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Introductory comments

Introductory comments

@ November 1915 Einstein's general theory of relativity (GR)

o February 2016 Discovery of gravitational waves
Final confirmation of GR (100 years later)

@ Since the creation of GR, Einstein was confident in the correctness
of his theory. However he was not completely satisfied with it. Why?

@ The Einstein field equations are

Ruz/ - %guz/R - 8::T746Tyu .
Here the left-hand side is purely geometric. The right-hand side is
proportional to the energy-momentum tensor of matter, which is not
geometric. While the geometry of spacetime is determined by the
Einstein equations, the theory does not predict the structure of its
matter sector.
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Introductory comments

Introductory comments

Action functional describing the dynamics of the gravitational field
coupled to matter fields ¢':

S = 5GR+SM7
1 . .
SGr = 252 d*xv/=gR, Su= _/d4XV_g Lu(#'s Vi)

with k2 = 81 Gc™*.

Sar and Sy are the gravitational and matter actions, respectively.
The dynamical equations are:

(i) the matter equations of motion, §S/d¢’ = 0; and

(i) the Einstein field equations with

L2 oS5
" V-gagn

Einstein was concerned with the fact that the matter Lagrangian, Ly, is
essentially arbitrary!
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Introductory comments

Introductory comments

@ Typical reasoning by Einstein:
“Ever since the formulation of the general relativity theory in 1915,
it has been the persistent effort of theoreticians to reduce the laws
of the gravitational and electromagnetic fields to a single basis. It
could not be believed that these fields correspond to two spatial
structures which have no conceptual relation to each other.”
Science 74, 438 (1931)

@ Supergravity is the gauge theory of supersymmetry.
Local supersymmetry is a unique symmetry principle to bind together
the gravitational field (spin 2) and matter fields of spin s < 2.

@ It is known that the Kaluza-Klein approach also makes it possible to
unify the gravitational field with Yang-Mills and scalar fields.
However, it is local supersymmetry which allows one to unite the
gravitational field with fermionic fields into a single multiplet.

o If we believe in unity of forces in the universe, local supersymmetry
should play a fundamental role, as a spontaneously broken symmetry.
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Introductory comments

Brief history of A/ = 1 supergravity in four dimensions

@ On-shell supergravity
D. Freedman, P. van Nieuwenhuizen & S. Ferrara (1976)
S. Deser & B. Zumino (1976)

@ Super-Higgs effect (spontaneously broken supergravity)
D. Volkov & V. Soroka (1973)
S. Deser & B. Zumino (1977)

@ Non-minimal off-shell supergravity
P. Breitenlohner (1977)

unpublished W. Siegel (1977)
@ Old minimal off-shell supergravity

unpublished W. Siegel (1977)

Phys. Lett. B 74, 51 J. Wess & B. Zumino (1978)

Phys. Lett. B 74, 330 K. Stelle & P. West (1978)

Phys. Lett. B 74, 333 S. Ferrara & P. van Nieuwenhuizen (1978)

@ New minimal off-shell supergravity
M. Sohnius & P. West (1981)
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Introductory comments

Textbooks on N = 1 supergravity in four dimensions

Superspace and component approaches:

@ J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton
University Press, Princeton, 1983 (Second Edition: 1992).

e S. J. Gates Jr.,, M. T. Grisaru, M. Ro¢ek and W. Siegel, Superspace,
or One Thousand and One Lessons in Supersymmetry,
Benjamin/Cummings (Reading, MA), 1983, hep-th/0108200.

@ |. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of
Supersymmetry and Supergravity or a Walk Through Superspace,
IOP, Bristol, 1995 (Revised Edition: 1998).

Purely component approach:

@ D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge
University Press, Cambridge, 2012.
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Weyl-invariant formulation for gravity

Weyl-invariant formulation for gravity

There exist three formulations for gravity in d dimensions:

@ Metric formulation;
@ Vielbein formulation;
@ Weyl-invariant formulation.
| briefly recall the metric and vielbein approaches and then concentrate in
more detail of the Weyl-invariant formulation.
S. Deser (1970)
P. Dirac (1973)
The latter formulation is a natural starting point to introduce
supergravity as a generalisation of gravity.
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Weyl-invariant formulation for gravity

Metric and vielbein formulations for gravity

Metric formulation

Gauge field: metric gmn(x)
Gauge transformation: 0gmn = Vimén + Vilm
& = £M(x)0, vector field generating an infinitesimal diffeomorphism.

