Search for new physics phenomena with heavy flavour hadrons in ATLAS

Maria Smizanska, On Behalf of ATLAS Collaboration

Lancaster University

June 30, 2016

Layout of the talk

Precision measurements of B-hadrons decays in search for effects beyond Standard model (SM) in Run1 data ATLAS

- Performance at high luminosity of Run1
- CPV Phase ϕ_{ε} in $B_{\varepsilon}^{0} \to J/\psi \phi$
- Width difference $\Delta \Gamma_d$ of B_d^0 meson, testing reliability of the SM
- Decay probabilities of $B_s^0/B_d^0 \to \mu^+\mu^-$ search for potential deviations from SM
- Summary

Run1 data, ATLAS performance

- Precise tracking essential for B-phys high-sensitivity searches for NP
- With increasing pileup, tracking, vertexing had to be improved to achieve stability
 - d0 resolution (the width of main peak) remaines stable
 - tails are potentially sensitive to fakes: no increase of the fake rate observed

Search for NP in precision measurement of the CPV Phase

ϕ_{ς}

Physics Motivation

- $B_s^0 \to J/\psi \phi$ expected to be sensitive to BSM physics
- CP-violation phase: ϕ_s
 - CPV due to interference between:
 - Direct decay
 - Flavour oscillation
- SM Predictions:
 - $\phi_s = -0.0364 \pm 0.0016$ [rads]
 - Indirect determination via global fits
 - SM precision much smaller than experimental
 - Experimental measurement a viable BSM search

Methodology - fit

Time-Dependent Angular Analysis

- Observables:
 - Mass, lifetime, p_T , transversity angles, initial flavour
 - Per-candidate errors
- UMLF → Physics parameters:
 - φ, ΔΓ, Γ,
 - transversity amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, $|A_S(0)|^2$, δ_{\perp} , δ_{\parallel} , $\delta_{\perp} \delta_S$

Methodology - tagging

OST Tagging

- Detect decay of pair-produced b
 - p_T weighted sum of charges from decay
- Per-event tagger/probability:
 - Muon, electron (2012), jet-charge
- Calibrated with $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Tagging applied probabilistically in fit

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Combined muon	$\textbf{4.12} \pm \textbf{0.02}$	47.4 ± 0.2	0.92 ± 0.02
Electrons	1.19 ± 0.01	49.2 ± 0.3	0.29 ± 0.01
Segment Tagged muon	1.20 ± 0.01	28.6 ± 0.2	0.10 ± 0.01
Jet charge	13.15 ± 0.03	11.85 ± 0.03	0.19 ± 0.01
Total	19.7 ± 0.04	27.6 ± 0.06	1.49 ± 0.02

Dilution, Tagging power defined in Backup slide.

Mass/Lifetime Fits

Figure: B_s mass distribution (2012)

Figure: B_s⁰ lifetime distribution (2012)

Angular Projection Fits

Figure: B_s⁰ angular fit projections

2D Scans - ϕ_s v's $\Delta\Gamma_s$

Figure: 2D scan (2011/2012)

Figure: 2D scan (Run 1)

$\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mathsf{J}/\psi\phi$ Run 1 Results

Parameter	Value	Stat	Systematic
ϕ_s rad	- 0.098	0.084	0.040
$\Delta\Gamma_s$ [ps ⁻¹]	0.083	0.011	0.007
Γ_s [ps ⁻¹]	0.677	0.003	0.003
$ A_0(0) ^2$	0.514	0.004	0.003
$ A_{ }(0) ^2$	0.227	0.004	0.006
$ A_{S}(0) ^{2}$	0.071	0.007	0.017
δ_{\perp} [rad]	4.13	0.33	0.16
δ_{\parallel} [rad]	3.15	0.13	0.05
$\delta_{\perp}^{-} - \delta_{\mathcal{S}}$ [rad]	- 0.08	0.04	0.01

Table: Run 1 result

$B_s^0 \to J/\psi \phi$ Comparison, Conclusion

- All existing data consistent between each other and with the SM
 - HFAG used Preliminary ATLAS version, May 2015, ATLAS ArXive numbers presented here slightly differ
- ullet Room for NP in CPV ϕ_s , need Run2 and LHC upgrade

