Neutrinos

Jenni Adams

University of Canterbury, New Zealand

PreSusy School 2016

Neutrinos

Mass differences:

Weinheimer 2009

Detecting neutrinos

No neutrino tracks...

Basic principle is to look for evidence that neutrinos have interacted, by detecting products of the interaction

Detecting neutrinos

- Large volumes needed to combat weak interaction
- Shielding required to reduce backgrounds \implies underground
- Three main detection techniques
- Radio-chemical: Radioactive atoms formed by capture of neutrinos in target Eg Ray Davis's solar neutrino experiment, used the isotope ³⁷Cl, neutrino capture produces radioactive ³⁷Ar, a gas, which was removed from the target, purified, and counted.
- Scintillation Use liquid scintillator, organic liquid that gives off light, when charged particles pass through it. The scintillator is monitored by optical detectors.
- Cherenkov light detectors Cherenkov light is produced by particles moving faster than the speed of light in the medium. Optical detectors detect the Cherenkov light.

Neutrino dectectors

ANITA ANNIE ANTARES ARIANNA BDUNT (NT-200+) BOREXINO CLEAN COBRA Daya Bay Double Chooz EXO-200 GALLEX GERDA GNO HALO HERON HOMESTAKE ICARUS IceCube INO JUNO Kamiokande KamLAND KM3NeT LAGUNA LBNE/DUNE LENS MAJORANA DEMONSTRATOR MicroBooNE MINERvA MiniBooNE MINOS MINOS+ NEMO Experiment MOON NEMO Telescope NEVOD NOvA OPERA RENO SAGE SciBooNE SNO SNO+ Super-K T2K UNO

Direct neutrino mass measurement

Using the end point of the beta decay spectrum Eg Katrin experiment using tritium

$$m_{v_e} = \left(\sum |U_{ei}|^2 m_i^2 \right)^{1/2}$$

Direct neutrino mass measurement - Katrin

Tritium decays, releasing an electron and an anti-electron-neutrino. While the neutrino escapes undetected, the electron starts its journey to the detector. Electrons are guided towards the spectrometer by magnetic fields. Tritium has to be pumped out to provide tritium free spectrometers. The electron energy is analyzed by applying an electrostatic retarding potential. Electrons are only transmitted if their kinetic energy is sufficiently high. At the end of their journey, the electrons are counted at the detector. Their rate varies with the spectrometer potential and hence gives an integrated β-spectrum.

Cosmic Neutrino Background

Neutrino Cosmology

 There is a cosmic background neutrino population which is a relic from the early universe

- The neutrino background affects cosmological processes
 - Primordial nucleosynthesis
 - Cosmic microwave background
 - Large structure formation
- Observations probing these processes give us information about neutrinos
- It is important to include the neutrino background effects to be able to interpret observations and learn about other constituents of the universe

Generic Solutions of Friedman Equation

	Equation of state	Behavior of cosmic exp	fenergy-density under ansion	Evolution of cosmic scale factor			
Radiation	$p = \frac{\rho}{3}$	$\rho \propto a^{-4}$	Dilution of radiation and redshift of energy	$a(t) \propto t^{1/2}$			
Matter	p=0	$\rho \propto a^{-3}$	Dilution of matter	$a(t) \propto t^{2/3}$			
Vacuum energy	$p = -\rho$	$ ho = ext{const}$	Vacuum energy not diluted by expansion	$a(t) \propto e^{\sqrt{\Lambda/3} t}$ $\Lambda = 8\pi G_{ m N} ho_{ m vac}$			

Energy-momentum tensor of a perfect fluid with density ho and pressure p

$$T^{\mu\nu} = \begin{pmatrix} \rho & & \\ & p & \\ & & p & \\ & & & p \end{pmatrix} \qquad T^{\mu\nu}_{\text{vac}} = \rho g^{\mu\nu} \begin{pmatrix} \rho & & & \\ & -\rho & & \\ & & & -\rho & \\ & & & & -\rho \end{pmatrix}$$

Evolution of Cosmic Density Components

Dark Energy ~70% (Cosmological Constant)

Ordinary Matter ~5% (of this only about 10% luminous)

Dark Matter ~25% Neutrinos 0.1–1%

Matter-Radiation Equality (Redshift 3400)

After Electron-Positron Annihilation (T = 100 keV)

Neutrinos 41%

Relevant for Big Bang Nucleosynthesis (BBN)

Before Electron-Positron Annihilation (T = 1 MeV)