Vielbein formulation

Gauge field: vielbein e,?(x), e:=det(en?) #0
Metric is a composite field 8mn = em"’enbnab
Gauge transformation: OV, = [€PV, + %Kbchc, V.l
Gauge parameters: €2(x) = £Men?(x) and K22(x) = —Kb2(x)
Covariant derivatives (Mp. Lorentz generators Mpc V2 =62V — §2Vp)
— — ,m 1 bc _ 1 cd
Va=e+w,=¢ Om + 2(-‘Ja Mpc s [vaavb] D) 26" My

e,™ inverse vielbein, e,;™en? = 8,0

w,¢ torsion-free Lorentz connection Wabe = %(Cbca + Cach — Cabe)
[ea, en] = Capec Cap° anholonomy coefficients
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Weyl-invariant formulation for gravity

Weyl transformations

Weyl transformations
The torsion-free constraint

Tap®=0 <= [V, Vp]=TaVe+ %RadeMcd = % 5% Meca
is invariant under Weyl (local scale) transformations
Vo V= (Vo + (V20)Mea) |
with the parameter o(x) being completely arbitrary.
e —e’e" | em® > e %en?, Emn — € 27 gmn

Weyl transformations are gauge symmetries of conformal gravity, which
in the d = 4 case is described by action (Cabed is the Weyl tensor)

4 bed 2
Scont = /d x e C*“ Cyped » Cabed — € 7 Cabed

Einstein gravity possesses no Weyl invariance.
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Weyl-invariant formulation for gravity

Weyl-invariant formulation for Einstein's gravity

Gauge fields: vielbein ep?(x) , e :=det(e,?) #0
& conformal compensator p(x) , @ #0
Gauge transformations (K := £°V,, + 2K M)

1
0V = [€°Vb + 5 KP Mo, V] + 0Va + (V20 My = (3 +05)Va .

b = Vo + = (d 2)op = (0k + 65 )¢

Gauge-invariant gravity action

I 2 1d-2,, 2d/(d—2)
S_E/d xe(v PVap+ 3R = A¢ )

Imposing a Weyl gauge condition ¢ = % % = const reduces S to the
Einstein-Hilbert action with a cosmological term

1 d d
5:2—#/dxeR—/\/dxe
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Weyl-invariant formulation for gravity

Conformal isometries

Conformal Killing vector fields
A vector field £ = M0, = £%€,, with e, := €,"0y,, is conformal Killing if
there exist local Lorentz, Kb<[¢], and Weyl, o[€], parameters such that

(5 + 8,)Vs = [€94 + S K [EIMie, V] + 0[]V, + (V2ole]) Moo = 0
A short calculation gives
K™ = 2(VP6 - V%), ole] = Ve
Conformal Killing equation
Vg + VT = o]
Conformal Killing vector fields for Minkowski space:
£ = b7+ KpxP + Ax* + Fx% — 2f,xPx? | Kap = —Kpa
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Weyl-invariant formulation for gravity

Conformal isometries

o Lie algebra of conformal Killing vector fields

o Conformally related spacetimes (V,, ¢) and (V,, 9)
V, = e (va + (pr)Mba> , 7 =e2ld-ry,

have the same conformal Killing vector fields £ = &%¢e, = g"’éa.

The parameters K<[¢] and o[£] are related to K[¢] and o[¢] as
follows:

KIE = 895+ SK[EMeg = KIE]
old] = olg] - ¢p

@ Conformal field theories
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Weyl-invariant formulation for gravity

Isometries

Killing vector fields
Let £ = £%¢e, be a conformal Killing vector,

1
(5 + 80)Va = [€2W5 + SK*[€]Mse, Vo] + olE]Va + (V2ole)) My 0.
It is called Killing if it leaves the compensator invariant,
1
(0 +d0)p = Ep + 5(d = 2)o[{]p = 0.

These Killing equations are Weyl invariant in the following sense:
Given a conformally related spacetime (V,, @)

Vo= o (Vot (Vo0)My,) , §=edld i,

the above Killing equations have the same functional form when
rewritten in terms of (V,, @), in particular

6+ 3(d —2)olélF=0.
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Weyl-invariant formulation for gravity

Isometries

Because of Weyl invariance, we can work with a conformally related
spacetime such that

p=1
Then the Killing equations turn into

(€29, + KMo V] =0, olg] =0
Standard Killing equation
VP 4+ VPP =0
Killing vector fields for Minkowski space:
€ =b+Kpx", Kup=—Kp

o Lie algebra of Killing vector fields

o Field theories in curved space with symmetry group including the
spacetime isometry group.
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Weyl-invariant formulation for gravity

Two-component spinor notation and conventions

The Minkowski metric is chosen to be 7,, = diag (=1, +1,+1,+1).
For two-component undotted spinors, such as 1, and ¥, their indices
are raised and lowered by the rule:
wazeaﬁ¢ﬂ s ¢a:5a6¢5 s
where %7 and e,43 are 2 x 2 antisymmetric matrices normalised as
612 = &1 = 1.

