Search for supersymmetry in events with photons and missing transverse momentum

Johannes Schulz on behalf of the CMS collaboration

RWTH Aachen University

July 5, 2016 SUSY 2016 Conference, Melbourne

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

 $\gamma + E_{\rm T}^{\rm miss}$ final states well motivated in Gauge Mediated Supersymmetry breaking (GMSB) SUSY scenarios

- Gravitino \widetilde{G} (essentially massless) is LSP
- $\widetilde{\chi}_1^0$ is NLSP and promptly decaying
- Esp. bino NLSPs decay with high probability to $\gamma + \tilde{G}$
- **R-Parity conservation** \rightarrow stable LSPs lead to E_{τ}^{miss}
- If strong production \rightarrow high jet activity

•0

Summary

Motivation and Overview

 $\gamma + E_{
m T}^{
m miss}$ final states well motivated in Gauge Mediated Supersymmetry breaking (GMSB) SUSY scenarios

- Gravitino \widetilde{G} (essentially massless) is LSP
- ullet $\widetilde{\chi}_1^0$ is NLSP and promptly decaying
- Esp. bino NLSPs decay with high probability to $\gamma + \tilde{G}$
- R-Parity conservation \rightarrow stable LSPs lead to $E_{\rm T}^{\rm miss}$
- If strong production → high jet activity

B.R. of bino-like NLSP $\frac{\chi^2}{M} \rightarrow \gamma + \tilde{G}$ $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.8 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.6 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.7 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.7 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.8 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.9 $\frac{\chi^2}{M} \rightarrow Z + \tilde{G}$ 0.9

Public photon results:

Motivation

•0

Reference	Title	Journal (Date)
SUS-15-012	Search for supersymmetry in events with	PAS
	photons and missing transverse energy	(April 2016)
SUS-14-016	Search for supersymmetry in electroweak production with photons	PLB 759 (2016)
	and large missing transverse energy in pp collisions at $\sqrt{s}=8$ TeV	(28 February 2016)
SUS-14-017	Search for SUSY with Higgs in the diphoton	PAS
	final state using the razor variables	(August 2015)
SUS-14-013	Search for supersymmetry in events with a photon, a lepton,	PLB 757 (2016) 6
	and missing transverse momentum in pp collisions at $\sqrt{s}=8$ TeV	(5 August 2015)
SUS-14-004	Search for supersymmetry with photons	PRD 92 (2015) 072006
	in pp collisions at $\sqrt{s}=8$ TeV	(10 July 2015)
SUS-14-009	Search for stealth supersymmetry in events with jets, either photons or	PLB 743 (2015) 503
	leptons, and low missing transverse momentum in pp collisions at 8 TeV	(26 November 2014)

Motivation and Overview

 $\gamma + E_{\rm T}^{\rm miss}$ final states well motivated in Gauge Mediated Supersymmetry breaking (GMSB) SUSY scenarios

- ullet Gravitino \widetilde{G} (essentially massless) is LSP
- $\widetilde{\chi}_1^0$ is NLSP and promptly decaying
- Esp. bino NLSPs decay with high probability to $\gamma + G$
- **R-Parity conservation** \rightarrow stable LSPs lead to $E_{\mathsf{T}}^{\mathsf{miss}}$
- If strong production \rightarrow high jet activity

"Parked Data":

- significantly lower trigger thresholds, reconstructed after data taking in 2012
- $\int \mathcal{L} \, dt = 7.4 \, \text{fb}^{-1}, \, \sqrt{s} = 8 \, \text{TeV}$
- Signal trigger: isolated γ with $p_T > 30$ GeV + $E_T^{miss} > 25$ GeV
- Baseline triggers: isolated γ with $p_{\rm T}~>$ 30 GeV, $E_{\rm T}^{\rm miss}>100$ GeV
- $\bullet \ \varepsilon_{\rm trigger} = \varepsilon_{E_{\rm T}^{\rm miss}\text{-req.}} \cdot \varepsilon_{\gamma\text{-req.}} = (86.5^{+1.0}_{-1.3}({\rm stat.})) \ \%$
- \rightarrow Higher sensitivity to electroweak production and small mass differences of the lightest gauginos

