetic energy term is automatically invariant under φi → Oijφj.

The the Lagrangian is invariant under the global symmetry transformation if

δV = 0 when φi → φi + δφi. Using δφi = −iθaT a
ijφj,

δV =
∂V

∂φi
δφi = 0 =⇒ ∂V

∂φi
T a
ijφj = 0 .

The global symmetry is spontaneously broken if the vacuum state does not

respect the symmetry. That is, the potential minimum occurs at φi = vi

where exp(−iθaT a)v 6= v [or equivalently, T av 6= 0].

Define new fields φ̃i ≡ φi − vi, in which case

L = 1
2∂µφ̃i∂

µφ̃i − 1
2M

2
ijφ̃iφ̃j + interactions ,

where M2 is a non-negative symmetric matrix,

M2
ij ≡

∂V

∂φi∂φj

∣∣∣∣
φi=vi

.





Recall the condition for the global symmetry,

∂V

∂φi
T a
ijφj = 0 .

Differentiating the above with respect to φj and setting φi = vi and

(∂V/∂φi)φi=vi = 0 then yields

M2
ikT

a
ijvj = 0 .

That is, φiT
a
ijvj is an eigenvector of M2 with zero eigenvalue. There is one

Goldstone boson for each broken generator T av 6= 0.

The Higgs mechanism can be exhibited in our simple model of elementary

scalar dynamics by promoting the global symmetry to a local symmetry.

This is accomplished by introducing a gauge field Aa
µ corresponding to each

symmetry generator T a. The Lagrangian is now

L = LYM + 1
2(Dµφ)

T (Dµφ)− V (φ) ,



where LYM is the Yang-Mills Lagrangian and D is the covariant derivative

Dµ ≡ ∂µ + igT aAa
µ .

Assuming that the scalar potential is minimized at φi = vi as before, we

again define shifted fields, φ̃i ≡ φi − vi. Then,

(Dµφ)
T (Dµφ) = M2

abA
a
µA

µb + · · · ,

with M2
ab = g2vTT aT bv. For each unbroken generator (i.e., T av = 0), the

corresponding vector boson remains massless. The remaining vector bosons

acquire mass. One can show that the corresponding Goldstone bosons are

no longer physical states of the theory. Instead, they are “absorbed” by

the corresponding gauge bosons and are realized as the longitudinal spin

component of the massive gauge bosons.





Possible choices for electroweak-symmetry-breaking (EWSB) dynamics

• weakly-interacting self-coupled elementary (Higgs) scalar dynamics

• strong-interaction dynamics involving new fermions and gauge fields

[technicolor, dynamical EWSB, little Higgs models, composite Higgs

models, extra-dimensional EWSB, . . .]

Both mechanisms generate new phenomena with significant experimental

consequences.



Fate of the pion

Let us designate by ωa the triplet of Goldstone bosons that is generated by

the additional electroweak symmetry-breaking dynamics. For example, if ωa

is a consequence of elementary scalar dynamics, then the total axial vector

current that creates the ωa and the pion fields πa from the vacuum is given

by jaµ = jaµ,QCD + v∂µωa , where v = 246 GeV and

〈0|jaµ(0)|πb〉 = ifπpµδ
ab , 〈0|jaµ(0)|ωb〉 = ivpµδ

ab .

In this case, the “true” Goldstone bosons of electroweak symmetry breaking

are:

|Ga〉 = 1√
f2
π + v2

[
fπ|πa〉+ v|ωa〉

]
,

which are absorbed by the W± and Z as a result of the Higgs mechanism,

and the physical pions are the states orthogonal to the |Ga〉,

|πa〉phys =
1√

f2
π + v2

[
v|πa〉 − fπ|ωa〉

]
.



One can check that

〈0|jaµ|Gb〉 = i(f2
π + v2)1/2pµδ

ab ,

〈0|jaµ|πb〉phys = 0 .