The same conventions are used for dotted spinors (zza and 1/_)0‘)
YA =Y e, Y=Y, DX =N, PP =07
Relativistic Pauli matrices 0, = ((aa)aé) and &, = ((aa)dﬁ)
05 = (12,0) , Ga = (12, —0)
Lorentz spinor generators ., = ((aab)a5> and G.p = ((&ab)é‘ﬂ-):
1 1

Oab = *Z(O—aa—b - Uba—a) 5 5—ab = *Z(a—ao—b - 5—b0—a)
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Minkowski superspace and chiral superspace

Minkowski superspace and chiral superspace

Minkowski superspace M*/* is parametrised by ‘real’ coordinates
A = (x7,60%,04) , x? = x7 | o = 6% .
It may be embedded in complex superspace C*2 (chiral superspace)
= (y?,0%
as real surface
y? — 77 = 2000 = 2iH3(0,0) <= y?=x"+i00%0 .
Supersymmetry transformation on M**
x'? = x? —iec?0 + 100 , 0'* = 0% 4 € | 0, =04 + &
is equivalent to a holomorphic transformation on C*2
y'? = y? + 21007 + ieo%E | 0’ = 0% + €~ .

Every Poincaré transformation (translation and Lorentz one) on M** is
also equivalent to a holomorphic transformation on C*?2,
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Minkowski superspace and chiral superspace

Family of superspaces M**(H)

Curved superspace M*4(H), _
parametrised by real coordinates z* = (x?,6%,0,),
is defined by its embedding in C*12:

_ —~ 1
y? — y? =2i00%0 = 2iH?(x,0,0) , x? = E(ya +y7),
for some real vector superfield H?(x, 6, 0).
What is special about Minkowski superspace M** = M*4(H,) ?

It is the only super-Poincaré invariant superspace in the family of all
supermanifolds M**4(H).
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Minkowski superspace and chiral superspace

Family of superspaces { M*4(#)} and uniqueness of M*4

@ Spacetime translations
y/a:ya+ba’ 9/&2904
Condition of invariance

y/a _ )—//a — 2i’Ha(X/, 9/7 é/) — ya _ }—/a _ QiHa(X,e, é)
= H(x+b,0,0) = H(x,0,0) = H*=H0,0)

@ Lorentz transformations
H?(0,0) = k%0

for some constant k.

@ Supersymmetry transformations

H2(0,6) = 60°F = H3
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Minkowski superspace and chiral superspace

Superconformal transformations

Consider an infinitesimal holomorphic transformation on C*12
y?=y?+X(y,0), 0 = 0%+ \*(y,0)

What are the most general infinitesimal holomorphic transformations on
C*12 which leave Minkowski superspace, M**(H,), invariant ?

yla _ )—//a — 2i0laa§/
The answer is: superconformal transformations
N = b+ K2y? + Ay? + £y — 2f,yPy? + 2i00%E — 20075 ,ny" |
1
Y = € — K308 + (B —iQ)07 + Foy (0opie)™ + 2100 — i(7155) "y "

Kap = —Kps «— Kop = Kpo Lorentz transformation;
A dilatation; Q R-symmetry transformation (or U(1) chiral rotation);
2 special conformal transformation; 7 S-supersymmetry transformation.
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Minkowski superspace and chiral superspace

Converting vector indices into spinor ones and vice versa

Vo= Voo = (0MacVa,  Va=—2(52)""Vaa
Second-rank antisymmetric tensor K,, = —Kjp, is equivalent to
Kaass = (07)ai(0%)55Kap = 22ap Ky + 26 055Kap
where

1 ~a
Kap = 5(07)apKap = Koo, Kag = 5(67)45Ka = Kp,

If K,p is real, then
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

We turn to introducing a supersymmetric generalisation of
(i) the gravitational field described by e, = €,™(x)9pm; and
(ii) its gauge transformation

Ses = 06, (X)0m = [€, ea] + K.P(x)ep + o (x)e, E=&"(x)0m

which corresponds to conformal gravity.
Such a geometric formalism was developed by
V. Ogievetsky & E. Sokatchev (1978)
Equivalent, but less geometric approach, was developed by
unpublished W. Siegel (1977)
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Group of holomorphic coordinate transformations on C*/2

a(y’ 9’))
Ty =1f"(y,0), 0°—0=1y,0), Bef<’ 0
Yy (v,6) (v,0) 0.0 )7

Every holomorphic transformation on C*? acts on the space of
supermanifolds { M**(#H)}

M4|4(H) N M4|4(HI)

In other words, the superfield H™, which defines the curved superspace
M?*4(H), transforms under the action of the group.
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Gravitational superfield and conformal supergrav

Superdeterminant = Berezinian

Nonsingular ever (p, ) x (p, q) supermatrix

A B
F—(C D>7 detA#£0, detD#0

Here A and D are bosonic p X p and g X g matrices, respectively; B and
C are fermionic p X g and g X p matrices, respectively.

sdetF = BerF := det(A— BD™1C)det™'D
= det Adet™'(D — CA™!B)

Change of variables on superspace RPI9 parametrised by coordinates
zA = (x2,60%), where x? are bosonic and §* fermionic coordinates

A PA = A
/dpxldqﬂ' L(Z) = /dpxquBer (86(()1:2/))> L(z’(z))
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Infinitesimal holomorphic coordinate transformation on C*2

ym =y =ym = A"(y,0) , 0% — 0" = 0% — X*(y,0)

leads to the following coordinate transformation on M*4(H):

XM — XM = x™ — %/\m(x +iM,0) — %S\m(x —iH,0)
6% = 6" — 6% — \*(x +iH,0) .