Single Photon \sim Selection

Preselection:

Motivation

- \bullet \geq 1 γ with p_{T} > 40 GeV
- \bullet $E_{\rm T}^{\rm miss}$, $H_{\rm T}~>100~{
 m GeV}$

Single Photon \sim Selection

Preselection:

Motivation

- \bullet \geq 1 γ with p_{T} > 40 GeV
- $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100$ GeV
- Signal region:
 - $E_{\rm T}^{\rm miss, signif} > 80$

 $E_{\rm T}^{\rm miss}$ significance:

Preselection:

Motivation

- ullet \geq 1 γ with $p_{
 m T}$ > 40 GeV
- $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100$ GeV
- Signal region:
 - $E_{\rm T}^{\rm miss, signif} > 80$

 $E_{\rm T}^{\rm miss}$ significance:

Single Photon \sim Selection

- Preselection:
 - $\bullet \geq 1 \gamma$ with $p_{\rm T} > 40$ GeV
 - $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100$ GeV
- Signal region:
 - $E_{\tau}^{\text{miss,signif}} > 80$

 $E_{\rm T}^{\rm miss}$ significance:

Single Photon ∼ Selection

Preselection:

Motivation

- \bullet \geq 1 γ with p_{T} > 40 GeV
- $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100 \; {\rm GeV}$
- Signal region:
 - $E_{\rm T}^{\rm miss, signif} > 80$

Johannes Schulz

Preselection:

Motivation

- $\bullet \geq 1 \gamma$ with $p_{\rm T} > 40$ GeV
- $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100$ GeV
- Signal region:
 - $E_{\rm T}^{\rm miss, signif} > 80$
 - $M_T(1st \gamma, E_T^{miss}) > 300 \text{ GeV}$

Preselection:

Motivation

- $\bullet \geq 1 \gamma$ with $p_{\rm T} > 40$ GeV
- $E_{\rm T}^{\rm miss}$, $H_{\rm T} > 100$ GeV
- Signal region:
 - $E_{\tau}^{\text{miss,signif}} > 80$
 - M_T(1st γ, E_T^{miss}) > 300 GeV
- Control region:
 - $E_{\tau}^{\text{miss,signif}} > 10$
 - $M_T(1st \gamma, E_T^{miss}) > 100 \text{ GeV}$

 $E_{\mathrm{T}}^{\mathrm{miss,signif}}$

Single Photon ∼ **Background prediction**

MC normalization in control region for $V\gamma$ and γ +jets:

Main backgrounds:

- $\nabla \gamma (\nabla \gamma + \nabla \gamma)$ LO MADGRAPH + NLO correction
- γ+jets LO MadGraph

Estimation method:

- $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$ separates the shapes of $\mathrm{V}\gamma$ and $\gamma+\mathrm{iets}$
- Fix other backgrounds
- Fix total scale
- Vary scales of V γ and γ +jets and do χ^2 -test

Resulting scale factors:

• $V\gamma$: 0.94 \pm 0.23 (dominant uncert.)

• γ +jets: 2.20 \pm 0.31

Subdominant backgrounds:

• e $\rightarrow \gamma$ fakes: data driven (11% uncert.) scaling e control sample by fake probability

t̄t̄γ, Diboson (WW, WZ, ZZ):
 MC simulation (26-50% uncert.)

