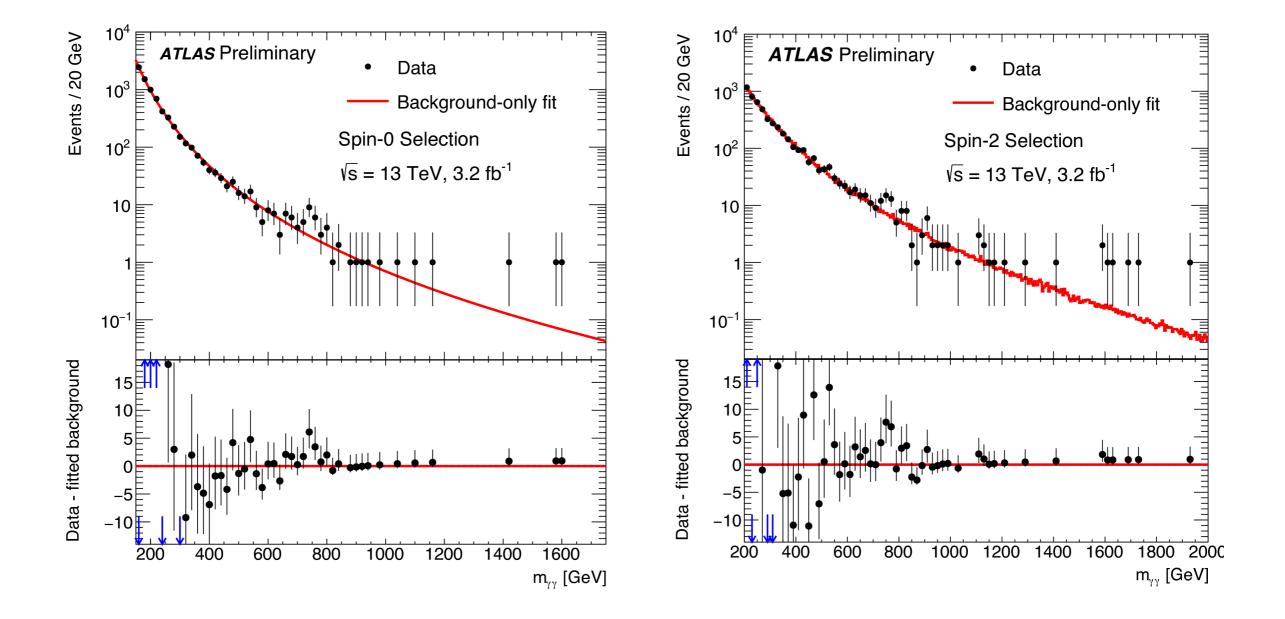
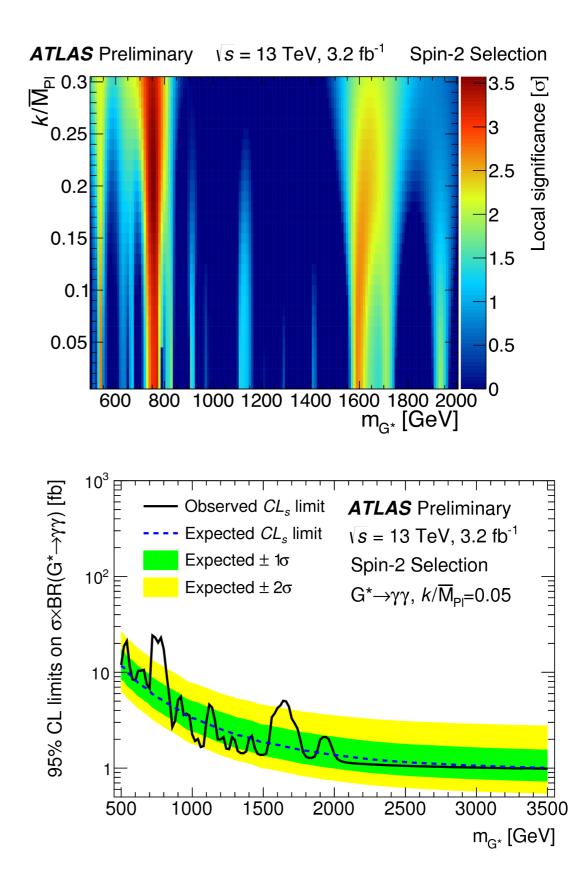
The NMSSM lives -


with the 750 GeV diphoton excess


F. Domingo, S. Heinemeyer, JSK, K. Rolbiecki


IFT Madrid

SUSY 2016, Melbourne

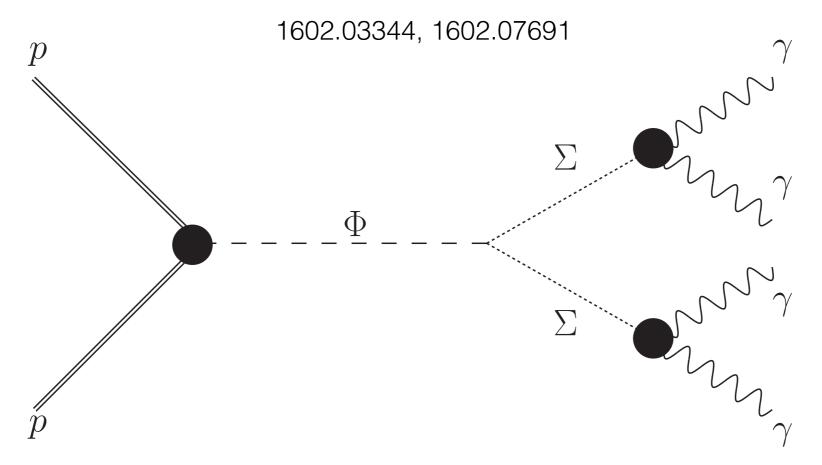
Diphoton Excess @ 750 GeV

ATLAS

- mγγ=750 GeV
- Γ=45 GeV
- local significance: 3.6-3.9 sigma local significance: 2.9 sigma lacksquare
- global significance: 1.8-2.0 sigma
- best compatibility with 8 TeV for ulletspin 0 in gluon gluon fusion with 1.2 sigma
- kinematics similar to background