Width difference of B_d^0

Physics motivation

- $\Delta\Gamma_d$ is one of the parameters describing the time evolution of the B_d^0 system
- It is reliably predicted in the Standard Model

$$\Delta\Gamma_d = (0.42 \pm 0.08) \cdot 10^{-2} (SM)$$

 Current experimental uncertainty still large to allow a comparison with the SM prediction

$$\Delta\Gamma_d = (0.1 \pm 1.0) \cdot 10^{-2} (Experiment World Average)$$

 Additional measurements are required to constrain this quantity and verify the SM prediction

$\Delta\Gamma_d$ measurement method

 $\Delta\Gamma_d$ determined from ratio of proper decay time distributions of $B_d^0 \rightarrow J/\psi K_s^0$ and $B_d^0 \rightarrow J/\psi K^*$

•
$$B_d^0 \rightarrow J/\psi K_S^0$$

$$\Gamma_d(t) \sim e^{-\Gamma t} (\cosh \frac{\Delta \Gamma_d}{2} t + \cos(2\beta) \sinh \frac{\Delta \Gamma_d}{2} t - A_p \sin(2\beta) \sin(\delta m t))$$

$$\beta$$
 CKM angle, A_p production asymmetry of B_d^0

• $B_d^0 \to J/\psi K^*$ almost insensitive to $\Delta \Gamma_d$

$$\Gamma_d(t) \sim e^{-\Gamma t} \cosh rac{\Delta \Gamma_d}{2} t$$

B_d⁰ production asymmetry

- B_d^0 production asymmetry A_p measured from a charge asymmetry A_{obs} , from a difference between $B_d^0 \to J/\psi K^*$ and $\overline{B}_d^0 \to J/\psi \overline{K}^*$ decays as a function proper decay lengths L_{prop}^B
- Extracted A_{obs}, fig below, includes the asymmetry of K⁺/K⁻ reconstruction efficiency due to interactions in ID.
- ATLAS result $A_p = (0.25 \pm 0.48(stat) \pm 0.05(syst)) \cdot 10^{-2}$ agreement with expectations.

$\Delta\Gamma_d$ result

Figure: Ratio of L_{prop}^{B} distributions of $B_d^0 \to J/\psi K_S^0$ and $B_d^0 \to J/\psi K^*$, fitted to extract $\Delta\Gamma_d$

ATLAS Results

$$(-2.8 \pm 2.2(stat) \pm 1.7(syst)) \cdot 10^{-2}$$
 (7 TeV data)
 $(0.8 \pm 1.3(stat) \pm 0.8(syst)) \cdot 10^{-2}$ (8 TeV data)
 $(-0.1 \pm 1.1(stat) \pm 0.9(syst)) \cdot 10^{-2}$ (Combined)

$\Delta\Gamma_d$ Comparison, Conclusions

Comparison

$$(-0.1 \pm 1.1(stat) \pm 0.9(syst)) \cdot 10^{-2} \text{ (ATLAS Run1)}$$

 $(-4.4 \pm 2.5(stat) \pm 1.1(syst)) \cdot 10^{-2} \text{ (LHCb)}$
 $(1.7 \pm 1.8(stat) \pm 1.1(syst)) \cdot 10^{-2} \text{ (Belle)}$
 $(0.8 \pm 3.7(stat) \pm 1.8(syst)) \cdot 10^{-2} \text{ (Belle)}$

- ATLAS result is consistent with other measurements.
- It is consistent with the SM prediction

$$(0.42 \pm 0.08) \cdot 10^{-2} \text{ (SM)}$$

$$\mathsf{B}^0_\mathsf{s}/\mathsf{B}^0_\mathsf{d} o \mu^+\mu^-$$
 in Run1

$B_s^0/B_d^0 \to \mu^+\mu^-$ Physics motivation

Theory

- Flavour-changing neutral-current processes highly suppressed in SM
- $B_s^0/B_d^0 \to \mu^+\mu^-$ additional helicity suppression.
- SM prediction accurate:
 - Br ($B_s^0 \to \mu^+ \mu^-$) = $(3.65 \pm 0.23) \times 10^{-9}$
 - Br ($B_d^0 \to \mu^+ \mu^-$) =(1.06 ± 0.09) × 10^{-10}