PLB 759 (2016), arXiv:1602.08772

Single Photon ∼ Interpretation (SMS)

TChiNg:

- \bullet M_{NLSP} < 570 GeV excluded
- First limit in this scenario

Motivation Single Photon Diphoton Summary 000000

Single Photon \sim Interpretation (SMS)

TChiWg: TChiNg:

- $M_{NLSP} < 570 \text{ GeV}$ excluded
- First limit in this scenario

- M_{NLSP} < 680 GeV excluded
- Improving on other 8 TeV results by 140 GeV

- $\bullet \ \ \mathsf{M}_{\mathsf{wino}} \triangleq \mathsf{M}_{\chi_2^0}, \ \mathsf{M}_{\chi_1^\pm} \ \ \mathsf{and} \ \ \mathsf{M}_{\mathsf{bino}} \triangleq \mathsf{M}_{\chi_1^0}$
- \bullet Analysis sensitive to electroweak production with mass splittings of M_{wino} and M_{bino} up to 200 GeV

CMS

Single Photon \sim Interpretation (GGM)

7.4 fb - 1 (8 TeV) ≥1 v + ME1

- $M_{\text{wino}} \triangleq M_{\chi_2^0}$, $M_{\chi_1^{\pm}}$ and $M_{\text{bino}} \triangleq M_{\chi_1^0}$
- Analysis sensitive to electroweak production with mass splittings of Mwino and Mbino up to 200 GeV
- Wino masses below approximately 710 GeV are excluded if $M_{\text{wino}} = M_{\text{bino}} + 10 \text{ GeV}$
- Improvement of 220 GeV

CMS-PAS-SUS-15-012 Diphoton analysis

Motivation

Diphoton ~ Overview

Data set:

- $\int \mathcal{L} dt = 2.3 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$
- **Signal** trigger: 2 isolated γ with p_T (γ_1 , γ_2) > 30, 18 GeV + M $_{\gamma\gamma}$ > 95 GeV
- $\varepsilon_{\text{trigger}} \cdot \varepsilon_{\text{photon ID}} = 93.4 \pm 2.5 \%$

Diphoton ~ Overview

Data set:

Motivation

- $\int \mathcal{L} \, dt = 2.3 \, \text{fb}^{-1}, \, \sqrt{s} = 13 \, \text{TeV}$
- **Signal** trigger: 2 isolated γ with $p_T(\gamma_1, \gamma_2) > 30$, 18 GeV + $M_{\gamma\gamma} > 95$ GeV
- $\varepsilon_{\text{trigger}} \cdot \varepsilon_{\text{photon ID}} = 93.4 \pm 2.5 \%$

Signal selection:

- 2 isolated γ with $p_{\mathsf{T}}(\gamma_1, \gamma_2) > 40$ GeV and $|\eta(\gamma_1, \gamma_2)| < 1.44$
- $M_{\gamma\gamma} > 105 \text{ GeV}$
- $E_{\tau}^{\text{miss}} > 100 \text{ GeV}$

Diphoton ~ **Overview**

Data set:

- $\int \mathcal{L} dt = 2.3 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$
- **Signal** trigger: 2 isolated γ with p_T (γ_1 , γ_2) > 30, 18 GeV + M $_{\gamma\gamma}$ > 95 GeV
- $\varepsilon_{\text{trigger}} \cdot \varepsilon_{\text{photon ID}} = 93.4 \pm 2.5 \%$

Signal selection:

- 2 isolated γ with $p_T(\gamma_1, \gamma_2) > 40$ GeV and $|\eta(\gamma_1, \gamma_2)| < 1.44$
- $M_{\gamma\gamma} > 105 \text{ GeV}$
- \bullet $E_{\mathrm{T}}^{\mathrm{miss}} > 100 \; \mathrm{GeV}$

Search region:

- 4 exclusive bins in E_T^{miss}:
 - (100 110) GeV
 - (110 120) GeV
 - (120 140) GeV
 - (140 ∞) GeV

Diphoton ∼ **Strategy**

fully data driven background estimation in $\gamma\gamma$ + $\textit{E}_{\text{T}}^{\text{miss}}$ signal selection

Diphoton ∼ Strategy

fully data driven background estimation in $\gamma\gamma$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ signal selection

Genuine E_{T}^{miss} contribution:

Motivation

- from $W\gamma \to e\nu\gamma$, where e is misidentified as γ
- Misidentification rate $f_{e \to \gamma} = 0.021 \pm 0.002$ measured with tag&probe method on Z→ee resonance
- \bullet e γ control sample scaled by factor $f_{e \to \gamma}/(1 - f_{e \to \gamma})$ to predict electroweak contribution