CMS

- mγγ=760 GeV
- narrow resonance
- - global significance:≤1 sigma
 - combined 8+13 TeV and NWA: 3.4 sigma


How to explain the excess... ...in SUSY

- a heavy SM like Higgs cannot explain the excess, since sigma*BR≈0.0001 fb but O(10) fb is required
- large enhancement is required
- in extended Higgs models such as in the MSSM, H and A are mass degenerate (750 GeV Higgs) and do not decay into gauge bosons but still couples to top (tanβ suppressed) and to bottom (tanβ enhanced)
- the tree level decay into fermions will dominate
- loops of SUSY particles cannot sufficiently enhance the signal rate
- the MSSM (with no new matter) cannot accommodate the excess

How to explain the excess... ...in SUSY

- however, threshold enhancement, i.e. sparticles close to threshold in the loop leads to Coloumb singularity (1603.04464)
- heavy finetuning needed, chargino width≈O(keV)
- stopponium production (1605.00013)
- resonant sneutrino production via LQD operator and decay via LLE operator to diphoton induced by stau loop (1512.07645)
- sgoldstino coupling to gluons and photon in models with very low SUSY breaking scales (1512.07895)

The Idea

- each photon corresponds to a light (pseudo)scalar decaying into a pair of photons
- PS must be sufficiently light ($\approx \pi$ mass), so that the resulting photons are collinear

NMSSM

• we consider a scale invariant NMSSM

$$W_{\rm Higgs} = \lambda S H_u H_d + \frac{\kappa}{3} S^3$$

the corresponding soft breaking terms

$$\mathcal{L}_{\text{soft}} = -\lambda A_{\lambda} H_u H_d S - \frac{1}{3} A_{\kappa} S^3 + \dots$$

- in the NMSSM, the μ parameter is generated via $\mu{=}\lambda{<}s{>}$

Is a light pseudoscalar natural?

- a light PS can be identified as a pseudo Goldstone boson of an approximate symmetry of the Higgs sector
- for $\kappa \to 0$: the Higgs potential is invariant under a U(1) Peccei-Quinn symmetry
- for $A_{\kappa}, A_{\lambda} \to 0$: Higgs sector is R invariant. It is broken by radiative corrections

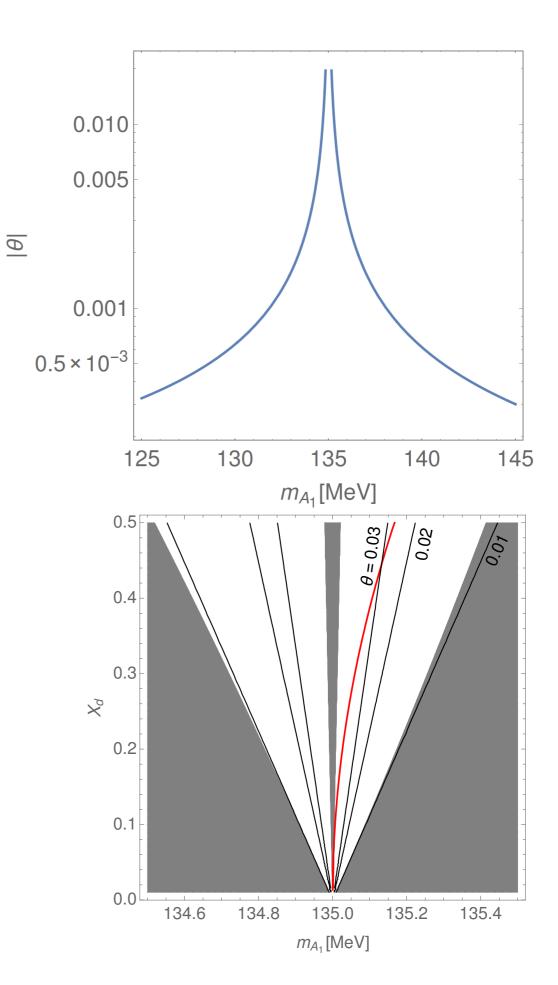
Identifying the light PS state

 tree level squared squared mass matrix for NMSSM CP-odd sector in the doublet singlet basis

$$\mathcal{M}_{P}^{2} = \begin{bmatrix} M_{A}^{2} & -3\kappa\mu v \left(1 - \frac{\lambda}{6\kappa} \frac{M_{A}^{2}}{\mu^{2}} \sin 2\beta\right) \\ -3\kappa\mu v \left(1 - \frac{\lambda}{6\kappa} \frac{M_{A}^{2}}{\mu^{2}} \sin 2\beta\right) & m_{A_{S}}^{2} \end{bmatrix} ,$$
$$m_{A_{S}}^{2} \equiv 3\frac{\kappa}{\lambda}\mu \left[-A_{\kappa} + \frac{\lambda^{2}v^{2}}{2\mu} \sin 2\beta \left(1 + \frac{\lambda}{6\kappa} \frac{M_{A}^{2}}{\mu^{2}} \sin 2\beta\right) \right]$$

- mass of A_S is determined by Akappa
- a very small value of Akappa provides a candidate!

A candidate for a light pseudoscalar


- the singlet PS mass is largely determined by A_κ
- low values ensures that the singlet PS is light
- the diphoton decay rate is suppressed as long as hadronic and muonic decay modes are kinematically possible
- diphoton BR of 70% below the muon threshold
- however, the decay length is 2cm in rest frame for a singlet with 200 MeV
- including boost factor, decay length is 40m! The singlet becomes invisible at the LHC (decay length)

However,...

- the partonic picture is too simple!
- hadronic effects will affect the light singlet PS decays
- the Higgs PS can mix with PS mesons such as the pion or eta mesons
- the mixing can be estimated with chiral perturbation theory and axial-flavor currents

- mixing is only relevant in the immediate mass vicinity of the mesons
- a mixing of order 0.01 requires a mass splitting of roughly MeV
- the mixing has dramatic consequences on the decay pattern
- the decay width into diphoton of the light PS singlet via its pion component increases by 2 orders of magnitude
- the light singlet PS can now decay before reaching ECAL!