Neutrino Background

 $n_{\nu\overline{\nu}}(1 \text{ flavour}) \approx 112 \text{ cm}^{-3}$

 $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.95 \,\mathrm{K}$ for massless neutrinos

Boltzmann equation governs distributions

$$\frac{\mathrm{d}f_X}{\mathrm{d}t} + 3\frac{\dot{a}}{a}f_X + \langle \sigma_A v \rangle (f_X^2 - f_{Xeq}^2) = 0$$

•Two regimes:

Thermal Radiation

	General	Bosons	Fermions					
Number density n	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{1}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\zeta_3}{\pi^2} T^3$	$\frac{3}{4} g_F \frac{\zeta_3}{\pi^2} T^3$					
Energy density ρ	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{E_{\boldsymbol{p}}}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\pi^2}{30} T^4$	$\frac{\frac{7}{8}}{9_F} g_F \frac{\pi^2}{30} T^4$					
Pressure P	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{ \boldsymbol{p}^2 }{E_p} \frac{1}{e^{E_p/T} \pm 1}$	$\frac{\rho}{3}$						
Entropy density s	$\frac{\rho + P}{T} = \frac{4}{3} \frac{\rho}{T}$	$g_B \frac{2\pi^2}{45} T^3$	$\frac{7}{8} g_F \frac{2\pi^2}{45} T^3$					
$\int_{0}^{\infty} dE = TdS - PdV$ $TdS = (\rho + P)dV$ Neutrinos $\int_{0}^{\infty} \frac{x^{2}dx}{\exp(x) - 1} = 2\zeta(3),$ $\int_{0}^{\infty} \frac{x^{2}dx}{\exp(x) - 1} = \frac{6}{8}\zeta(3),$ $\int_{0}^{\infty} \frac{x^{3}dx}{\exp(x) - 1} = 6\zeta(4) = \frac{\pi^{4}}{15},$ $\int_{0}^{\infty} \frac{x^{3}dx}{\exp(x) + 1} = \frac{7}{48}\zeta(4) = \frac{7}{8}\frac{\pi^{4}}{15}$ PreSusy School 2016								
Neutri	$\int_0 \frac{1}{\exp(x)+1} \equiv \frac{1}{4}$	$\overline{_8}\zeta(4) \equiv \overline{_8}\overline{_{15}}$	PreSusy School 2016					

Thermal Degrees of Freedom

		7
$g_* = g_R$	+	-g _F
		8.1

Mass threshold		Particles	g _B	g _F	g*	
	low	γ, 3ν	2	6	(7.25)	
m _e	0.5 MeV	e [±]	2	10	10.75	
m _µ	105 MeV	μ^{\pm}	2	14	14.25	
m _π	135 MeV	π^0, π^{\pm}	5	14	17.25	
Λ_{QCD}	~170 MeV	u, d, s, gluons	18	50	61.75	
m _{c,τ}	2 GeV	C, τ	18	66	75.75	
mb	6 GeV	b [±]	18	78	86.25	
m _{W,Z}	90 GeV	Z ⁰ , W [±]	27	78	92.25	
m _H	126 GeV	Higgs	28	78	93.25	
m _t	170 GeV	t	28	90	106.75	
Λ_{SUSY}	~ 1 TeV ?	SUSY particles	118	118	213.50	

Neutrino Thermal Equilibrium

Neutrino reaction rate

Examples of neutrino processes

$$e^{+} + e^{-} \leftrightarrow \overline{\nu} + \nu$$
$$\overline{\nu} + \nu \leftrightarrow \overline{\nu} + \nu$$
$$\nu + e^{\pm} \leftrightarrow \nu + e^{\pm}$$

Reaction rate in a thermal medium

for T \ll m_{W,Z} $\Gamma \sim G_{\rm F}^2 T^5$

Friedmann equation (flat universe)

Cosmic expansion rate

$$H^2 = \frac{8\pi}{3} \frac{\rho}{m_{\rm Pl}^2}$$

$$\left(G_{\rm N} = \frac{1}{m_{\rm Pl}^2}\right)$$

$$\rho \sim T^4$$

Expansion rate
H
$$\sim \frac{T^2}{m_{\rm Pl}}$$

Condition for thermal equilibrium: $\Gamma > H$

$$T > (m_{\rm Pl}G_{\rm F}^2)^{-1/3} \sim [10^{19} {\rm GeV} (10^{-5} {\rm GeV}^{-2})^2]^{-1/3} = 1 {\rm MeV}^{-1/3}$$

