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Recap from the first lecture:

N=1 SUSY algebra P,,, M,,, Qa, QY R

Py, P)] =0 ;
Py, Mpo] = —i(MupPo — NuoPp) ;

:Muv, Mpa] — ’i(nuvaa—ﬁvauo—ﬁuaMVp+77voMup)

[Py, Qo] = [Py, Q%] = 0,

(Mo, Qa] = =(0") Q. My, Q%) = —(6") £Q°,
{Qa, Q%) = 2(0") 3P,
{Qa, Qs} = {Q%.Q%} =0,
Qa, Bl = Qa, [Q% Rl =-Q%. Q% =id%+ 6°(c) S0

Qo = —i0q — (o), eﬁaﬂ
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Recap from the first lecture:

= 8-dimensional N=1 superspace X M — (x'ua 9047 H_d)

dS? = GyndXMdx™N

af3

GMN:(??/JI/7€ ,Edﬁ')

= Covariant derivatives ) M= (@u, Doza Dd)

D, = 0, +i(0“)agégau :

Do'é — _5d — i@ﬁ((f’u)gdau ,

" Non-zero torsion {D,, Ds} = —2i(0)4a0,
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Recap from the first lecture:

= Superspace integration [ dff = 1 and [ df = O.

fd@% = 0; 6(0) = 0 - Grassmann delta-function;

[dOf(0) = f1 = Lf(0)

Grassmann integration is equivalent to differentiation

d20 = —1d0°d0e, 5, d?0 = —%d0,dD 0, d*0 = d20d20

[d?0 02 = [d20 62 = [d*0 6202 =1
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Outline of Part II: SUSY QFT

= Basic consequences of superalgebra
= Superfields
® Chiral superfield
" Vector superfield. Super-gauge invariance

® Nonrenormalisation theorems
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Basic consequences of the superalgebra

1. Inspect,

[Pu, Qo] = [PMJQQ] =0

= [PPPu, Qo] = PP, Q% =0

P? is a quadratic Casimir operator of the super-Poincaré
algebra with eigenvalues m?.

That is, each irreducible representation of superalgebra
contains fields that are degenerate in mass.

Melbourne, June A. Kobakhidze (U. of Sydney)
2016



Basic consequences of the superalgebra

ii. Inspect, {Qa, Qd} — Q(Uu)adpu-

Since P, is an invertible operator, so is {Qa, Q).

Then, the action

{Qa, QY| B) = QaQ% B)+Q%Qa|B) = Qa| F)+Q%|F) = |B’)

implies one-to-one correspondence between fermionic and
bosonic states. Thus, each irreducible representation of
superalgebra contains equal number of fermionic and
bosonic states.
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Basic consequences of the superalgebra

iii. Take sum over spinor indices in
{Qa, Qa} = 2(c") Py

H =% Q1Q% + Q2Q5 + Q5Q1 + Q3Q2|,

Po

H|E) = B|E) .
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Basic consequences of the superalgebra

iiia. Total energy of an arbitrary supersymmetric system is

positive definite:
E >0

iiib The vacuum energy of a supersymmetric system is O,

Eyvac =20 [Qa|vac) - O]

iiic Supersymmetry is broken if

Fvac # 0 [Qalvac) # 0]
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Basic consequences of the superalgebra

= Compute 1-loop vacuum energy of a system of particles
with various spins S and corresponding masses mg:

Bvac = 5 () (~1)25(25 + 1) [ &3¢\ /@ + m3 =

L5 sy (-1 28+1) [ B3RP |1+ 55 -+ |
Strm$ = ¥ (6)(—1)?°(25+1) = 0 (no quart. div.)
Strmg = ¥ (5)(—1)?7(254+1)m% = 0 (no quadr. div.)
Strmé = ¥ (5)(—1)2%(254+1)m$ =0 (nolog. div.)
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Basic consequences of the superalgebra

: Compute 1-loop correction to the mass of a scalar field
(SUSY adjustment of couplings is assumed):

5’m%{ X Z(S)(—1)2(23+ UIdAfPEp%im% —

m2
S(5)(~D2@S + 1) [ d*ppb |1 - T5 |

Strm$ = ¥ (6)(—1)?°(25+1) = 0 (no quadr. div.)