 $X_d = P_d(\tan\beta^{-1} - \tan\beta)$

Identifying the 750 GeV state

 tree level squared squared mass matrix for NMSSM CP-even sector the basis,

 $(H_{\rm SM} = \cos\beta h_d + \sin\beta h_u, H_D = -\sin\beta h_d + \cos\beta h_u, H_S = h_s)$

$$\mathcal{M}_{S}^{2} = \begin{bmatrix} M_{Z}^{2}\cos^{2}2\beta + \lambda^{2}v^{2}\sin^{2}2\beta & (\lambda^{2}v^{2} - M_{Z}^{2})\sin 2\beta\cos 2\beta & 2\lambda\mu v \left[1 - \left(\frac{M_{A}\sin 2\beta}{2\mu}\right)^{2}\right] \\ (\lambda^{2}v^{2} - M_{Z}^{2})\sin 2\beta\cos 2\beta & M_{A}^{2} + (M_{Z}^{2} - \lambda^{2}v^{2})\sin^{2}2\beta & -\frac{\lambda v}{2\mu}M_{A}^{2}\sin 2\beta\cos 2\beta \\ 2\lambda\mu v \left[1 - \left(\frac{M_{A}\sin 2\beta}{2\mu}\right)^{2}\right] & -\frac{\lambda v}{2\mu}M_{A}^{2}\sin 2\beta\cos 2\beta & m_{H_{S}}^{2} \end{bmatrix} ,$$

$$m_{H_{S}}^{2} \equiv \left(\frac{2\kappa}{\lambda}\mu\right)^{2} \left[1 + \frac{\lambda A_{\kappa}}{4\kappa\mu}\right] - \frac{\kappa\lambda}{2}v^{2}\sin 2\beta \left[1 - \frac{\lambda M_{A}^{2}}{\kappa\mu^{2}}\right]$$

 the doublet state would give the correct production cross section

However,...

the decay widths of the heavy resonance

$$\begin{split} \Gamma[\Phi \to t\bar{t}] &\sim \frac{3G_F m_t^2}{4\sqrt{2}\pi} m_{\Phi} \left(1 - 4\frac{m_t^2}{m_{\Phi}^2}\right)^{3/2} \left(\frac{g_{\Phi t\bar{t}}}{g_{\Phi t\bar{t}}^{\rm SM}}\right)^2 &\sim (30 \text{ GeV}) \left(\frac{g_{\Phi t\bar{t}}}{g_{\Phi t\bar{t}}^{\rm SM}}\right)^2 \\ \Gamma[\Phi \to b\bar{b}] &\sim \frac{3G_F m_b^2}{4\sqrt{2}\pi} m_{\Phi} \left(1 - 4\frac{m_b^2}{m_{\Phi}^2}\right)^{3/2} \left(\frac{g_{\Phi b\bar{b}}}{g_{\Phi b\bar{b}}^{\rm SM}}\right)^2 &\sim (0.03 \text{ GeV}) \left(\frac{g_{\Phi b\bar{b}}}{g_{\Phi b\bar{b}}^{\rm SM}}\right)^2 \\ \Gamma[\Phi \to A_1 A_1] &= \frac{g_{\Phi A_1 A_1}^2}{32\pi m_{\Phi}} \sqrt{1 - 4\frac{m_{A_1}^2}{m_{\Phi}^2}} \simeq (1 \cdot 10^{-5} \text{ GeV}^{-1}) g_{\Phi A_1 A_1}^2 \end{split}$$

- for CP even doublet coupling to CP odd Higgs $g_{H_DA_1A_1} \sim \sqrt{2}\lambda(\lambda + \kappa)\cos 2\beta v, \quad \lambda, \kappa = O(0.1)$
- fermionic SM decay modes are dominant!

On the other hand,...

the decay widths can be estimated as:

$$\begin{split} \Gamma[\Phi \to t\bar{t}] &\sim \frac{3G_F m_t^2}{4\sqrt{2}\pi} m_{\Phi} \left(1 - 4\frac{m_t^2}{m_{\Phi}^2} \right)^{3/2} \left(\frac{g_{\Phi t\bar{t}}}{g_{\Phi t\bar{t}}^{\rm SM}} \right)^2 \sim (30 \text{ GeV}) \left(\frac{g_{\Phi t\bar{t}}}{g_{\Phi t\bar{t}}^{\rm SM}} \right)^2 \\ \Gamma[\Phi \to b\bar{b}] &\sim \frac{3G_F m_b^2}{4\sqrt{2}\pi} m_{\Phi} \left(1 - 4\frac{m_b^2}{m_{\Phi}^2} \right)^{3/2} \left(\frac{g_{\Phi b\bar{b}}}{g_{\Phi b\bar{b}}^{\rm SM}} \right)^2 \sim (0.03 \text{ GeV}) \left(\frac{g_{\Phi b\bar{b}}}{g_{\Phi b\bar{b}}^{\rm SM}} \right)^2 \\ \Gamma[\Phi \to A_1 A_1] &= \frac{g_{\Phi A_1 A_1}^2}{32\pi m_{\Phi}} \sqrt{1 - 4\frac{m_{A_1}^2}{m_{\Phi}^2}} \simeq (1 \cdot 10^{-5} \text{ GeV}^{-1}) g_{\Phi A_1 A_1}^2 \end{split}$$

for CP even singlet coupling to CP odd Higgs

$$g_{\Phi A_1 A_1} \leftarrow g_{H_S A_1 A_1} \sim \sqrt{2}\kappa \left(2\frac{\kappa}{\lambda}\mu - A_\kappa\right)$$

we can obtain the correct partial width of O(1) GeV

The heavy resonance

- we want to identify the heavy resonance with the heavy Higgs states
- we require large production cross sections while having large BR into the light singlet PS
- there are two candidates

1) "MSSM" like scalar, $M_A \approx 750 \,\text{GeV}$ 2) the singlet like scalar, $H_S \approx 2 \frac{\kappa}{\lambda} \mu \approx 750 \,\text{GeV}$

- the SU(2) doublet Higgs potentially has a large production cross section
- the SU(2) singlet Higgs has a large BR into the light singlet PS
- idea: if both scalars are sufficiently close in mass, they will mix -> large production and large BR into A1A1
- they appear as a single excess for small mass splitting
- the excess would appear as a broad resonance