Diphoton \sim Strategy

fully data driven background estimation in $\gamma\gamma$ + $E_{\rm T}^{\rm miss}$ signal selection

Genuine E_{T}^{miss} contribution:

Motivation

- from W $\gamma \rightarrow e \nu \gamma$, where e is misidentified as γ
- Misidentification rate $f_{e \to \gamma} = 0.021 \pm 0.002$ measured with tag&probe method on Z→ee resonance
- \bullet e γ control sample scaled by factor $f_{e \to \gamma}/(1 - f_{e \to \gamma})$ to predict electroweak contribution

Fake E_{τ}^{miss} contribution:

- from QCD processes with mismeasured iets
- define fake γ-like objects (f) with same γ ID, except for loosened ECAL cluster shape or charged hadron isolation criterion
- use ee and ff control sample to predict QCD contribution to $\gamma\gamma$ signal sample

Diphoton \sim Strategy

fully data driven background estimation in $\gamma\gamma$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ signal selection

Genuine E_{T}^{miss} contribution:

- from W $\gamma \rightarrow e \nu \gamma$, where e is misidentified as γ
- Misidentification rate $f_{e \to \gamma} = 0.021 \pm 0.002$ measured with tag&probe method on Z→ee resonance
- \bullet e γ control sample scaled by factor $f_{e \to \gamma}/(1 - f_{e \to \gamma})$ to predict electroweak contribution

Fake E_{T}^{miss} contribution:

- from QCD processes with mismeasured iets
- define fake γ-like objects (f) with same γ ID, except for loosened ECAL cluster shape or charged hadron isolation criterion
- use ee and ff control sample to predict QCD contribution to $\gamma\gamma$ signal sample

Summary

Diphoton ∼ **QCD** background

QCD contribution:

Motivation

• Environment of ee and ff control and $\gamma\gamma$ signal event samples have different hadronic activity

Diphoton ~ **QCD** background

QCD contribution:

Motivation

- Environment of ee and ff control and $\gamma\gamma$ signal event samples have different hadronic activity
- As a measure, the di-EM p_T is defined as

di-EM
$$p_T = |\vec{p_T}(EM_1) + \vec{p_T}(EM_2)|$$

To account for this difference, the ee and ff control samples are reweighted by the ratio of the di-EM $p_{\rm T}$ distribution with respect to $\gamma\gamma$

QCD contribution:

Motivation

- Environment of ee and ff control and $\gamma\gamma$ signal event samples have different hadronic activity
- As a measure, the di-EM p_T is defined as

di-EM
$$p_{\mathsf{T}} = | \vec{p_{\mathsf{T}}} (EM_1) + \vec{p_{\mathsf{T}}} (EM_2) |$$

- To account for this difference, the ee and ff control samples are reweighted by the ratio of the di-EM $p_{\rm T}$ distribution with respect to $\gamma\gamma$
- ee and ff control samples normalized to $\gamma\gamma$ sample in $E_{\tau}^{\text{miss}} < 50 \text{ GeV region}$
- Primary QCD estimate determined by ee control sample, ff sample serves as cross check \rightarrow difference in E_{τ}^{miss} prediction taken as systematic uncertainty

Summary

Diphoton ~ **QCD** background

- ullet $\gamma\gamma$ $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution compared to
 - reweighted ee (left)
 - reweighted ff (right)

Diphoton ~ QCD background

- ullet $\gamma\gamma$ $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution compared to
 - reweighted ee (left)
 - reweighted ff (right)

- Systematic uncertainties:
 - di-EM p_T reweighting (15-39 %)
 - ightarrow propagation of different reweightings using toy di-EM $p_{
 m T}$ ratio distributions allowed to vary by 1 $\sigma_{
 m stat}$ of events in each bin of ee control sample
 - dependency on jet multiplicity (15-34 %)
 - ightarrow direct difference between di-EM $p_{\rm T}$ + jet multiplicity reweighting and di-EM $p_{\rm T}$ reweighting only
 - $E_{\rm T}^{\rm miss}$ shape difference between ee and ff control sample (12-150%)
 - ightarrow fitting $E_{\mathrm{T}}^{\mathrm{miss}}$ tail of ee and ff sample with the function $(E_{\mathrm{T}}^{\mathrm{miss}})^{p_0}e^{p_1(E_{\mathrm{T}}^{\mathrm{miss}})^{p_2}}$. Systematic uncertainty taken from fractional difference between the fitted functions