Experiment

- Experimental measurement a viable BSM search
- CMS and LHCb observation of $B_s^0 \to \mu^+ \mu^-$ and evidence of $B_d^0 \to \mu^+ \mu^-$:
- Br $(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$
- Br ($B_d^0 \to \mu^+ \mu^-$) = $(3.9^{+1.6}_{-1.4}) \times 10^{-10}$

17 / 26

Method

Signal

- Select signal di-muon events from data.
- Extract yield using an un-binned maximum- likelihood fit to the data.
- Use control samples to understand background suppression BDT and other cross checks.

Normalise signal to $B^{\mp} \rightarrow J/\psi K^{\pm}$

- Requires knowledge of hadronisation probabilities f₁₁/f_s and f₁₁/f_d
- Use the ATLAS result for $f_s/f_d=0.240\pm0.020$. ATLAS Coll, PRL 11(2015) 262001(arXiv:1507.08925) and assuming isospin symmetry $f_{u}/f_{d}=1$.

18 / 26

Backgrounds

- Continuum Background muons from b, \overline{b} , c, \overline{c} quarks
- Partially Reconstructed Decays:
 - Same Vertex (SV): b \rightarrow s μ^+ qJ/ ψ
 - Same Side (SS) cascades; e.g. b \rightarrow c $\mu\nu_{\mu}$ \rightarrow s(d) $\mu\mu\nu_{\mu}\overline{\nu}_{\mu}$
- Peaking 2-hadron decays, with both hadrons misidentified as muons
- Background suppression use a boosted decision tree (BDT) using signal and background variables. Two types: continuum-BDT and BDT against hadrons misidentified as muons.

Signal Fit result

Fitted signal yields are N (B_s^0) = 16 ±12, N (B_d^0) = 11 ±9 events

Result

Using 25 fb⁻¹ of 7 TeV and 8 TeV proton-proton collision data ATLAS obtains:

$$Br(B_d^0 \to \mu^+ \mu^-) < 4.2 \cdot 10^{-10}$$
 95% *C.L.*
 $Br(B_s^0 \to \mu^+ \mu^-) < 3.0 \cdot 10^{-9}$ 95% *C.L.*
 $Br(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \cdot 10^{-9}$

where the errors include both the statistical and systematic uncertainties.

21 / 26

Comparison, conclusion

- ATLAS is consistent with the LHCb and CMS
- ATLAS consistency with SM is 2.0 σ (computed from toy-experiments)
- Room for NP destructively interfering with the SM

Summary

- Using Run1 LHC data ATLAS made important contributions to CPV, mixing and rare decays of B-hadrons
- Results are consistent with other experiments
- Consistency with SM in all presented cases
- Room for New Physics opened
- Run2 data expected to increase precisions

Backup

Backup Slides

Tagging variables definitions

- efficiency of a tagging method ϵ is the ratio of events tagged by that method to the total number of candidates
- P(B|Q) is a probability to tag a signal event correctly
- Dilution $\mathcal{D} = 2P(B|Q) 1$
- Tagging power of a particular tagging method is defined as $T = \epsilon \mathcal{D}^2$.
- It is also possible to derive an effective average dilution, D, defined as $D = \sqrt{T/\epsilon}$, which removes the efficiency normalisation of the tagging power, and therefore allows the quality of different taggers to be compared.

Tagging: Cone-charge definition

Cone-charge definition:

$$Q_{\mu} = rac{\sum_{i}^{N ext{ tracks}} q_{i} \cdot (p_{ ext{T}i})^{\kappa}}{\sum_{i}^{N ext{ tracks}} (p_{ ext{T}i})^{\kappa}},$$
 (1)

$$\epsilon^{\text{tag}} = \frac{N^{\text{tag}}}{N_B} \tag{2}$$

$$\epsilon^{\text{tag}} = \sum_{i}^{\text{bins}} \epsilon_{i} = \frac{1}{N_{B}} \sum_{i}^{\text{bins}} n_{i}^{\text{tag}}, \tag{3}$$