Search for new physics phenomena with heavy flavour hadrons in ATLAS Maria Smizanska, On Behalf of ATLAS Collaboration Lancaster University June 30, 2016 ### Layout of the talk Precision measurements of B-hadrons decays in search for effects beyond Standard model (SM) in Run1 data ATLAS - Performance at high luminosity of Run1 - CPV Phase ϕ_{ε} in $B_{\varepsilon}^{0} \to J/\psi \phi$ - Width difference $\Delta \Gamma_d$ of B_d^0 meson, testing reliability of the SM - Decay probabilities of $B_s^0/B_d^0 \to \mu^+\mu^-$ search for potential deviations from SM - Summary #### Run1 data, ATLAS performance - Precise tracking essential for B-phys high-sensitivity searches for NP - With increasing pileup, tracking, vertexing had to be improved to achieve stability - d0 resolution (the width of main peak) remaines stable - tails are potentially sensitive to fakes: no increase of the fake rate observed # Search for NP in precision measurement of the CPV Phase ## ϕ_{ς} #### Physics Motivation - $B_s^0 \to J/\psi \phi$ expected to be sensitive to BSM physics - CP-violation phase: ϕ_s - CPV due to interference between: - Direct decay - Flavour oscillation - SM Predictions: - $\phi_s = -0.0364 \pm 0.0016$ [rads] - Indirect determination via global fits - SM precision much smaller than experimental - Experimental measurement a viable BSM search ### Methodology - fit #### Time-Dependent Angular Analysis - Observables: - Mass, lifetime, p_T , transversity angles, initial flavour - Per-candidate errors - UMLF → Physics parameters: - φ, ΔΓ, Γ, - transversity amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, $|A_S(0)|^2$, δ_{\perp} , δ_{\parallel} , $\delta_{\perp} \delta_S$ ### Methodology - tagging #### OST Tagging - Detect decay of pair-produced b - p_T weighted sum of charges from decay - Per-event tagger/probability: - Muon, electron (2012), jet-charge - Calibrated with $B^{\pm} \rightarrow J/\psi K^{\pm}$ - Tagging applied probabilistically in fit | Tagger | Efficiency [%] | Dilution [%] | Tagging Power [%] | |---------------------|-----------------------------------|-----------------|-------------------| | Combined muon | $\textbf{4.12} \pm \textbf{0.02}$ | 47.4 ± 0.2 | 0.92 ± 0.02 | | Electrons | 1.19 ± 0.01 | 49.2 ± 0.3 | 0.29 ± 0.01 | | Segment Tagged muon | 1.20 ± 0.01 | 28.6 ± 0.2 | 0.10 ± 0.01 | | Jet charge | 13.15 ± 0.03 | 11.85 ± 0.03 | 0.19 ± 0.01 | | Total | 19.7 ± 0.04 | 27.6 ± 0.06 | 1.49 ± 0.02 | Dilution, Tagging power defined in Backup slide. ### Mass/Lifetime Fits Figure: B_s mass distribution (2012) Figure: B_s⁰ lifetime distribution (2012) ### Angular Projection Fits Figure: B_s⁰ angular fit projections ## 2D Scans - ϕ_s v's $\Delta\Gamma_s$ Figure: 2D scan (2011/2012) Figure: 2D scan (Run 1) ## $\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mathsf{J}/\psi\phi$ Run 1 Results | Parameter | Value | Stat | Systematic | |---|---------|-------|------------| | ϕ_s rad | - 0.098 | 0.084 | 0.040 | | $\Delta\Gamma_s$ [ps ⁻¹] | 0.083 | 0.011 | 0.007 | | Γ_s [ps ⁻¹] | 0.677 | 0.003 | 0.003 | | $ A_0(0) ^2$ | 0.514 | 0.004 | 0.003 | | $ A_{ }(0) ^2$ | 0.227 | 0.004 | 0.006 | | $ A_{S}(0) ^{2}$ | 0.071 | 0.007 | 0.017 | | δ_{\perp} [rad] | 4.13 | 0.33 | 0.16 | | δ_{\parallel} [rad] | 