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Recap from the first lecture:

N=1 SUSY algebra P,,, M,,, Qa, QY R

Py, P)] =0 ;
Py, Mpo] = —i(MupPo — NuoPp) ;

:Muv, Mpa] — ’i(nuvaa—ﬁvauo—ﬁuaMVp+77voMup)

[Py, Qo] = [Py, Q%] = 0,

(Mo, Qa] = =(0") Q. My, Q%) = —(6") £Q°,
{Qa, Q%) = 2(0") 3P,
{Qa, Qs} = {Q%.Q%} =0,
Qa, Bl = Qa, [Q% Rl =-Q%. Q% =id%+ 6°(c) S0

Qo = —i0q — (o), eﬁaﬂ
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Recap from the first lecture:

= 8-dimensional N=1 superspace X M — (x'ua 9047 H_d)

dS? = GyndXMdx™N

af3

GMN:(??/JI/7€ ,Edﬁ')

= Covariant derivatives ) M= (@u, Doza Dd)

D, = 0, +i(0“)agégau :

Do'é — _5d — i@ﬁ((f’u)gdau ,

" Non-zero torsion {D,, Ds} = —2i(0)4a0,
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Recap from the first lecture:

= Superspace integration [ dff = 1 and [ df = O.

fd@% = 0; 6(0) = 0 - Grassmann delta-function;

[dOf(0) = f1 = Lf(0)

Grassmann integration is equivalent to differentiation

d20 = —1d0°d0e, 5, d?0 = —%d0,dD 0, d*0 = d20d20

[d?0 02 = [d20 62 = [d*0 6202 =1
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Outline of Part II: SUSY QFT

= Basic consequences of superalgebra
= Superfields
® Chiral superfield
" Vector superfield. Super-gauge invariance

® Nonrenormalisation theorems
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Basic consequences of the superalgebra

1. Inspect,

[Pu, Qo] = [PMJQQ] =0

= [PPPu, Qo] = PP, Q% =0

P? is a quadratic Casimir operator of the super-Poincaré
algebra with eigenvalues m?.

That is, each irreducible representation of superalgebra
contains fields that are degenerate in mass.
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Basic consequences of the superalgebra

ii. Inspect, {Qa, Qd} — Q(Uu)adpu-

Since P, is an invertible operator, so is {Qa, Q).

Then, the action

{Qa, QY| B) = QaQ% B)+Q%Qa|B) = Qa| F)+Q%|F) = |B’)

implies one-to-one correspondence between fermionic and
bosonic states. Thus, each irreducible representation of
superalgebra contains equal number of fermionic and
bosonic states.
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Basic consequences of the superalgebra

iii. Take sum over spinor indices in
{Qa, Qa} = 2(c") Py

H =% Q1Q% + Q2Q5 + Q5Q1 + Q3Q2|,

Po

H|E) = B|E) .
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Basic consequences of the superalgebra

iiia. Total energy of an arbitrary supersymmetric system is

positive definite:
E >0

iiib The vacuum energy of a supersymmetric system is O,

Eyvac =20 [Qa|vac) - O]

iiic Supersymmetry is broken if

Fvac # 0 [Qalvac) # 0]
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Basic consequences of the superalgebra

= Compute 1-loop vacuum energy of a system of particles
with various spins S and corresponding masses mg:

Bvac = 5 () (~1)25(25 + 1) [ &3¢\ /@ + m3 =

L5 sy (-1 28+1) [ B3RP |1+ 55 -+ |
Strm$ = ¥ (6)(—1)?°(25+1) = 0 (no quart. div.)
Strmg = ¥ (5)(—1)?7(254+1)m% = 0 (no quadr. div.)
Strmé = ¥ (5)(—1)2%(254+1)m$ =0 (nolog. div.)
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Basic consequences of the superalgebra

: Compute 1-loop correction to the mass of a scalar field
(SUSY adjustment of couplings is assumed):

5’m%{ X Z(S)(—1)2(23+ UIdAfPEp%im% —

m2
S(5)(~D2@S + 1) [ d*ppb |1 - T5 |

Strm$ = ¥ (6)(—1)?°(25+1) = 0 (no quadr. div.)