Neutrinos are in thermal equilibrium for $T \gtrsim 1 \text{ MeV}$ corresponding to $t \lesssim 1 \text{ sec}$

Neutrinos

Present-Day Neutrino Density

Neutrino decoupling (freeze out)	$H \sim \Gamma$ $T \approx 2.4 \text{ MeV} \text{(electron flavour)}$ $T \approx 3.7 \text{ MeV} \text{(other flavours)}$							
Redshift of Fermi-Dirac distribution ("nothing changes at freeze-out")	$\frac{dn_{\nu\overline{\nu}}}{dE} = \frac{1}{\pi^2} \frac{E^2}{e^{E/T} + 1}$ Temperature scales with redshift $T_{\nu} = T_{\gamma} \propto (z+1)$							
Electron-positron annihilation beginning at T ≈ m _e = 0.511 MeV	•Entropy of e ⁺ e ⁻ transferred to photons $g_*T_{\gamma}^3\Big _{\text{before}} = g_*T_{\gamma}^3\Big _{\text{after}}$ $\overbrace{2 + \frac{7}{8}4 = \frac{11}{2}}^{11}} \qquad \widehat{2}$ $\int_{\gamma}^{7}\Big _{\text{before}} = \frac{4}{11}T_{\gamma}^3\Big _{\text{after}}$							
Redshift of neutrino and photon thermal distributions so that today we have	$n_{\nu\overline{\nu}}(1 \text{ flavour}) = \frac{4}{11} \times \frac{3}{4} \times n_{\gamma} = \frac{3}{11}n_{\gamma} \approx 112 \text{ cm}^{-3}$ $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.95 \text{ K} \text{ for massless neutrinos}$							

Basic Idea

Comparison of theoretical predictions with observations of the anisotropy (temperature (and polarisation) differences from isotropy) of the cosmic microwave background and correlations in the large scale structure

Wmap9 CMB http://wmap.gsfc.nasa.gov/resources/cmbimages.html Sky Map of Galaxies (2MASS XSC) http://spider.ipac.caltech.edu/staff/jarrett/2mass/XSC/j arrett_allsky.html

Neutrinos

Neutrino effect on large scale structure growth

Z=32.33

Standard Λ CDM Model Neutrinos with $\Sigma m_v = 6.9 \text{ eV}$

Troels Haugbølle, http://users-phys.au.dk/haugboel

Neutrinos

Neutrino Mass Limits Post Planck (2013)

Depends on the data sets used Many different analyses in the literature

 Planck alone:
 $\Sigma m_{v} < 1.08 \text{ eV}$ (95% CL)

 CMB + BAO limit:
 $\Sigma m_{v} < 0.23 \text{ eV}$ (95% CL)

Ade et al. (Planck Collaboration), arXiv:1303.5076

Neutrinos

Neutrino source fluxes

Neutrinos

IceCube high energy astrophysical neutrino discovery

Multimessenger Astronomy

Neutrino source fluxes

Neutrinos

IceCube is a LARGE neutrino detector...

SNO

Neutrinos

IceCube detector

Detection principle

					NNN N					÷.		a a set a secondar a s	
												- 1	
												-	
											-		
								÷				10	
												- 22	
												14	
												- 22	
					. · · ·						100		
												10	
				÷					· .				
				200									
				•					• • • •			-	
												2	
											·		
												1	
							:				• • •	2	
				. :						<u> </u>		2	
												27	
												1.2	
												- 19	
										÷.		1	
										÷.			
										2			
													÷.
	-						· ·		· ·	·			
								· •					
												· .	
								. •					
Run 115994 Eve		. 'E	= l	Ω₹	ar	50	Á						
							Ģ.						
Fri Jun 4 10:2	6	: 1.3	l í	20	-1()							
			-	_ 0									

Backgrounds

Cosmic rays – interacting in the Earth's atmosphere – source of atmospheric neutrinos and muon background

Muon rate: In ice: ~3000 Hz

Atmospheric neutrinos: ~1 neutrino/10 minutes

Neutrino Detection: Requires 10⁶ background rejection

- "Conventional"
- From π / K decay
- Φ ~ E^{-3.7}

- > "Prompt"
- From charmed meson decay
- **>** Φ ~ E^{-2.7}
- > Undetected so far

Sky map of high-energy, starting events

Point source search in six years of data

Point source search in six years of data

Neutrinos

Neutrinos

Neutrinos

Neutrinos

Earth attenuation E>TeV