For H'™(x',0',0") = —%(y"" —7'™) we get

W0, F) = H™(x,0,0) + %{)\’"(x M, 0) — A (x — iH, é)}

Now we can read off the gauge transformation

SH™ := H'™(x,0,0) — H™(x, 0, 0)

Two introductory lectures on supergravity Sergei M. Kuzenko



Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Nonlinear gauge transformation law of H"™
i - 1 - —. _
SH™ — %(A’” A (5(/\" F A, + A + Aaad) H™(x,0,d) ,
A"(x,0,0) = \"(x +iH,0) and \"(x,0,0) = A" (x — iH, ).
Some component fields of H™ can be gauged away. Indeed
H™(x,0,0) = h™(x) + 0%T(x) + 05X (x) + 62S™(x) + 8257 (x)
+00°0e,™(x) + 120U ™ (x) — 820, W ™Y (x) + 6202 A™(x) .
The gauge transformation law of H™ can be written as
SH™(x,0,0) = %)\m(xﬂ) - %xm(x,é) + O(H)
The superfield gauge parameters are
A™(x,8) = a™(x) + 0% (x) + 6757 (x) |
X (x,0) = € (x) +ws(x)0" + 6% (x) ,

where all bosonic gauge parameters a™, s and w“g are complex.
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Wess-Zumino gauge
H™(x,0,0) = 05°0e,"(x) + 1020V ™(x) — 1020, V™ (x) + 0202 A™(x)
Residual gauge freedom
AT(x,0) = £™(x) + 2i007E(x)e,™(x) — 20%E(x)¥™(x) ,
A¥(x,0) = e*(x) + %[O’(X) +1Q(x)]0” + K% 5(x)0° + 6°n*(x) ,
Kas = Ksa

The bosonic parameters £™, o and 2 are real.

&M general coordinate transformation;

Ko local Lorentz transformation;

o and © Weyl and local R-symmetry transformations, respectively;
€ local supersymmetry transformation;

n“ local S-supersymmetry transformation.
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

General coordinate transformation

dee;™ = £"0,6," — €,"0,8" = dees =06,"(X)0m =[€, &) ,
BT = EPOUT W DLEM | AT = EN, AT — ATD,EM

Each of the fields e,™, W7 and A™ transforms as a world vector, with
respect to the index m, under the general coordinate transformations.
The index ‘m' is to be interpreted as a curved-space index.

Local Lorentz transformation
oke," = K.bep™ | SkWo™ = Ko WG

We see that d¢e,™ and dxe, coincide with the transformation laws of
the inverse vielbein. Since in Minkowski superspace

Hg’(x, 9, é) = 90’39_(53'" - (O)ea’" = (5am s

we interpret the field e,™(x) as the inverse vielbein, det(e,™) # 0.
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Field redefinition AT = AT 4 %ea’"sadewbcd
where wpq is the torsion-free Lorentz connection.
Local Lorentz transformation

kAT =0 .
Weyl transformation
m m m 3 m A
0o, =oe," 0V = EO'\UQ , 0cAm =0,

with Am = gm,,A”.

Local chiral transformation

1 ~ 1
oge," =0, 0,V = _EQ\UZ , OcAm = 58,,,(2 .

A is the R-symmetry gauge field.
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Gravitational superfield and conformal supergrav

Gravitational superfield and conformal supergravity

Local supersymmetry transformation

0ce," = ieo V™ — iV g,
VT = (Ua5bvae)aebm — 2iAMe, ,
SAm = ...

Local S-supersymmetry transformation

see section 5.1 of |. Buchbinder & SMK, Ideas and Methods of
Supersymmetry and Supergravity or a Walk Through Superspace

Multiplet of conformal supergravity

(eama \Ugv \TJg? A~m)

& graviton
wm gm gravitino
Am U(1)r gauge field
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Superconformal compensators and supergravity

@ In order to obtain a supersymmetric extension of Einstein's gravity, a
superconformal compensator T(x, 6, 0_) is required, in addition to the
gravitational superfield H™. Unlike Einstein's gravity, there are
several different supermultiplets
((x) in gravity and T(x, 0, 0) in supergravity)
that may be chosen to play the role of superconformal compensator.

@ One option is a chiral superfield ¢(y, ) which is defined on C*? and
transforms as follows

oty ) = [Ber (S| 0.0

under the holomorphic reparametrisation
ym =y =1"(y,0), 0% =0 =1y.0).