Strmg = ¥ (y(—1)?°(254+1)mZ =0 (no log. div.)
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Basic consequences of the superalgebra

Cancellation of divergences follow automatically from
superalgebra! The above examples follow from the
general all-loop perturbative non-renormalization
theorem in quantum field theories with
supersymmetry.

Absence of quadratic divergences in scalar masses is
the main phenomenological motivation for
supersymmetry: supersymmetry may ensure stability of
the electroweak scale against quantum corrections (the
hierarchy problem)
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Superfields

: Superfield is a function of superspace coordinates. A
generic scalar superfield can be expanded in a form of
a Taylor series expansion with respect to
Grassmannian coordinates:

S(x,60,0) = o(x) + 6 + 00 () + 62 M(z) + 62N (x)
OotOA,(x) + 0°0 + 020 +60%0°D(x)

- This generic scalar superfield is in a reducible SUSY
representation. We may impose covariant constraints
to obtain irreducible superfields.
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Chiral supertield

- Consider, e.g., the following covariant condition:
DdS(ZC, 9, 9) = 0.
o The solution to the above constraint is known as the

(left-handed) chiral superfield.
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Chiral supertield

= To solve the constraint let us introduce new bosonic
coordinates:

yH = M + QM0

= (One verifies that

Ddy“ — (5@ -|— Z'Q/@(O'“)ﬁdau) (:c'”“ —|— i@a“g) =0

Exercise: Check this.
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Chiral supertield

- Therefore, the solution is:

S(x,0,0) = P(y,0)
- Taylor expansion of the chiral superfield reads:

O(y,0) = d(y) + V200 (y) + 0> F(y)
= ¢(z) + V200 (x) + 6*F ()

A 0 S
+100"00,¢(x) + ﬁe2ﬁu¢($)‘7“9 — 19292(’9“8%5(:1;)

Exercise: Obtain this expansion
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Chiral supertield

Supersymmetry transformations:

D (y,0) = (1eQ + i€Q) P(y,0) =
V2eh(x)+v20 (eF(z) + iotedup(x)) —in/202(0uyp(x))ote

Exercise: Verify this

56(x) = VIe(a)
5(x) = V2 (eF(2) + 0" &0, 0(z)
OF(z) = —iv2(0,4(x))ote
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Anti-chiral supertield

: In similar manner, we can define anti-chiral superfield
through the constraint:

D,S(x,0,0) =0

which posses the solution

S(x,0,0) = ®T(y,0) = d(y™T, )
where y1T = (y)T = z# — i0oHb.
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Chiral field Lagrangian - Superpotential

m Superpotential 11/ () [W(PdT)] is a holomorphic
function of a chiral (anti-chiral) superfields

- Superpotential itself is a (composite) chiral (anti-chiral)
superfield:
_ OW _

: Consider, / de? W = W|,2 + total derivatives

®(y,0) = d(y) + V20 (y) + 0 F(y)

= ¢(x) + V20(z) + 02 F ()
. i S
+ 00" 00,¢(x) + 592(%1#(30)0“0 — Zﬁzﬁzﬁuﬁ“(b(x)
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Chiral field Lagrangian - Superpotential

g Since F-terms W (®)|,2 , W) ’ 52 transform as total
derivatives under SUSY transformations,

/d92 W (®) +/d92 W(®T)

is SUSY invariant Lagrangian density!
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Chiral field Lagrangian — Kahler potential

: Consider product of chiral and anti-chiral superfields,
O P
which is a generic scalar superfield with the reality condition
imposed.

S(x,0,0) = ¢(x) + 00, (1) + 00 () + 0*M(z) + 0°N(x)
Ot OA, (1) + 0200 (1) + 020\, () + 620 D(x)

. SUSY transformation of D-term

0D = (z’eQ -+ ZEQ) S|92§2 — total derivative
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Chiral field Lagrangian - Kahler potential

- Hence,
/ do*dh* K(®T o)
is SUSY invariant Lagrangian density!