So far so good. But, if you look at old textbooks on the weak interactions,

they will insist that the (physical) charged pion decays via

π+
phys W+

µ+

νµ

But, the π–W vertex above is proportional to 〈0|j−µ |π+〉phys = 0. So how

does the charged pion decay?

I learned about this paradox from Marvin Weinstein many years ago. The

answer will be given at the beginning of Lecture 2.



Significance of the TeV Scale—Part 1

Let ΛEW be energy scale of EWSB dynamics. For example:

• Elementary Higgs scalar (ΛEW = mH).

• Strong EWSB dynamics (e.g., Λ−1
EW is the characteristic scale of bound

states arising from new strong dynamics).

Consider W+
L W−

L → W+
L W−

L (L = longitudinal or equivalently, zero helicity)

for m2
W ≪ s ≪ Λ2

EW. The corresponding amplitude, to leading order in g2,

but to all orders in the couplings that control the EWSB dynamics, is equal

to the amplitude for G+G− → G+G− (where G± are the charged Goldstone

bosons). The latter is universal, independent of the EWSB dynamics. This is

a rigorous low-energy theorem.

Applying unitarity constraints to this amplitude yields a critical energy
√
sc,

above which unitarity is violated. This unitarity violation must be repaired by

EWSB dynamics and implies that ΛEW <∼ O
(√

sc
)
.



Unitarity of scattering amplitudes

Unitarity is equivalent to the conservation of probability in quantum

mechanics. A violation of unitarity is tantamount to a violation of the

principles of quantum mechanics—this is too sacred a principle to give up!

Consider the helicity amplitude M(λ3λ4 ; λ1λ2) for a 2 → 2 scattering

process with initial [final] helicities λ1, λ2 [λ3, λ4]. The Jacob-Wick partial

wave expansion is:

M(λ3λ4 ; λ1λ2) =
8π

√
s

(pipf)1/2
ei(λi−λf)φ

∞∑

J=J0

(2J + 1)MJ
λ(s)d

J
λiλf

(θ) ,

where pi [pf ] is the incoming [outgoing] center-of-mass momentum,
√
s is

the center-of-mass energy, λ ≡ {λ3λ4 ; λ1λ2} and

J0 ≡ max{λi , λf} , where λi ≡ λ1 − λ2 , and λf ≡ λ3 − λ4 .



Orthogonality of the d-functions allows one to project out a given partial wave

amplitude. For example, for W+
L W−

L → W+
L W−

L (L stands for longitudinal

and corresponds to λ = 0),

MJ=0 =
1

16πs

∫ 0

−s

dtM(L,L ; L,L) ,

where t = −1
2s(1− cos θ) in the limit where m2

W ≪ s.

In the limit of m2
W ≪ s ≪ Λ2

EW, the J = 0 partial wave amplitude for

W+
L W−

L → W+
L W−

L is equal to the amplitude for∗ G+G− → G+G−:

MJ=0 =
GFs

16π
√
2
.

∗The amplitude for the scattering of Goldstone bosons is evaluated using the scalar sector of the symmetry-

breaking Lagrangian in the absence of gauge bosons.



Partial wave unitarity implies that:

|MJ |2 ≤ |Im MJ | ≤ 1 ,

which gives

(Re MJ)2 ≤ |Im MJ |
(
1− |Im MJ |

)
≤ 1

4 .

Setting |Re MJ=0| ≤ 1
2 yields

√
sc. The most restrictive bound arises from

the isospin zero channel
√

1
6(2W

+
L W−

L + ZLZL):

sc =
4π

√
2

GF
= (1.2 TeV)2 .

Since unitarity cannot be violated, we conclude that ΛEW <∼
√
sc. That is,

The dynamics of electroweak symmetry breaking must

be exposed at or below the 1 TeV energy scale.