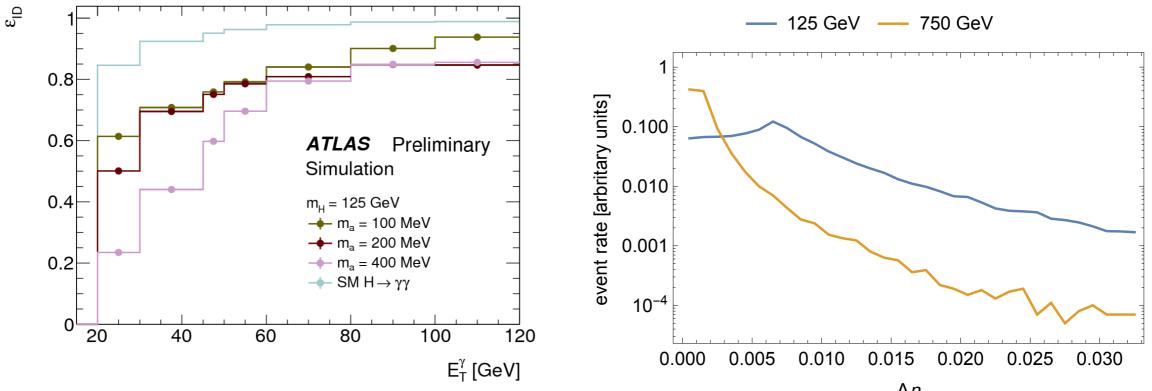
Our scenario

- a light singlet PS with mass ≈135 MeV mixing with π resulting in large decay width into diphotons and BR(PS->diphoton)=0.99
- we have a SU(2) doublet scalar and a singlet scalar with mass $\approx\!750~GeV$

• both mixes
$$H_{2,3} \sim \frac{1}{\sqrt{2}} (H_D \pm H_S) = m_{H_3} - m_{H_2} |_{\min} \simeq \frac{\kappa v}{2} |\sin 4\beta|$$

- both have a large branching ratio into the light PS
- production via ggF or associated production via b quarks

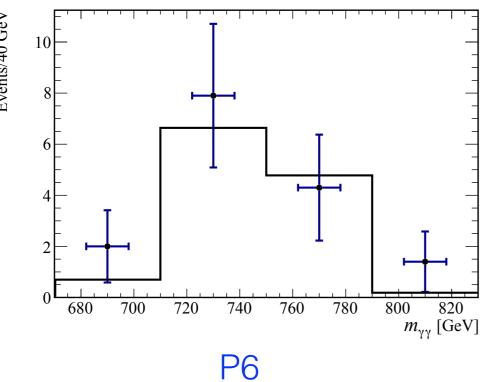
Constraints

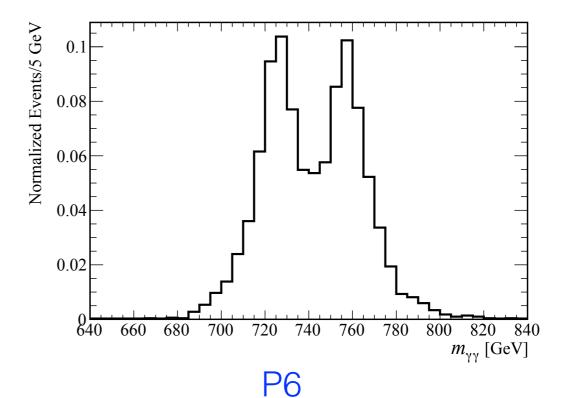

- decay length of the light singlet PS must be less than ≈1m, i.e. it must decay before it reaches the ECAL
- BR[H_SM->A1 A1]≤1%, since otherwise our scenario will be incompatible with the SM Higgs
- however, we need large BR[H2->A1A1], which requires $A_{\lambda} \approx 0$
- b physics constraints, e.g. B->Ke+e-
- other meson constraints such as K->πe+e- and radiative upsilon decays
- constraints from dump experiments such as the CHARM search for axions

Collider Analysis

Benchmark points

	P2	P6
lambda	0.08	0.21
kappa	0.2	0,3
tanbeta	10	5
mu [GeV]	150	296.5
MA [GeV]	784	785.5
Akappa [GeV]	0.0057	0.15
mH1 [GeV]	124	125
mH2 [GeV]	741	734
mH3 [GeV]	758	759
mA1 [GeV]	0,135	0,135
mA2 [GeV]	750	750
sigma(fb) @8TeV	1.6	2.2
sigma(fb) @13TeV	8.5	10.2
BR[H1->A1A1]	0,00007	0,000003
BR[H2->A1A1]	0,306	0,373
BR[H3->A1A1]	0,231	0,226

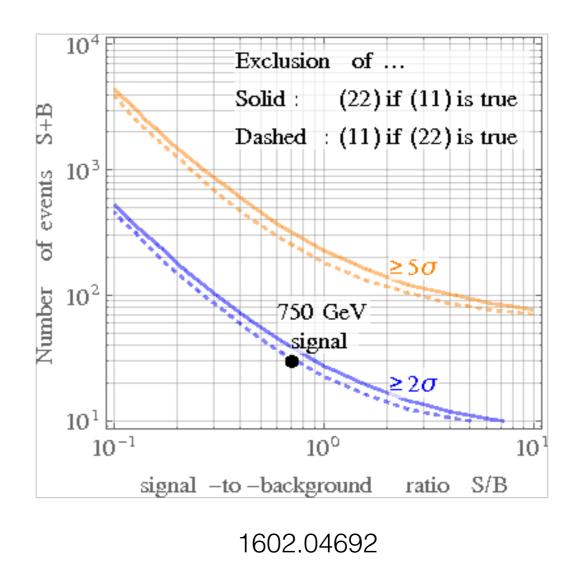

Collider analysis



- efficiency of reconstructing a single photon is high $\approx 90\%$
- collimation is highly sensitive to the resonance mass
- we generated truth level events and passed them to a fast detector simulation and we implemented the ATLAS and CMS searches with <u>CheckMATE</u>