W. Siegel (1977); W. Siegel & J. Gates (1979)
Gauge-invariant chiral integration measure

d4y/d29'(¢/(y/, 0/))3 _ d4yd20(¢(y,9))

3



Old minimal supergravity

@ In the Wess-Zumino gauge, the residual gauge freedom includes the
Weyl and local U(1)g transformations (described by the parameters
o(x) and Q(x), respectively), as well as the local S-supersymmetry
transformation (described by 7,(x) and its conjugate).

@ These gauge symmetries may be used to bring
¢*(x,0) = e (){ F() + 0" xa(x) + 02B(x) }
to the form:
#*(x,0) = e—l(x){1 — 2i00, U (x) + 92B(x)}
Multiplet of old minimal supergravity

(eam7 ngv \Dg’7 A~m7 B, B)
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Differential geometry for supergravity

e Gravitational superfield H™ transforms in a nonlinear (non-tensorial)
way. Its direct use for constructing supergravity matter actions is
not very practical.

@ In order to obtain powerful tools to generate supergravity-matter
actions, we have to extend to curved superspace the formalism of
differential geometry which we use for QFT in curved space.

@ In curved spacetime M?* parametrised by coordinates x™, the
gravitational field is described in terms of covariant derivatives

1
Vi.=ée+w,, €3 = eam(X) ) Wa = EwabC(X)Mbc

In Einstein's gravity, the structure group is the Lorentz group, more
precisely its universal covering SL(2, C).
@ Gravity gauge transformation

1
6V, =[K, V., dU=KU, K=~e()V,+ EKbC(X)MbC ,

where U(x) is a (matter) tensor field (with Lorentz indices only).
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Differential geometry for supergravity

@ In N = 1 supergravity, there are two ways to choose structure group:
SL(2,C) R. Grimm, J. Wess & B. Zumino (1978)
SL(2,C) x U(1)g P. Howe (1982)
Howe's approach is suitable for all off-shell formulations for N’ =1
supergravity, while the Grimm-Wess-Zumino approach is ideal for
the so-called old minimal formulation for supergravity.

The two approaches prove to be equivalent, so here we follow the
Grimm-Wess-Zumino approach, which is simpler.

e In curved superspace M** parametrised by local coordinates
M = (x™m, o~ 0_ﬂ), supergravity multiplet is described in terms of
covariant derivatives

_ 1
Dy = ('Da,Da,Da) = EAM(Z)aM + EQAbC(Z)MbC
@ Supergravity gauge transformation
1
oxkDa=[K,Da], xU=KU, K=¢B2)Dp+ EKbC(z)MbC :

for any tensor U(z) a tensor superfield.
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Constraints

@ In curved space, the covariant derivatives V, obey the algebra
— c 1 cd 1 cd
[Va,Vb] = Tab vc + ERab Mcd = 5 ab Mcd )

where T,,¢(x) and R.,%(x) are the torsion tensor and the curvature
tensor, respectively. To express the Lorentz connection in terms of
the gravitational field, one imposes the torsion-free constraint

T =0

@ In curved superspace, the covariant derivatives obey the algebra

1
[Da, Dg} = Tag“Dc + ERABCndd .

We have to impose certain constraints on Tag€ in order for
superspace geometry to describe conformal supergravity.
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Choosing right superspace constraints

@ In Minkowski superspace, the vector derivative is given by an
anti-commutator of spinor covariant derivatives,

{Du, Ds} = —2i004

In curved superspace, we postulate
{Da,Ds} = —2iDaq

@ In Minkowski superspace, there exist chiral superfields constrained by
Dsd =0
In curved superspace, we also want to have covariantly chiral scalar
superfields constrained by
Da®=0 = 0={Ds Dy}®="T,;Dc® +7T,,"D,®

We are forced to require 7, =0 and 7,57 = 0.
@ Similar to GR, we need constraints that would allow us to express
the Lorentz connection in terms of the (inverse) vielbein.
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Curved superspace covariant derivatives

Algebra of the superspace covariant derivatives

{Daaﬁd} - *2iIDo¢d P

{Do,Ds} = —4RM,p5 , {Ds, Dy} = 4RM,;
[DO“IDﬁB} = isag(/?ﬁﬁ' + G’YBID’Y — ('DFYG(SB)/VLY(; + ZWB;YSM"YS)
—l—i('DBR)Maﬁ .

The superfields R, G.4 and W,z obey the Bianchi identities:

’DdR:O, Z_)dWagvzo;
DGoa =DaR,  D'Wos, =iD, 7 Gpyy
R is the supersymmetric extension of the scalar curvature.

G, is the supersymmetric extension of the Ricci tensor.
W, is the supersymmetric extension of the Weyl tensor.