EWSB Dynamics of the Standard Model (SM)

• Add a new sector of “matter” consisting of a complex SU(2) doublet,

hypercharge-one self-interacting scalar fields, Φ ≡ (Φ+ Φ0) with four real

degrees of freedom. The scalar potential is:

V (Φ) = 1
2λ(Φ

†Φ− 1
2v

2)2 ,

so that in the ground state, the neutral scalar field takes on a constant

non-zero value 〈Φ0〉 = v/
√
2, where v = 246 GeV. It is convenient to

write:

Φ =

(
ω+

1√
2

(
v +H + iω0

)
)

,

where ω± ≡ (ω1 ∓ iω2)/
√
2.

• The non-zero scalar vacuum expectation value breaks the electroweak

symmetry, thereby generating three Goldstone bosons, ωa (a = 1, 2, 3).
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Breaking the Electroweak Symmetry

Higgs boson

extra W,Z polarization

energy stored 
in Higgs field

value of Higgs field

Higgs imagined a field filling all of space, with a “weak charge”.
Energy forces it to be nonzero at bottom of the “Mexican hat”.

symmetric

broken symmetry



• The couplings of the gauge bosons to the SU(2)L×U(1)Y currents are

Lint =
1
2gW

µaT a
µL + 1

2g
′BµYµ .

Decomposing TL = 1
2(jV − jA) into vector and axial vector currents and

noting that the electric current, jQ = T 3 + 1
2Y is purely vector,

Lint = −1
2gW

µajaAµ + 1
2g

′Bµj3Aµ + vector current couplings .

As previously noted, 〈0|jaAµ|ωb〉 = ivpµδ
ab. The δab factor is a consequence

of the global custodial SU(2)L×SU(2)R symmetry of the scalar potential.

Computing the vector boson masses as before yields a 4× 4 squared-mass

matrix,

v2

4




g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′ g′ 2




.



Diagonalizing this matrix yields

m2
W = 1

4g
2v2 , m2

Z = 1
4(g

2 + g′ 2)v2 =
m2

W

cos2 θW
,

and it follows that (at tree-level), the rho-parameter is

ρ ≡ m2
W

m2
Z cos2 θW

= 1 .

• One scalar degree of freedom is left over—the Higgs boson, H, with

self-interactions,

V (H) = 1
2λ

[(
H + v√

2

)2

− v2

2

]2
= 1

8λ
[
H4 + 4H3v + 4H2v2

]
.

H is a neutral CP-even scalar, whose interactions are precisely predicted,

but whose squared-mass, m2
H = λv2, depends on the unknown strength

of the scalar self-coupling—the only unknown parameter of the model.



Mass generation and Higgs couplings in the SM

Gauge bosons (V = W± or Z) acquire mass via interaction with the Higgs

vacuum condensate.

V V V V V V

vv v H H H

Thus,

gHV V = 2m2
V /v , and gHHV V = 2m2

V /v
2 ,

i.e., the Higgs couplings to vector bosons are proportional to the corresponding

boson squared-mass.

Likewise, by replacing V with the Higgs boson H in the above diagrams, the

Higgs self-couplings are also proportional to the square of the Higgs mass:

gHHH = 3λv =
3m2

H

v
, and gHHHH = 3λ =

3m2
H

v2
.



Fermions in the Standard Model

Given a four-component fermion f , we can project out the right and left-handed parts:

fR ≡ PRf , fL ≡ PLf , where PR,L = 1
2(1 ± γ5) .

Under the electroweak gauge group, the right and left-handed components of each fermion

has different SU(2)×U(1)Y quantum numbers:

fermions SU(2) U(1)Y

(ν , e−)L 2 −1

e−R 1 −2

(u , d)L 2 1/3

uR 1 4/3

dR 1 −2/3

where the electric charge is related to the U(1)Y hypercharge by Q = T3 +
1
2Y .

Before electroweak symmetry breaking, Standard Model fermions are massless, since the

fermion mass term Lm = −m(f̄RfL + f̄LfR) is not gauge invariant.