Collider analysis

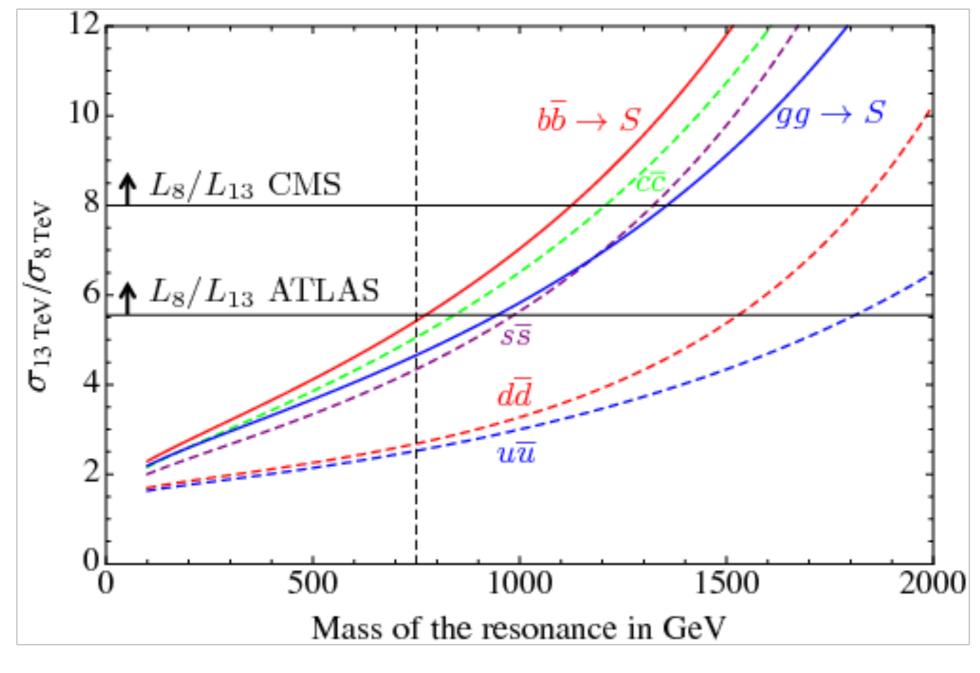
Search	sig.	S95	P2	P6
ATLAS13	16.6	27	10.3	12.3
CMS13 EBEB	4.5	12.8	10.5	12.6
CMS13EBEE	0	9.5	4	4.7



Future directions

- photon jets can be distinguished from isolated photons since photons convert to e+e- pairs with high probability (40%)
- for photon jets the probability is higher than for isolated photons
- photon conversion might be exploited to determine the decay length of the PS

Conclusion


- we explained the diphoton excess within the NMSSM without invoking new exotic particles
- pp -> H2 (H3) -> A1 A1 -> γγγγ
- the photons in A1-> γ γ appear as a single photon for m(A1)≤500 MeV
- the decay width into diphoton has been significantly increased via mixing with pions, i.e. m(A1)≈m(π)
- we satisfy all low energy constraints
- we do not expect ZZ and Zγ final states

Backup slides

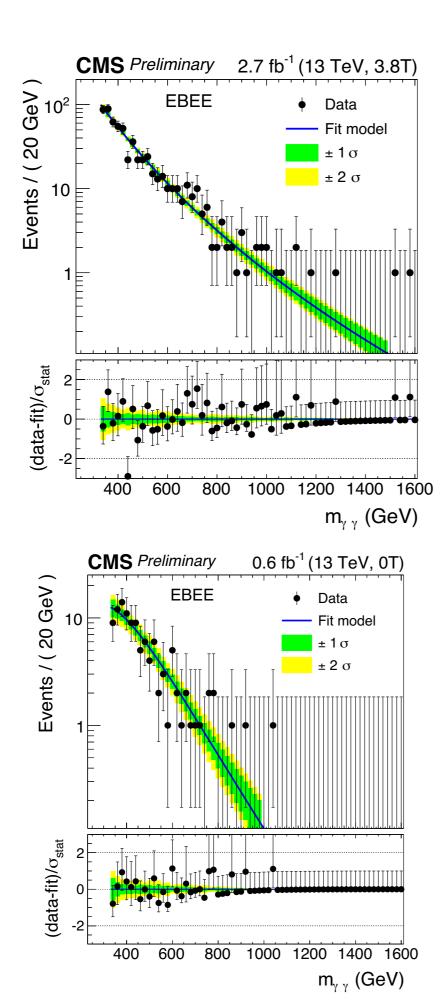
	P1	P2	P3	P4	P5	P6	P7	P8	P9
			Parameters						
λ	0.1	0.08	0.08	0.06	0.15	0.21	0.2	0.13	0.05
κ	0.25	0.2	0.24	0.22	0.19	0.265	0.2	0.26	0.17
$\tan \beta$	10	10	12	15	5	5	4	8	14
μ (GeV)	150	150	127	103	296	296.5	375	188	110
$M_A (\text{GeV})$	760	784	780	775	785.5	785.5	810	770	765
A_{κ} (GeV)	0.003059	0.0573065	0.0151443	0.0012258	0.149903	0.303953	0.4206824	0.025274	-0.0017404
$m_{\tilde{O}}$ (TeV)	1.75	10	3	3	10	10	15	3	2
A_t (TeV)	-4	-8.519135	-5	-5	-16	-14	-35	-6	-4
$m_{\tilde{L}}$ (TeV)	0.3	0.3	0.3	0.3	0.305	0.32	0.4	0.4	0.4
M_2 (TeV)	1	1	2	1	1	1	1	1	1
				Higgs spe	ctrum				
m_{H_1} (GeV)	124	125	125	125	125	124	125	125	125
$m_{H_2}~({ m GeV})$	741	740	753	748	734	726	733	738	744
m_{H_3} (GeV)	758	754	766	758	757	759	763	760	753
m_{A_1} (GeV)	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
$m_{A_2}~({ m GeV})$	750	747	759	752	744	744	750	749	750
$m_{H^{\pm}}$ (GeV)	754	751	763	757	747	746	753	753	754
			A_1 mixing						
P_d	0.023	0.019	0.018	0.014	0.036	0.050	0.047	0.031	0.012
				Higgsi	nos				
$m_{ ilde{\chi}_1^0}~({ m GeV})$	147	149	124	100	294	294	370	185	107
$m_{ ilde{\chi}^0_2}~({ m GeV})$	158	160	135	111	310	311	393	197	117
$m_{ ilde{\chi}_1^\pm}~({ m GeV})$	152	155	130	105	303	303	384	191	112