It may be shown that the gravitational superfield H™ originates by solving
the supergravity constraints in terms of unconstrained prepotentials.
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Super-Weyl invariance and conformal supergravity

The algebra of covariant derivatives is invariant under super-Weyl
transformations P. Howe & R. Tucker (1978)

65Dy = (X — %Z)Da +(DPE)Mup,  Dar =0
_ 1- I
05D = (X — EZ)Da + (DﬁZ)MaB ’
_ _ 1 _
0sDaa = {05Da, D} + {Da, 05Dy} = 5(2 +X)Dos + ...

provided the torsion tensor superfields transform as follows:

1 - _
0sR = 2XR + Z(D2 —4R)YL
1 = . = 3
62Gao'c = E(Z + Z)Gad + 1Dad(): — Z) s Os Walgfy = EZWaﬂq{ .
Gauge freedom of conformal supergravity:
1
6Da = [0k, Dal +6sDa, K =¢B(2)Dg + EKbc(z)l\/lbc
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Reduction to component fields

Given a superfield U(z), its bar-projection Ul is defined to be the
6, 0-independent component of U(x, 6, 6) in powers of 8's and 8's,

U| = U(nga§)|0:9_:0 .

U| is a field on curved spacetime M?* which is the bosonic body of AM*4.
In a similar way we define the bar-projection of the covariant derivatives:

1
DA| = EAM|8M =+ EQAbCL/\/le .
Of special importance is the bar-projection of a vector covariant derivative
Dol = Vs + Sw,PD,| + L0, D)
al — Va 2 a B 2 ag )
where \Ilaﬁ is gravitino, and
A 1
Vi=e+w,=e"(x)0m+ fwabc(x)Mbc,

2

is a spacetime covariant derivative with torsion.
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Reduction to component fields

Wess-Zumino (WZ) gauge

0 _ . . 0
Dol = 0" — DY =6% — .
| oor 00,
In this gauge, one obtains
Eaml =&, Ea”| = %\Uaﬂéﬂu ) Qabcl = Wabc

In the WZ gauge, we still have a tail of component fields which originates
at higher orders in the 0, f-expansion of EaM, Q4% and which are pure
gauge (that is, they may be completely gauged away). A way to get rid
of such a tail of redundant fields is to impose a normal gauge around the
bosonic body M?* of the curved superspace M**.

Vielbein (E*) and connection (2°?) super one-forms:

EA=dzMENA(Z), Q= dZMQn“(z) = EAQabC

EMAEAB — 6MN
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Reduction to component fields

Normal gauge in superspace

@MEMA(X,@) = @M(SMA :

oMQu“(x,©) =0,
where OM = (@™ 0+, 0, := (0,0",0,,).
In this gauge, Ep”(x, ©) and Qu(x, ©) and ®y(x, ©) are given by
Taylor series in ©, in which all the coefficients (except for the leading
©-independent terms given on previous page) are tensor functions of the
torsion, the curvature and their covariant derivatives evaluated at © = 0.

[. McArthur (1983)
SMK & G. Tartaglino-Mazzucchelli, arXiv:0812.3464

Analogue of the Fock-Schwinger gauge in Yang-Mills theories
X"An'(x) =0,
where A,,' is the Yang-Mills gauge fields, with ‘I’ the gauge group index.
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Reduction to component fields

The supergravity auxiliary fields occur as follows
12 4
l‘?|:§B7 Ga‘nga

The bar-projection of the vector covariant derivatives are
_ 1 dppbe Ly B 13 . 58
,Dal—vafggabch M +§\Ua D5|+§\U23D | s

where we have introduced the spacetime covariant derivatives,
Vio=e;+ %wabcl\/lbc, with wape = wapc(e, V) the Lorentz connection.

1
[van vb] Tabc Vc + 5 RabchCd P
i _ _
Tabe = _E(waacwb - wbacwa) .
The Lorentz connection is

1
Wabe = wabc(e) - E(Tbca + Tacb - Tabc) 5

where w,pc(€) is the torsion-free connection
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Reduction to component fields

Some component results
2 2i i -
DaR| = ~5(0*Wse)o — glAbwba + %B(ablllb)a ,

5 _ =t (=ab 3 2 ap.

DGyl = =2V, 7 + ngﬁ (@) — A(6™)agVa"As + T Vaga, Ay,
Wasy| = Viapy) — i(0ap)(@s V) A" ,

where the gravitino filed strength W7 is defined by

\Uab’y = Vawb’y - waa’y - ,Tabcwc’y y

1 1.
\Ua,é’,’y — 5(O.ab)aﬁwab’)' , \Udﬂ.”y — _E(O.ab)o_é,éwabv .