Strmg = ¥ (y(—1)?°(254+1)mZ =0 (no log. div.)
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Basic consequences of the superalgebra

Cancellation of divergences follow automatically from
superalgebra! The above examples follow from the
general all-loop perturbative non-renormalization
theorem in quantum field theories with
supersymmetry.

Absence of quadratic divergences in scalar masses is
the main phenomenological motivation for
supersymmetry: supersymmetry may ensure stability of
the electroweak scale against quantum corrections (the
hierarchy problem)
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Superfields

: Superfield is a function of superspace coordinates. A
generic scalar superfield can be expanded in a form of
a Taylor series expansion with respect to
Grassmannian coordinates:

S(x,60,0) = o(x) + 6 + 00 () + 62 M(z) + 62N (x)
OotOA,(x) + 0°0 + 020 +60%0°D(x)

- This generic scalar superfield is in a reducible SUSY
representation. We may impose covariant constraints
to obtain irreducible superfields.
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Chiral supertield

- Consider, e.g., the following covariant condition:
DdS(ZC, 9, 9) = 0.
o The solution to the above constraint is known as the

(left-handed) chiral superfield.
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Chiral supertield

= To solve the constraint let us introduce new bosonic
coordinates:

yH = M + QM0

= (One verifies that

Ddy“ — (5@ -|— Z'Q/@(O'“)ﬁdau) (:c'”“ —|— i@a“g) =0

Exercise: Check this.
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Chiral supertield

- Therefore, the solution is:

S(x,0,0) = P(y,0)
- Taylor expansion of the chiral superfield reads:

O(y,0) = d(y) + V200 (y) + 0> F(y)
= ¢(z) + V200 (x) + 6*F ()

A 0 S
+100"00,¢(x) + ﬁe2ﬁu¢($)‘7“9 — 19292(’9“8%5(:1;)

Exercise: Obtain this expansion
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Chiral supertield

Supersymmetry transformations:

D (y,0) = (1eQ + i€Q) P(y,0) =
V2eh(x)+v20 (eF(z) + iotedup(x)) —in/202(0uyp(x))ote

Exercise: Verify this

56(x) = VIe(a)
5(x) = V2 (eF(2) + 0" &0, 0(z)
OF(z) = —iv2(0,4(x))ote
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Anti-chiral supertield

: In similar manner, we can define anti-chiral superfield
through the constraint:

D,S(x,0,0) =0

which posses the solution

S(x,0,0) = ®T(y,0) = d(y™T, )
where y1T = (y)T = z# — i0oHb.
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Chiral field Lagrangian - Superpotential

m Superpotential 11/ () [W(PdT)] is a holomorphic
function of a chiral (anti-chiral) superfields

- Superpotential itself is a (composite) chiral (anti-chiral)
superfield:
_ OW _

: Consider, / de? W = W|,2 + total derivatives

®(y,0) = d(y) + V20 (y) + 0 F(y)

= ¢(x) + V20(z) + 02 F ()
. i S
+ 00" 00,¢(x) + 592(%1#(30)0“0 — Zﬁzﬁzﬁuﬁ“(b(x)
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Chiral field Lagrangian - Superpotential

g Since F-terms W (®)|,2 , W) ’ 52 transform as total
derivatives under SUSY transformations,

/d92 W (®) +/d92 W(®T)

is SUSY invariant Lagrangian density!
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Chiral field Lagrangian — Kahler potential

: Consider product of chiral and anti-chiral superfields,
O P
which is a generic scalar superfield with the reality condition
imposed.

S(x,0,0) = ¢(x) + 00, (1) + 00 () + 0*M(z) + 0°N(x)
Ot OA, (1) + 0200 (1) + 020\, () + 620 D(x)

. SUSY transformation of D-term

0D = (z’eQ -+ ZEQ) S|92§2 — total derivative
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Chiral field Lagrangian - Kahler potential

- Hence,
/ do*dh* K(®T o)
is SUSY invariant Lagrangian density!