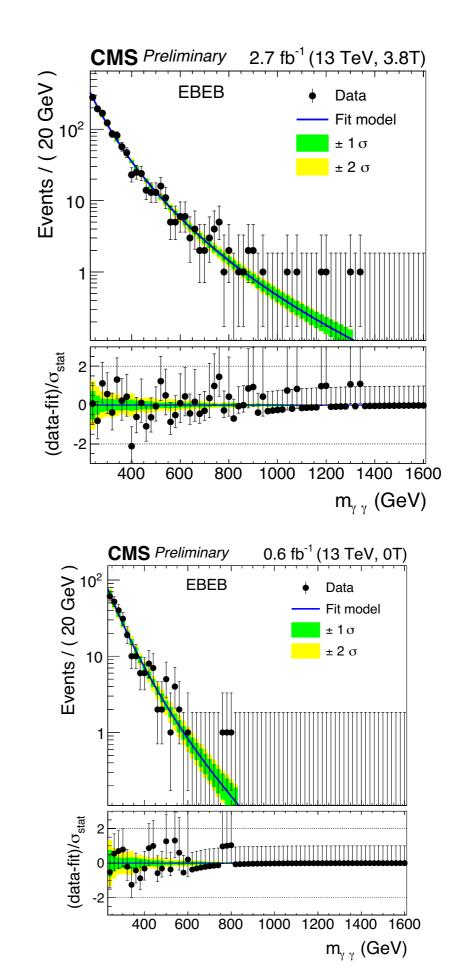
	P1	P2	P3	P4	P5	P6	P7	P8	P9
			Higgs decays						
$BR[H_1 \to A_1 A_1]$	$7 \cdot 10^{-6}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-5}$	$9 \cdot 10^{-6}$	$3\cdot 10^{-6}$	$3 \cdot 10^{-7}$	$8\cdot 10^{-6}$	$1 \cdot 10^{-6}$	$5 \cdot 10^{-6}$
Γ_{H_2} (GeV)	1.60	1.53	2.04	2.71	1.30	1.53	1.29	1.37	1.41
$BR[H_2 \rightarrow A_1A_1]$	0.306	0.174	0.188	0.113	0.190	0.373	0.288	0.363	0.186
$BR[H_2 \rightarrow b\overline{b}]$	0.332	0.397	0.439	0.527	0.117	0.087	0.056	0.269	0.599
$BR[H_2 \rightarrow t\bar{t}]$	0.094	0.121	0.064	0.032	0.533	0.357	0.551	0.186	0.046
$BR[H_2 \rightarrow \tau \bar{\tau}]$	0.048	0.058	0.064	0.077	0.017	0.013	0.008	0.039	0.087
$BR[H_2 \rightarrow \tilde{h}\tilde{h}]$	0.012	0.004	0.003	0.003	0.021	0.040	0	0.027	0.002
Γ_{H_3} (GeV)	1.92	1.55	2.00	2.28	1.52	2.09	2.27	1.71	2.05
$BR[H_3 \rightarrow A_1A_1]$	0.231	0.213	0.247	0.185	0.191	0.226	0.099	0.301	0.082
${ m BR}[H_3 o b \overline{b}]$	0.279	0.292	0.327	0.427	0.073	0.062	0.043	0.182	0.608
$BR[H_3 \rightarrow t\bar{t}]$	0.096	0.104	0.055	0.029	0.452	0.395	0.655	0.162	0.052
$BR[H_3 \rightarrow \tau \overline{\tau}]$	0.041	0.043	0.048	0.062	0.011	0.009	0.006	0.027	0.089
$BR[H_3 \rightarrow hh]$	0.165	0.154	0.135	0.090	0.112	0.123	0.002	0.222	0.087
Γ_{A_2} (GeV)	2.40	2.37	3.02	4.19	2.18	2.30	2.83	1.80	2.99
$BR[A_2 \rightarrow \tau \tau]$	0.065	0.065	0.075	0.084	0.018	0.016	0.009	0.055	0.102
			Hi	ggs produc	tion				
$\sigma^{ggf}_{8{ m TeV}}[H_2]~({ m fb})$	0.60	0.74	0.50	0.50	3.07	2.62	3.23	1.01	0.34
$\sigma^{bbh}_{ m 8TeV}[H_2]~({ m fb})$	3.90	4.53	5.98	9.91	1.21	1.13	0.58	2.78	6.01
$\sigma^{ggf}_{8 \text{TeV}}[H_3] \text{ (fb)}$	0.60	0.55	0.35	0.32	2.40	2.84	5.02	0.88	0.48
$\sigma^{bbh}_{\rm 8TeV}[H_3]$ (fb)	3.37	3.00	3.84	6.17	0.71	0.82	0.59	1.95	8.20
$\sigma_{13\text{TeV}}^{ggf}[H_2] \text{ (fb)}$	2.62	3.25	2.21	2.15	10.36	11.52	14.33	4.47	1.49
$\sigma_{13\text{TeV}}^{bbh}[H_2] \text{ (fb)}$	20.70	24.08	32.14	53.05	6.35	5.89	3.03	14.72	32.05
$\sigma^{ggf}_{13\text{TeV}}[H_3] \text{ (fb)}$	2.66	2.45	1.57	1.39	10.87	12.90	22.88	3.97	2.12
$\sigma^{bbh}_{13{ m TeV}}[H_3]$ (fb)	18.21	16.17	20.95	34.00	3.86	4.46	3.23	10.54	44.11
$\sigma^{ggf}_{13{ m TeV}}[A_2] ext{ (fb)}$	12.97	13.42	10.46	10.14	37.73	37.79	53.74	17.10	10.41
$\sigma_{13\text{TeV}}^{bbh}[A_2] \text{ (fb)}$	38.62	40.05	52.81	86.19	10.19	10.20	6.25	25.01	75.85
			$\gamma\gamma$ @750 GeV						
$\sigma_{\rm 8TeV}^{\rm incl}$ (fb)	2.2	1.6	2.5	2.32	1.37	2.18	1.61	2.23	1.85
$\sigma_{13{ m TeV}}^{ m incl}~({ m fb})$	11.7	8.5	13.55	12.48	5.83	10.17	7.40	11.06	9.80