The generation of masses for quarks and leptons is especially elegant in the

SM. The fermions couple to the Higgs field through the gauge invariant

Yukawa couplings (see below). The quarks and charged leptons acquire mass

when Φ0 acquires a vacuum expectation value:

f f f f

v H

Thus, gHff̄ = mf/v , i.e., Higgs couplings to fermions are proportional to

the corresponding fermion mass.

It is remarkable that the neutral Higgs boson coupling to fermions is flavor-

diagonal. This is a consequence of the Higgs-fermion Yukawa couplings:

LYukawa = −hij
u (ū

i
Ru

j
LΦ

0 − ūi
Rd

j
LΦ

+)− hij
d (d̄

i
Rd

j
LΦ

0 ∗ + d̄iRu
j
LΦ

−) + h.c. ,

where i, j are generation labels and hu and hd are arbitrary complex 3 × 3

matrices. Writing Φ0 = (v +H)/
√
2, we identify the quark mass matrices,



M ij
u ≡ hij

u

v√
2
, M ij

d ≡ hij
d

v√
2
.

One is free to redefine the quark fields:

uL → V U
L uL , uR → V U

R uR , dL → V D
L dL , dR → V D

R dR ,

where V U
L , V U

R , V D
L , and V D

R are unitary matrices chosen such that

V U †
R MuV

U
L = diag(mu , mc , mt) , V D †

R MdV
D
L = diag(md , ms , mb) ,

such that the mi are the positive quark masses (this is the singular value

decomposition of linear algebra).

Having diagonalized the quark mass matrices, the neutral Higgs Yukawa

couplings are automatically flavor-diagonal.† Hence the SM possesses no

flavor-changing neutral currents (FCNCs) mediated by neutral Higgs boson

(or gauge boson) exchange at tree-level.
†Independently of the Higgs sector, the quark couplings to Z and γ are automatically flavor diagonal.

Flavor dependence only enters the quark couplings to the W± via the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, K ≡ V
U †
L V D

L .



Phenomenology of the SM Higgs Boson

Once the mass of the SM Higgs boson is fixed, its phenomenological profile is completely

determined. At tree level (where V = W± or Z),

Vertex Coupling

HV V 2m2
V /v

HHV V 2m2
V /v

2

HHH 3m2
H/v

HHHH 3m2
H/v2

Hff̄ mf/v

At one-loop, the Higgs boson can couple to gluons and photons. Only particles in the loop

with mass >∼ O(mH) contribute appreciably.

One-loop Vertex identity of particles in the loop

Hgg quarks

Hγγ W±, quarks and charged leptons

HZγ W±, quarks and charged leptons



Loop induced Higgs boson couplings

Higgs boson coupling to gluons

At one-loop, the Higgs boson couples to gluons via a loop of quarks:

H

g

g

q

q̄

This diagram leads to an effective Lagrangian

Leff
Hgg =

gαsNg

24πmW
HGa

µνG
µνa ,

where Ng is roughly the number of quarks heavier than H. More precisely,

Ng =
∑

i

F1/2(xi) , xi ≡
m2

qi

m2
H

,

where the loop function F1/2(x) → 1 for x ≫ 1.



Note that heavy quark loops do not decouple. Light quark loops are negligible,

as F1/2(x) → 3
2x

2 lnx for x ≪ 1.

The dominant mechanism for Higgs production at the LHC is gluon-gluon

fusion. At leading order,

dσ

dy
(pp → H +X) =

π2Γ(H → gg)

8m3
H

g(x+,m
2
H)g(x−,m

2
H) ,

where g(x,Q2) is the gluon distribution function at the scale Q2 and

x± ≡ mHe±y

√
s

, y = 1
2 ln

(
E + p||
E − p||

)
.

The rapidity y is defined in terms of the Higgs boson energy and longitudinal

momentum in the pp center-of-mass frame.

In practice, one needs a much more precise computation of the gluon fusion

cross-section (NLO, NNLO, . . .).