3.15 | 0.13 | 0.05 | | $\delta_{\perp}^{-} - \delta_{\mathcal{S}}$ [rad] | - 0.08 | 0.04 | 0.01 | Table: Run 1 result ### $B_s^0 \to J/\psi \phi$ Comparison, Conclusion - All existing data consistent between each other and with the SM - HFAG used Preliminary ATLAS version, May 2015, ATLAS ArXive numbers presented here slightly differ - ullet Room for NP in CPV ϕ_s , need Run2 and LHC upgrade ## Width difference of B_d^0 #### Physics motivation - $\Delta\Gamma_d$ is one of the parameters describing the time evolution of the B_d^0 system - It is reliably predicted in the Standard Model $$\Delta\Gamma_d = (0.42 \pm 0.08) \cdot 10^{-2} (SM)$$ Current experimental uncertainty still large to allow a comparison with the SM prediction $$\Delta\Gamma_d = (0.1 \pm 1.0) \cdot 10^{-2} (Experiment World Average)$$ Additional measurements are required to constrain this quantity and verify the SM prediction ### $\Delta\Gamma_d$ measurement method $\Delta\Gamma_d$ determined from ratio of proper decay time distributions of $B_d^0 \rightarrow J/\psi K_s^0$ and $B_d^0 \rightarrow J/\psi K^*$ • $$B_d^0 \rightarrow J/\psi K_S^0$$ $$\Gamma_d(t) \sim e^{-\Gamma t} (\cosh \frac{\Delta \Gamma_d}{2} t + \cos(2\beta) \sinh \frac{\Delta \Gamma_d}{2} t - A_p \sin(2\beta) \sin(\delta m t))$$ $$\beta$$ CKM angle, A_p production asymmetry of B_d^0 • $B_d^0 \to J/\psi K^*$ almost insensitive to $\Delta \Gamma_d$ $$\Gamma_d(t) \sim e^{-\Gamma t} \cosh rac{\Delta \Gamma_d}{2} t$$ ## B_d⁰ production asymmetry - B_d^0 production asymmetry A_p measured from a charge asymmetry A_{obs} , from a difference between $B_d^0 \to J/\psi K^*$ and $\overline{B}_d^0 \to J/\psi \overline{K}^*$ decays as a function proper decay lengths L_{prop}^B - Extracted A_{obs}, fig below, includes the asymmetry of K⁺/K⁻ reconstruction efficiency due to interactions in ID. - ATLAS result $A_p = (0.25 \pm 0.48(stat) \pm 0.05(syst)) \cdot 10^{-2}$ agreement with expectations. ### $\Delta\Gamma_d$ result Figure: Ratio of L_{prop}^{B} distributions of $B_d^0 \to J/\psi K_S^0$ and $B_d^0 \to J/\psi K^*$, fitted to extract $\Delta\Gamma_d$ ### **ATLAS** Results $$(-2.8 \pm 2.2(stat) \pm 1.7(syst)) \cdot 10^{-2}$$ (7 TeV data) $(0.8 \pm 1.3(stat) \pm 0.8(syst)) \cdot 10^{-2}$ (8 TeV data) $(-0.1 \pm 1.1(stat) \pm 0.9(syst)) \cdot 10^{-2}$ (Combined) ### $\Delta\Gamma_d$ Comparison, Conclusions ## Comparison $$(-0.1 \pm 1.1(stat) \pm 0.9(syst)) \cdot 10^{-2} \text{ (ATLAS Run1)}$$ $(-4.4 \pm 2.5(stat) \pm 1.1(syst)) \cdot 10^{-2} \text{ (LHCb)}$ $(1.7 \pm 1.8(stat) \pm 1.1(syst)) \cdot 10^{-2} \text{ (Belle)}$ $(0.8 \pm 3.7(stat) \pm 1.8(syst)) \cdot 10^{-2} \text{ (Belle)}$ - ATLAS result is consistent with other measurements. - It is consistent with the SM prediction $$(0.42 \pm 0.08) \cdot 10^{-2} \text{ (SM)}$$ $$\mathsf{B}^0_\mathsf{s}/\mathsf{B}^0_\mathsf{d} o \mu^+\mu^-$$ in Run1 ## $B_s^0/B_d^0 \to \mu^+\mu^-$ Physics motivation #### Theory - Flavour-changing neutral-current processes highly suppressed in SM - $B_s^0/B_d^0 \to \mu^+\mu^-$ additional helicity suppression. - SM prediction accurate: - Br ($B_s^0 \to \mu^+ \mu^-$) = $(3.65 \pm 0.23) \times 10^{-9}$ - Br ($B_d^0 \to \mu^+ \mu^-$) =(1.06 ± 0.09) × 10^{-10} #### **Experiment** - Experimental