= K (<I>+CI)) Kahler potential
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Wess-Zumino model

- A chiral superfield, which contains a complex scalar (2
dofs both on-shell and off-shell), Majorana fermion (2
dofs on-shell, 4-dofs off-shell), a complex auxiliary field
(O dof on-shell, 2 dofs off-shell)

Ly gz = / do?dh* &P + / do* W (®) + h.c.

A
W(®) = %@2 + 50

Exercise: Express WZ Lagrangian in component form

J. Wess and B. Zumino, “Supergauge transformations in four
Dimensions”, Nuclear Physics B 70 (1974) 39
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Vector (real) supertfield

S(x,0,0) = ¢(x) + 0 (1) + 0o () + 0° M () + 67N ()
OctOA, (x) + 020 () + 0202 (2) + 0°0°D(x)

* Reality condition: §7T (3;7 (9’ 6’) — S(x’ 6’7 (9)

= Solution is:

V(x,0,0) = ¢(x) + 0 + 0 + 0°M(x) + 0°M*(x)
+ 00"0A, (z) + 020X + 029X\ + 6%0° D(x)
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Vector (real) supertield

: Let’s use the vector superfield to describe a SUSY
gauge theory, e.g. super-QED

. Supergauge transformations
V=V +i(AT —A)

- Arbitrary chiral superfield —
A = a(z) + V20¢(x) + 6° f ()

o i .
+100"00,,a(x) + 5928ﬂf(x)0“9 — 19292(9“8”04(33)

Standard gauge transformations
/ %
A=A, + 0u(a+a”)
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Vector (real) supertield

= We can fix a(z), £(x), f(x)toremove ¢(x), (x), M(x)

(Wess-Zumino gauge)

Vivz(x,0,0) = 00"0A,(x) + 020X + 020X + 020 D(x)

= Note, in the Wess-Zumino gauge SUSY is not manifest.

= We can generalize this construction to super-Yang-Mills:

V — VT

Melbourne, June A. Kobakhidze (U. of Sydney) 26
2016



Strength tensor supertield

1 _ _ 1
W, = —ZD2DQV, W, = —ZDQDQV

Exercise: Prove that these are chiral and anti-chiral
superfields, respectively.

* In the WZ gauge:

Weo = Ao + 0,D + %(aﬂa”e)aFW + 0% (0", \)a

Melbourne, June A. Kobakhidze (U. of Sydney) 27
2016



Super-QED

4

1
LsoED = / do® ~WW, + h.c.

Exercise: Rewrite this Lagrangian in component form.

- Matter couplings:
/ g\ / —igAT
P =P, P = PTe
- Gauge and SUSY invariant ‘kinetic’ term
/ d0?do? dTedV ®
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Nonrenormalisation theorems

M.T. Grisaru, W. Siegel and M. Rocek, ~"Improved Methods for
Supergraphs,” Nucl. Phys. B159 (1979) 429

L=K][dTel" D]
+ W(®)|g2 + hec.
+ f(@)W*Walge + hec.

‘92§2

=Kahler potential K [<I>+eg VCID} receives corrections order
by order in perturbation theory

*Only 1-loop corrections for  f(P)

: W((I)1)s not renormalised in the perturbation theory!
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Nonrenormalisation theorems

N. Seiberg, "Naturalness versus supersymmetric
nonrenormalization theorems,” Phys. Lett. B318 (1993) 469

- Consider just Wess-Zumino model:
m A

- R-symmetry and U(1) charges:

field [ @ | m | A
ua) |1 | —=2]-3
Ulr | 1| 0 | =1
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Nonrenormalisation theorems

N. Seiberg, "Naturalness versus supersymmetric
nonrenormalization theorems,” Phys. Lett. B318 (1993) 469

- Quantum corrected superpotential:
AP _
Wesr(®) = md*f (E) = z;()cnknml "
n_

= ConsideA - 0 —n >0
D Considénn — 0 — n < 1

c Hence,Weff((I)) p— W(@)
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Summary of Part II

- Basic consequences of SUSY algebra

- Chiral superfield. Superpotential and Kahler potential.
Wess-Zumino model

- Vector superfield. Wess-Zumino gauge. Super-QED and
matter coupling

m Nonrenormalisation theorems
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