Higgs boson coupling to photons

At one-loop, the Higgs boson couples to photons via a loop of charged particles:

H

γ

γ

f

f̄

H

γ

γ

W+

W−

H

γ

γ

W+

W−

If charged scalars exist, they would contribute as well. These diagrams lead to an effective

Lagrangian

Leff
Hγγ =

gαNγ

12πmW

HFµνF
µν ,

where

Nγ =
∑

i

Ncie
2
iFj(xi) , xi ≡

m2
i

m2
H

.

In the sum over loop particles i of mass mi, Nci = 3 for quarks and 1 for color singlets,

ei is the electric charge in units of e and Fj(xi) is the loop function corresponding to ith

particle (with spin j). In the limit of x ≫ 1,

Fj(x) −→



















1/4 , j = 0 ,

1 , j = 1/2 ,

−21/4 , j = 1 .



Higgs production at hadron colliders

At hadron colliders, the relevant processes are

gg → H , H → γγ , V V (∗) ,

qq → qqV (∗)V (∗) → qqH, H → γγ, τ+τ−, V V (∗) ,

qq̄(′) → V (∗) → V H , H → bb̄ ,WW (∗) ,

gg, qq̄ → tt̄H, H → bb̄, γγ, WW (∗) .

where V = W or Z.

g

g

Ht t
t

q
1

q
2

H

q
3

q
4

W,Z

W,Z

q

q, ,q

H

Z,W

Z,W

q

q

t

H

t

g
t



Pre-LHC Expectations for the SM Higgs mass

1. Higgs mass bounds from searches at LEP and the Tevatron.

From 1989–2000, experiments at LEP searched for e+e− → Z → HZ (where one of the

Z-bosons is on-shell and one is off-shell). A bound was obtained on the SM Higgs mass,

mH > 114.4 GeVat 95% CL.

Tevatron data extended the Higgs mass exclusion region to 147 GeV < mH < 180 GeV

at 95% CL.
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2. Consequences of precision electroweak data.

Very precise tests of the Standard Model are possible given the large sample

of electroweak data from LEP, SLC and the Tevatron. Although the Higgs

boson mass (mH) is unknown, electroweak observables are sensitive to mH

through quantum corrections. For example, the W and Z masses are shifted

slightly due to:

W± W± Z0 Z0

H H

The mH dependence of the above radiative corrections is logarithmic.

Nevertheless, a global fit of many electroweak observables can determine

the preferred value of mH (assuming that the Standard Model is the correct

description of the data).



Measurement Fit |O
meas−O

fit
|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5)
0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0
41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA
0,l

0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723
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from the LEP, Tevatron and SLD Electroweak Working Groups
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As of May, 2012, the blue band, which does not employ the direct Higgs search limits,

corresponds to a upper bound of mH < 153 GeV at 95% CL. A similar result of the LEP

Electroweak Working group quotes mH < 152 GeV at 95% CL.



Could the Higgs Boson have been significantly heavier?

If new physics beyond the Standard Model (SM) exists, it almost certainly

couples to W and Z bosons. Then, there will be additional shifts in the

W and Z mass due to the appearance of new particles in loops. In many

cases, these effects can be parameterized in terms of two quantities, S and T

[Peskin and Takeuchi]:

αT ≡ Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

,

α

4s2Zc
2
Z

S ≡ Πnew
ZZ (m2

Z)−Πnew
ZZ (0)

m2
Z

−
(
c2Z − s2Z
cZsZ

)
Πnew

Zγ (m2
Z)

m2
Z

−
Πnew

γγ (m2
Z)

m2
Z

,

where s ≡ sin θW , c ≡ cos θW , and barred quantities are defined in the MS

scheme evaluated at mZ. The Πnew
VaVb

are the new physics contributions to

the one-loop Va—Vb vacuum polarization functions.
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In order to avoid the conclusion of a light Higgs boson, new physics beyond

the SM must be accompanied by a variety of new phenomena at an energy

scale between 100 GeV and 1 TeV.



A theoretical upper bound for the Higgs boson mass?