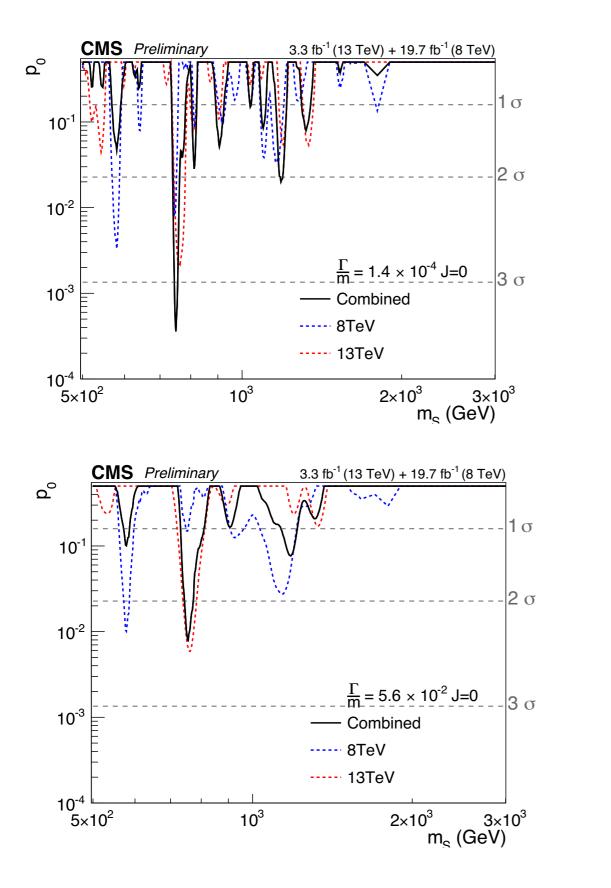
bb versus gg

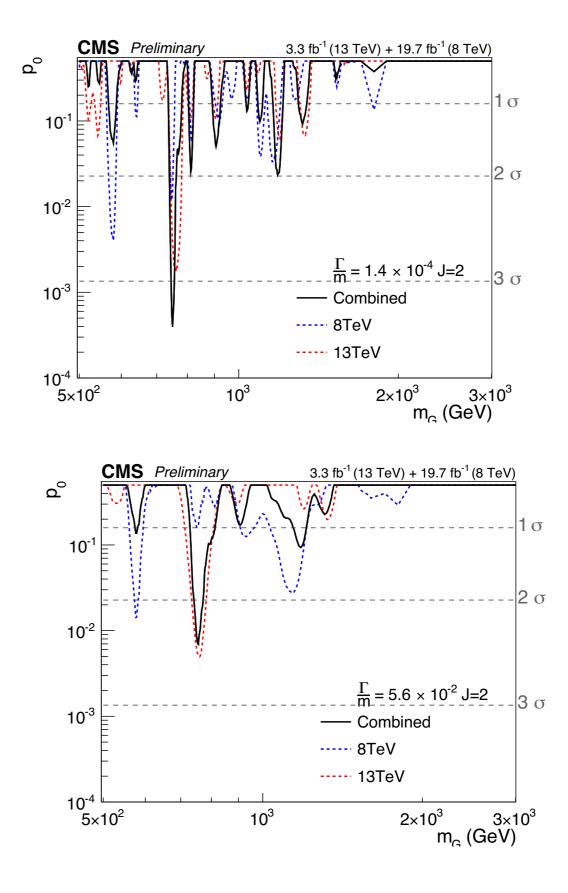
1512.04933

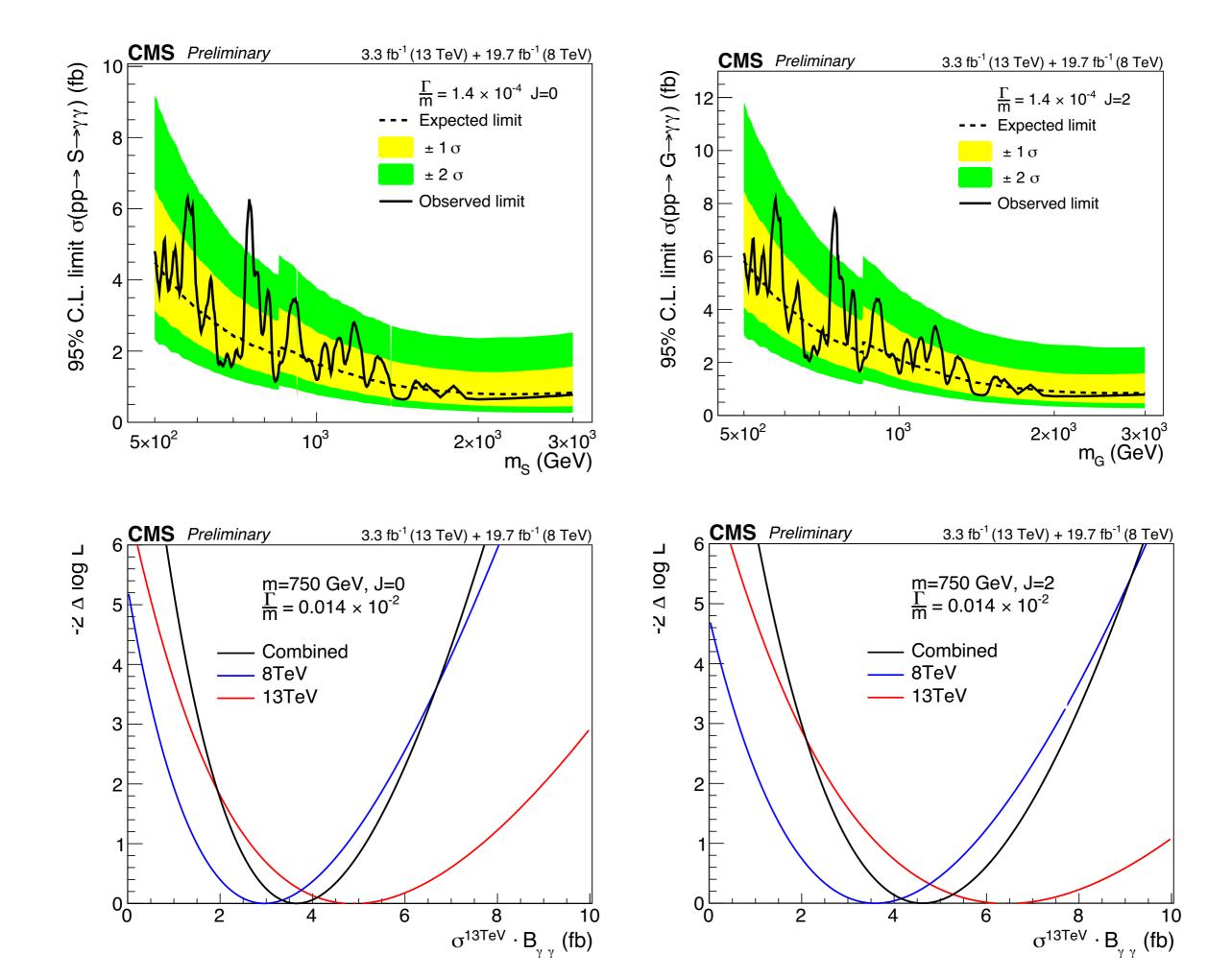
SM Higgs Constraints

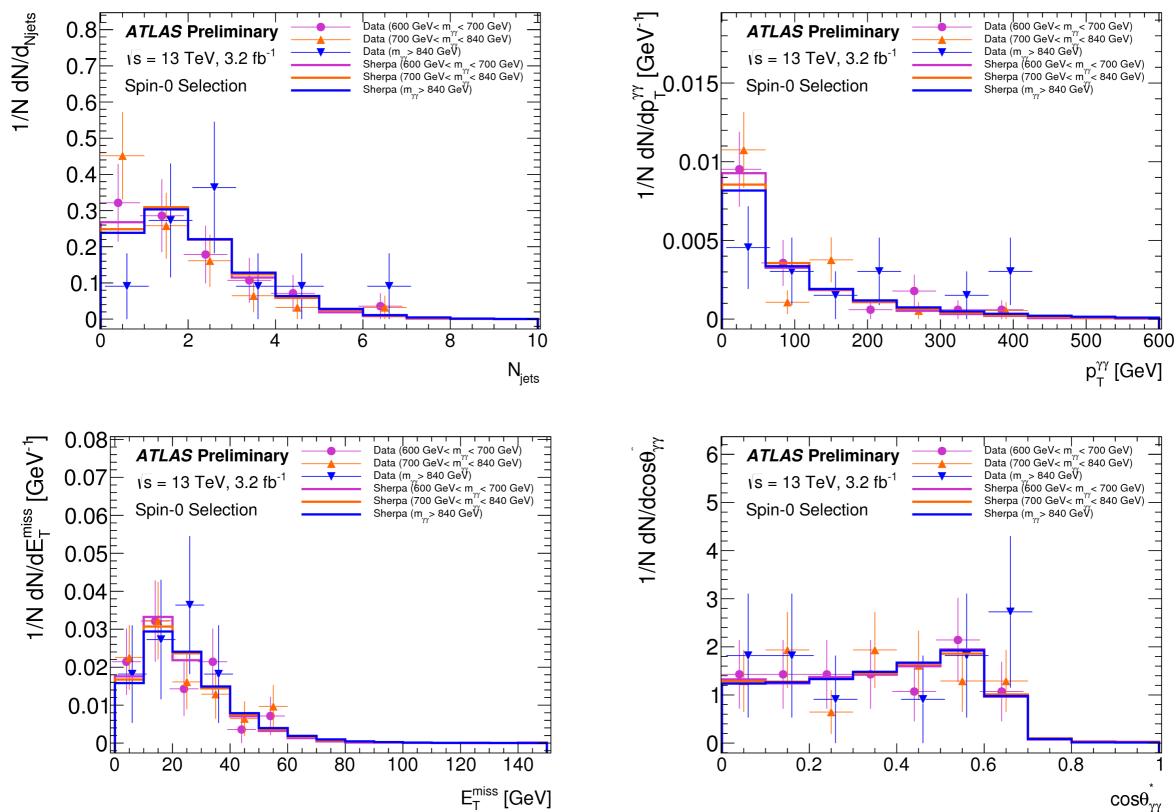

- 125 GeV Higgs scalar has SM like properties
- however, it can also decay into the light PS!


$$\Gamma[H_{\rm SM} \to A_1 A_1] = \frac{g_{H_{\rm SM} A_1 A_1}^2}{32\pi m_{H_{\rm SM}}} \sqrt{1 - 4\frac{m_{A_1}^2}{m_{H_{\rm SM}}^2}} \simeq (8 \cdot 10^{-5} \text{ GeV}^{-1}) g_{H_{\rm SM} A_1 A_1}^2$$


this decay must be heavily suppressed


 $\Gamma(H_{\rm SM} \to A_1 A_1) \ll \Gamma_{\rm SM} \cdot {\rm BR}^{\rm SM}({\rm H}_{\rm SM} \to \gamma\gamma) \sim 8 \cdot 10^{-6} {\rm GeV}$


- the following condition arises, $\lambda^2 \left[1 \frac{2\kappa}{\lambda} \sin 2\beta \right] \le \cdot 10^{-3}$
- can be motivated from R-symmetry, $A_{\lambda} \simeq -\frac{M_A}{2} \left[1 \frac{2\kappa}{\lambda} \sin 2\beta \right]$



NMSSM

 the whole Higgs sector can be parametrized with six parameters

 $\lambda, \kappa, A_{\lambda}, A_{\kappa}, \mu, \tan \beta$

We trade A_{λ} with M_A

 $\lambda, \kappa, M_A, A_\kappa, \mu, \tan \beta$

where

$$M_A^2 = \frac{2\lambda s}{\sin 2\beta} (A_\lambda + \kappa s)$$