measurement a viable BSM search - CMS and LHCb observation of $B_s^0 \to \mu^+ \mu^-$ and evidence of $B_d^0 \to \mu^+ \mu^-$: - Br $(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ - Br ($B_d^0 \to \mu^+ \mu^-$) = $(3.9^{+1.6}_{-1.4}) \times 10^{-10}$ 17 / 26 #### Method #### Signal - Select signal di-muon events from data. - Extract yield using an un-binned maximum- likelihood fit to the data. - Use control samples to understand background suppression BDT and other cross checks. ### Normalise signal to $B^{\mp} \rightarrow J/\psi K^{\pm}$ - Requires knowledge of hadronisation probabilities f₁₁/f_s and f₁₁/f_d - Use the ATLAS result for $f_s/f_d=0.240\pm0.020$. ATLAS Coll, PRL 11(2015) 262001(arXiv:1507.08925) and assuming isospin symmetry $f_{u}/f_{d}=1$. 18 / 26 #### Backgrounds - Continuum Background muons from b, \overline{b} , c, \overline{c} quarks - Partially Reconstructed Decays: - Same Vertex (SV): b \rightarrow s μ^+ qJ/ ψ - Same Side (SS) cascades; e.g. b \rightarrow c $\mu\nu_{\mu}$ \rightarrow s(d) $\mu\mu\nu_{\mu}\overline{\nu}_{\mu}$ - Peaking 2-hadron decays, with both hadrons misidentified as muons - Background suppression use a boosted decision tree (BDT) using signal and background variables. Two types: continuum-BDT and BDT against hadrons misidentified as muons. ### Signal Fit result Fitted signal yields are N (B_s^0) = 16 ±12, N (B_d^0) = 11 ±9 events #### Result #### Using 25 fb⁻¹ of 7 TeV and 8 TeV proton-proton collision data ATLAS obtains: $$Br(B_d^0 \to \mu^+ \mu^-) < 4.2 \cdot 10^{-10}$$ 95% *C.L.* $Br(B_s^0 \to \mu^+ \mu^-) < 3.0 \cdot 10^{-9}$ 95% *C.L.* $Br(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \cdot 10^{-9}$ where the errors include both the statistical and systematic uncertainties. 21 / 26 #### Comparison, conclusion - ATLAS is consistent with the LHCb and CMS - ATLAS consistency with SM is 2.0 σ (computed from toy-experiments) - Room for NP destructively interfering with the SM #### Summary - Using Run1 LHC data ATLAS made important contributions to CPV, mixing and rare decays of B-hadrons - Results are consistent with other experiments - Consistency with SM in all presented cases - Room for New Physics opened - Run2 data expected to increase precisions #### Backup ## Backup Slides ### Tagging variables definitions - efficiency of a tagging method ϵ is the ratio of events tagged by that method to the total number of candidates - P(B|Q) is a probability to tag a signal event correctly - Dilution $\mathcal{D} = 2P(B|Q) 1$ - Tagging power of a particular tagging method is defined as $T = \epsilon \mathcal{D}^2$. - It is also possible to derive an effective average dilution, D, defined as $D = \sqrt{T/\epsilon}$, which removes the efficiency normalisation of the tagging power, and therefore allows the quality of different taggers to be compared. ### Tagging: Cone-charge definition #### Cone-charge definition: $$Q_{\mu} = rac{\sum_{i}^{N ext{ tracks}} q_{i} \cdot (p_{ ext{T}i})^{\kappa}}{\sum_{i}^{N ext{ tracks}} (p_{ ext{T}i})^{\kappa}},$$ (1) $$\epsilon^{\text{tag}} = \frac{N^{\text{tag}}}{N_B} \tag{2}$$ $$\epsilon^{\text{tag}} = \sum_{i}^{\text{bins}} \epsilon_{i} = \frac{1}{N_{B}} \sum_{i}^{\text{bins}} n_{i}^{\text{tag}}, \tag{3}$$