Two introductory lectures on supergravity Sergei M. Kuzenko



Reduction to component fields

Locally supersymmetric action principle
S= /d4xd29d2§EL : E~1 = Ber(EaV)

where the Lagrangian L is a scalar superfield.
Locally supersymmetric chiral action

S. = / d*xd?0d%6 % L= / d*xd?0 € L. DyLe =0
Chiral integration rule:
/ d*xd?0d*0 E L = —% / d*xd?0 £ (D? — 4R)L
Component action:
/d4xd298£c = /d4xe{ - %D2£C| - %(\sza—b)a Dol
+(B+ 55, 0°) L]}
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WZ gauge and super-Weyl invariance

To choose the WZ + normal gauges, we make use of the general
coordinate and local Lorentz transformations,

1
0D = [0k, Dal , K =¢8(2)Dg + EKbC(z)l\/lbc

The super-Weyl invariance remains intact. This local symmetry may be
gauge-fixed by choosing useful conditions on the superconformal
compensator(s) upon reducing the supergravity-matter system under
consideration to components.
To see how this works in practice, see

SMK & S. McCarthy, arXiv:hep-th/0501172
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Compensators and off-shell formulations for supergravity

Old minimal formulation for ' = 1 supergravity
Its conformal compensators are ¢ and ®. Here ® is a covariantly chiral,
nowhere vanishing scalar ¢,

Dy®=0, ®#0,
with the gauge transformation
P=Kb+30.

The supergravity action is

5= [a*xd6?FE 0P + {"2 / d*xd?0 €03 + c.c.} ,
K K

where « is the gravitational coupling constant and p a cosmological
parameter.
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Old minimal supergravity: Component action

Ssq = —% / d*xd?0d%0 E o

1 (1 1 pedim -~ -
?/d‘lxe 1{§R+ Zé‘ bd(\llaab\llcd—\llaablllcd)

4 1
-A?A,— =BB
34— 388

Supersymmetric cosmological term

Seosm = 4= / d*xd20 EO? + c.c.
K

1. 1 -
B d*xel B = 20%,0,0° — 2020, 4 cc.
K2 2 2

Eliminating the auxiliary fields B and B leads to the cosmological term

2
sl /d“ —/\/d4xe — A=l
K K
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Compensators and off-shell formulations for supergravity

New minimal formulation for A" = 1 supergravity
Its conformal compensator is a real covariantly linear, nowhere vanishing
scalar L,

(D> -4R)L=0, L=L,
with the gauge transformation
SL=KL+(Z+Z)L.
Supergravity action
3 4129127
Ssa = — [ d'xd“0d“0 ELInLL
K
The action is super-Weyl invariant due to the identity
/d4xd29d29‘ELz =0 <= DyZ=0

No cosmological term in new minimal supergravity
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New minimal supergravity: The auxiliary field sector

The auxiliary fields of new minimal supergravity are gauge one- and
two-forms, A; = A, (x)dx™ and B, = %Bm,,(x)dx’" A dx". Here A, is
the U(1)g gauge field, which belongs to the gravitational superfield,
while the two-form B appears only via its gauge-invariant field strength

1
H; =dB, = aHm,,,dx"1 Adx" A dx"

The Hodge-dual H™ of H,,,, is a component field of the compensator. In
the flat-superspace limit,

Heag o< [Da, Da]L| 0,H* =0
The auxiliary fields contribute to the supergravity action as follows:
/d4x{c1(H*)1 A Hs + cA; A H3} ,
with ¢; and ¢, numerical coefficients. Both fields are non-dynamical,

H3; =0 and F, = dA; = 0 on the mass shell.



New minimal supergravity coupled to o-model matter

Consider a Kahler manifold parametrized by n complex coordinates &
and their conjugates ¢!, with K(¢, ) the Kahler potential.
Supergravity-matter system:

3 - - -
Shew = = / d*xd?0d%0 ELInL + / d*xd?0d?0 EL K(¢, ¢) .
The o-model variables ¢ are covariantly chiral scalar superfields,

Dsd' = 0, being inert under the super-Weyl transformations.
The action is invariant under the Kahler transformations

K(o,9) = K(¢,0) + M(¢) + X(9) ,

with A(¢) an arbitrary holomorphic function.
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Classical equivalence of new & old minimal supergravities

First-order reformulation of the new minimal supergravity—matter system
Snew = 3/d4xd20d2éE (UL-T), T= exp( - (¢ (;S))
and U is an unconstrained real scalar superfield. Super—WeyI invariance:
osU=% + ¥
To preserve Kahler invariance, the Kahler transformation of U should be
1 -
U— U+ 3 ()x(qﬁ) + A(qﬁ)) .
The equation of motion for IL is (D? — 4R)D, U = 0, and is solved by

The action turns into (restore x?)
3 4120127 F & K I
Soa =~ | dxPOLTE® @ exp( — L K(9, )
K

Kahler invariance: & — e A#)/3 ¢
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Chiral Goldstino superfield

Action for a free massless chiral superfield (DsX = 0)
SIX, X] = / d*xd?0d?0 XX = / d*x (¢0¢ — ipo?d,p + FF),
where the component fields are defined by
X|=¢, DoX| =V2pa, —%D2X| =F.