A Higgs boson with a mass greater than 200 GeV requires additional new physics beyond

the Standard Model. A SM-like Higgs boson with mass above 600 GeV is not yet excluded

by LHC data. But, how heavy can this Higgs boson be?

Let us return to the unitarity argument. Consider the scattering processW+
L (p1)W

−
L (p2) →

W+
L (p3)W

−
L (p4) at center-of-mass energies

√
s ≫ mW . Each contribution to the tree-

level amplitude is proportional to

[εL(p1) · εL(p2)] [εL(p3) · εL(p4)] ∼
s2

m4
W

,

after using the fact that the helicity-zero polarization vector at high energies behaves

as εµL(p) ∼ pµ/mW . Due to the magic of gauge invariance and the presence of

Higgs-exchange contributions, the bad high-energy behavior is removed, and one finds for s,

m2
H ≫ m2

W :

M = −
√
2GFm

2
H

(

s

s − m2
H

+
t

t − m2
H

)

.



Projecting out the J = 0 partial wave and taking s ≫ m2
H ,

MJ=0
= −GFm

2
H

4π
√
2

.

Imposing |Re MJ| ≤ 1
2 yields an upper bound on mh. The most stringent bound is

obtained by all considering other possible final states such as ZLZL, ZLH and HH. The

end result is:

m2
H ≤ 4π

√
2

3GF

≃ (700 GeV)2 .

However, in contrast to our previous analysis of the unitarity bound, the above computation

relies on the validity of a tree-level computation. That is, we are implicitly assuming that

perturbation theory is valid. If mH >∼ 700 GeV, then the Higgs-self coupling parameter,

λ = 2m2
H/v2 is becoming large and our perturbative analysis is becoming suspect.

Nevertheless, lattice studies suggest that an upper Higgs mass bound below 1 TeV remains

valid even in the strong Higgs self-coupling regime.



SM Higgs boson production cross-sections at the LHC
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Taken from the LHC Higgs Cross Section Working Group TWiki,

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsEuropeanStrategy



SM Higgs decays at the LHC for mH = 125 GeV

1. The rare decay H → γγ is the most promising signal.
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γ
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γ
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γ

γ
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2. The so-called golden channel, H → ZZ → ℓ+ℓ−ℓ+ℓ− (where one or both Z bosons

are off-shell) is a rare decay for mH = 125 GeV, but is nevertheless visible.

H
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ℓ−
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Z

3. The channel, H → WW ∗ → ℓ+νℓ−ν is also useful, although it does not provide a

good Higgs mass determination.
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SM Higgs branching ratios for mH = 125 GeV

Decay mode Branching fraction [%]

H → bb 57.5 ± 1.9

H → WW 21.6 ± 0.9

H → gg 8.56 ± 0.86

H → ττ 6.30 ± 0.36

H → cc 2.90 ± 0.35

H → ZZ 2.67 ± 0.11

H → γγ 0.228 ± 0.011

H → Zγ 0.155 ± 0.014

H → µµ 0.022 ± 0.001



The	  Discovery	  of	  
the	  Higgs	  boson	  
is	  announced	  on	  
July	  4,	  2012	  

The	  CERN	  update	  of	  the	  	  
search	  for	  the	  Higgs	  boson,	  
simulcast	  at	  ICHEP-‐2012	  
in	  Melbourne,	  Australia	  



The	  discovery	  of	  the	  new	  
boson	  is	  published	  in	  
Physics	  Lecers	  B.	  