= K (<I>+CI)) Kahler potential
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Wess-Zumino model

- A chiral superfield, which contains a complex scalar (2
dofs both on-shell and off-shell), Majorana fermion (2
dofs on-shell, 4-dofs off-shell), a complex auxiliary field
(O dof on-shell, 2 dofs off-shell)

Ly gz = / do?dh* &P + / do* W (®) + h.c.

A
W(®) = %@2 + 50

Exercise: Express WZ Lagrangian in component form

J. Wess and B. Zumino, “Supergauge transformations in four
Dimensions”, Nuclear Physics B 70 (1974) 39
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Vector (real) supertfield

S(x,0,0) = ¢(x) + 0 (1) + 0o () + 0° M () + 67N ()
OctOA, (x) + 020 () + 0202 (2) + 0°0°D(x)

* Reality condition: §7T (3;7 (9’ 6’) — S(x’ 6’7 (9)

= Solution is:

V(x,0,0) = ¢(x) + 0 + 0 + 0°M(x) + 0°M*(x)
+ 00"0A, (z) + 020X + 029X\ + 6%0° D(x)
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Vector (real) supertield

: Let’s use the vector superfield to describe a SUSY
gauge theory, e.g. super-QED

. Supergauge transformations
V=V +i(AT —A)

- Arbitrary chiral superfield —
A = a(z) + V20¢(x) + 6° f ()

o i .
+100"00,,a(x) + 5928ﬂf(x)0“9 — 19292(9“8”04(33)

Standard gauge transformations
/ %
A=A, + 0u(a+a”)
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Vector (real) supertield

= We can fix a(z), £(x), f(x)toremove ¢(x), (x), M(x)

(Wess-Zumino gauge)

Vivz(x,0,0) = 00"0A,(x) + 020X + 020X + 020 D(x)

= Note, in the Wess-Zumino gauge SUSY is not manifest.

= We can generalize this construction to super-Yang-Mills:

V — VT

Melbourne, June A. Kobakhidze (U. of Sydney) 26
2016



Strength tensor supertield

1 _ _ 1
W, = —ZD2DQV, W, = —ZDQDQV

Exercise: Prove that these are chiral and anti-chiral
superfields, respectively.

* In the WZ gauge:

Weo = Ao + 0,D + %(aﬂa”e)aFW + 0% (0", \)a

Melbourne, June A. Kobakhidze (U. of Sydney) 27
2016



Super-QED

4

1
LsoED = / do® ~WW, + h.c.

Exercise: Rewrite this Lagrangian in component form.

- Matter couplings:
/ g\ / —igAT
P =P, P = PTe
- Gauge and SUSY invariant ‘kinetic’ term
/ d0?do? dTedV ®
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Nonrenormalisation theorems

M.T. Grisaru, W. Siegel and M. Rocek, ~"Improved Methods for
Supergraphs,” Nucl. Phys. B159 (1979) 429

L=K][dTel" D]
+ W(®)|g2 + hec.
+ f(@)W*Walge + hec.

‘92§2

=Kahler potential K [<I>+eg VCID} receives corrections order
by order in perturbation theory

*Only 1-loop corrections for  f(P)

: W((I)1)s not renormalised in the perturbation theory!
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Nonrenormalisation theorems

N. Seiberg, "Naturalness versus supersymmetric
nonrenormalization theorems,” Phys. Lett. B318 (1993) 469

- Consider just Wess-Zumino model:
m A

- R-symmetry and U(1) charges:

field [ @ | m | A
ua) |1 | —=2]-3
Ulr | 1| 0 | =1
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Nonrenormalisation theorems

N. Seiberg, "Naturalness versus supersymmetric
nonrenormalization theorems,” Phys. Lett. B318 (1993) 469

- Quantum corrected superpotential:
AP _
Wesr(®) = md*f (E) = z;()cnknml "
n_

= ConsideA - 0 —n >0
D Considénn — 0 — n < 1

c Hence,Weff((I)) p— W(@)
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Summary of Part II

- Basic consequences of SUSY algebra

- Chiral superfield. Superpotential and Kahler potential.
Wess-Zumino model

- Vector superfield. Wess-Zumino gauge. Super-QED and
matter coupling

m Nonrenormalisation theorems
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