Goldstino superfield
M. Rotek (1978)

1 .-
X? =0, —ZXD2X:fX,

where f is a non-zero parameter of dimension (mass)?. The auxiliary
field acquires a non-zero expectation value, (F) = f.
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Chiral Goldstino superfield

Solution to the constraint X2 =0 is

2

o=1-.

Solution to the second constraint, —fXDzX X, is
_ 1-
F=f+F Y- ZF*zﬁzm(Ffl,oz)
1
f{l + (@) — F4((u) (D) + Z;32Dp2) + F () (@) + c.c.)

f76
o (@0?07 + 2P 00? + FPO(eA() )
_3f*8(<u>2<a>2+ %ﬂ2ﬁ2ﬂ(<U>2 = (u)(@) +(8)*) +

where (M) = trM = M,?, and

1
1677000 ))

u= (uab)7 u,? = ipoP0.p ; o= (Eab), 7,2 .= —i0,pctp
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Chiral Goldstino superfield

Supersymmetry transformation
Seh = \ﬁep, Sepa = \@(eaF + i(UaE)aaa(;S) ,  O0F = —\@i(@a@baaa.

Since F acquires the non-zero expectation value (F) = f, supersymmetry
becomes nonlinearly realised,

OePa = V2fey + ...

Goldstino action
SGoldsting = — / d*xd?0020 XX = —f / d*xd?0 X
_ —%/d4x{2f2 )+ o f 00— (@)
+4 (W) (PP TP + 2(u)(@) + c.c.)
37 ((u2)(8?) — 3(u)*(8)? — 2(u)(@){ud) — §p2ﬁ2mp2m52)}
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Volkov-Akulov model for Goldstino
D. Volkov & V. Akulov (1972)

Sva[\ ] = ﬁ /d4x(1 - detE) ,
where x denotes the coupling constant of dimension (length)? and
=L =0LrRP (v V), bt =ixePa, v, = —i9, 0PN
Sya is invariant under the nonlinear supersymmetry transformations
deda = %ea — ilﬁ()\O’bE - eabj\) OpAg -
Rocek’s Goldstino action is related to the Volkov-Akulov model by a

nonlinear filed redefinition (f 2 = 2x2)
SMK and S. Tyler (2011)
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Spontaneously broken (de Sitter) supergravity

Chiral Goldstino superfield coupled to supergravity
U. Lindstrom & M. Ro&ek (1979)

S=— /d4xd29d2d2§5 (:2&» + )‘(X) + {;/d“deee& + c.c.} ,

where X is covariantly chiral, D3 X = 0, and obeys the super-Weyl
invariant constraints
1 — -
X*=0, —ZX(Dz —4R)X = f®?X .

Upon reducing the action to components and eliminating the
supergravity auxiliary fields, for the cosmological constant one gets

2
Cosmological constant is positive, A > 0, for f2 > 3%.
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Alternative approaches to de Sitter supergravity

o E. A. Bergshoeff, D. Z. Freedman, R. Kallosh and A. Van Proeyen,
arXiv:1507.08264.

e F. Hasegawa and Y. Yamada, arXiv:1507.08619.

@ SMK and S. J. Tyler, arXiv:1102.3042;
SMK, arXiv:1508.03190.

o |. Bandos, L. Martucci, D. Sorokin and M. Tonin, arXiv:1511.03024.

The first two groups used a nilpotent chiral Goldstino superfield

S= /d4xd29d29')'<x + f/d4xd29x + f/d4xd2§>'< . DyX =0,

where X is constrained by X? = 0.
R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio & R. Gatto (1989)
Z. Komargodski & N. Seiberg (2009)
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Complex linear Goldstino superfield

SMK & S. Tyler (2011)

f = const,

¥2=0, —%szaz =fD,X .

The constraints imply that all component fields of ¥ are constructed in
terms of a single spinor field p¢.

(6, §) = ¢i77%0: (¢ 00 + V205 + 02F + BPF + 0905 Upey + 92%—() .
Goldstino superfield action
S[Z, Y] = — / d*xd?0d*0 L% .
Rockek's Goldstino superfield is a composite object
fX= —}152@2)
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Bryce DeWitt, Dynamical Theory of Groups and Fields (1965),

about the status of Yang-Mills theories in the 1960s:

"“So far not a shred of experimental evidence exists that fields possessing
non-Abelian infinite dimensional invariance groups play any role in
physics at the quantum level. And yet motivation for studying such fields
in a quantum context is not entirely lacking.”

That situation completely changed in the early 1970s.

Nowadays, no one doubts that the Yang-Mills theories play a crucial role
in physics.

What does the future hold for supersymmetry and supergravity?

Steven Weinberg, The Quantum Theory of Fields: Volume IlI:
Supersymmetry (2000)

“I and many physicists are reasonably confident that supersymmetry will
be found to be relevant to the real world, and perhaps soon.”
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