ATLAS	  Collabora4on:	  
	  
Physics	  LeQers	  B716	  (2012)	  1—29	  
	  

CMS	  Collabora4on:	  	  
	  
Physics	  LeQers	  B716	  (2012)	  30—61	  



Invariant	  mass	  distribu4on	  of	  diphoton	  candidates	  for	  the	  combined	  7	  TeV	  and	  
8	  TeV	  data	  samples.	  The	  result	  of	  a	  fit	  to	  the	  data	  of	  the	  sum	  of	  a	  signal	  
component	  fixed	  to	  	  
mH	  =	  126.8	  GeV	  and	  a	  background	  component	  described	  by	  a	  fourth-‐order	  
Bernstein	  polynomial	  is	  superimposed.	  The	  bocom	  inset	  displays	  the	  residuals	  
of	  the	  data	  with	  respect	  to	  the	  ficed	  background	  component.	  	  Taken	  from	  
ATLAS-‐CONF-‐2013-‐012	  (March,	  2013).	  

The	  distribu4on	  of	  the	  four-‐lepton	  invariant	  mass	  for	  the	  selected	  
candidates,	  compared	  to	  the	  background	  expecta4on	  in	  the	  80	  to	  
170	  GeV	  mass	  range,	  for	  the	  combina4on	  of	  the	  7	  TeV	  	  
8	  TeV	  data.	  The	  signal	  expecta4on	  for	  a	  Higgs	  boson	  with	  mH=125	  
GeV	  is	  also	  shown.	  	  Taken	  from	  ATLAS-‐CONF-‐2013-‐013	  (March,	  
2013).	  	  	  

A	  boson	  is	  discovered	  at	  the	  LHC	  by	  the	  ATLAS	  Collabora4on	  	  



A	  boson	  is	  discovered	  at	  the	  LHC	  by	  the	  CMS	  Collabora4on	  	  

The	  diphoton	  invariant	  mass	  distribu4on	  	  
with	  each	  event	  weighted	  by	  the	  S/(S+B)	  	  
value	  of	  its	  category.	  The	  lines	  represent	  the	  	  
ficed	  background	  and	  signal,	  and	  the	  colored	  	  
bands	  represent	  the	  ±1	  and	  ±2	  standard	  devia4on	  	  
uncertain4es	  in	  the	  background	  es4mate.	  The	  	  
inset	  shows	  the	  central	  part	  of	  the	  unweighted	  	  
invariant	  mass	  distribu4on.	  Taken	  from	  
Physics	  Lecers	  B716	  (2012)	  30—61.	  

Distribu4on	  of	  the	  four-‐lepton	  reconstructed	  mass	  in	  full	  mass	  range	  for	  the	  
sum	  of	  the	  4e,	  4μ,	  and	  2e2μ	  channels.	  Points	  represent	  the	  data,	  shaded	  
histograms	  represent	  the	  background	  and	  unshaded	  histogram	  the	  signal	  
expecta4ons.	  The	  expected	  distribu4ons	  are	  presented	  as	  stacked	  
histograms.	  The	  measurements	  are	  presented	  for	  the	  sum	  of	  the	  data	  
collected	  at	  √s	  =	  7	  TeV	  and	  √s	  =	  8	  TeV.	  [70-‐180]	  GeV	  range	  -‐	  3	  GeV	  bin	  width.	  	  
Taken	  from	  
	  CMS-‐PAS-‐HIG-‐13-‐002	  (March,	  2013).	  





Observed Higgs properties vs. SM expectations

At the LHC, what is measured is the cross section for Higgs production times

the branching ratio into a particular final state. For the process i → H → f ,

define the signal strengths for the production, µi and for the decay, µf , by

µi ≡
σi

(σi)SM
, µf ≡ Bf

(Bf)SM
,

where i = gg fusion, vector boson fusion (VBF), WH, ZH and tt̄H

associated production, and Bf is the branching ratio for H to decay into

f = ZZ, WW , γγ, τ+τ− and bb̄ (and eventually, µ+µ− and Zγ).

The actual experimental observable is the signal strength µf
i for the combined

production and decay,

µf
i ≡ σi ·Bf

(σi)SM ·(Bf)SM
.

The combined ATLAS and CMS Higgs data from Run-I of the LHC has

recently been presented in arXiv:1606.02266.









Assumes	that	Higgs	decays	are	according	to	the	SM Assumes	that	Higgs	production	modes	are	according	to	the	SM