Diphoton ∼ **Results**

expected: 7.2 ± 2.5 , observed: 9

Summary

Diphoton ∼ **Results**

expected: 7.2 ± 2.5 , observed: 9

- T5gg exclusion at 95% CL:
 - ullet nearly independent from $M_{\tilde{\chi}^0}$
 - $\bullet \ \ \mathsf{M}_{\tilde{g}} \lesssim 1600 \ \mathsf{GeV}$
 - improving on previous 8 TeV searches by approx. 300 GeV

MotivationSingle PhotonDiphotonSummary○○○○

Summary

Summary:

Photonic final states well motivated in GMSB SUSY scenarios

MotivationSingle PhotonDiphotonSummary○○○○○○○○○○○○○

Summary

- Photonic final states well motivated in GMSB SUSY scenarios
- 8 TeV CMS searches for SUSY in photon final states almost completed

Summary

- Photonic final states well motivated in GMSB SUSY scenarios
- 8 TeV CMS searches for SUSY in photon final states almost completed
 - many CMS exclusion limits for both strong and electroweak production
 - also using a special parked data set with low trigger thresholds (CMS-SUS-14-016)
 - No excess of events, electroweak exclusions:
 - TChiNg: $M_{NISP} < 570$ GeV, TChiWg: $M_{NISP} < 680$ GeV
 - ullet GGM: Mass splitting of M_{wino} and M_{bino} up to 200 GeV
 - GGM: $M_{wino} < 710 \text{ GeV} (M_{wino} = M_{bino} + 10 \text{ GeV})$

- Photonic final states well motivated in GMSB SUSY scenarios
- 8 TeV CMS searches for SUSY in photon final states almost completed
 - many CMS exclusion limits for both strong and electroweak production
 - also using a special parked data set with low trigger thresholds (CMS-SUS-14-016)
 - No excess of events, electroweak exclusions:
 - TChiNg: $M_{NLSP} < 570$ GeV, TChiWg: $M_{NLSP} < 680$ GeV
 - ullet GGM: Mass splitting of M_{wino} and M_{bino} up to 200 GeV
 - $\bullet \;\; \text{GGM} \colon M_{\text{wino}} < 710 \; \text{GeV} \; \big(M_{\text{wino}} = M_{\text{bino}} \, + \, 10 \; \text{GeV} \big)$
- First 13 TeV CMS SUSY results in photonic final states (CMS-PAS-SUS-15-012)
 - no excess of events, **T5gg** exclusion:
 - $\bullet~$ $\text{M}_{\tilde{g}} \lesssim 1600$ GeV, nearly independent of χ_1^0 mass

Summary

- Photonic final states well motivated in GMSB SUSY scenarios
- 8 TeV CMS searches for SUSY in photon final states almost completed
 - many CMS exclusion limits for both strong and electroweak production
 - also using a special parked data set with low trigger thresholds (CMS-SUS-14-016)
 - No excess of events, electroweak exclusions:
 - TChiNg: $M_{NLSP} < 570$ GeV, TChiWg: $M_{NLSP} < 680$ GeV
 - **GGM**: Mass splitting of M_{wino} and M_{bino} up to 200 GeV
 - **GGM**: $M_{\text{wino}} < 710 \text{ GeV} (M_{\text{wino}} = M_{\text{bino}} + 10 \text{ GeV})$
- First 13 TeV CMS SUSY results in photonic final states (CMS-PAS-SUS-15-012)
 - no excess of events, T5gg exclusion:
 - $M_{\tilde{g}} \lesssim 1600$ GeV, nearly independent of χ_1^0 mass
- Many 13 TeV CMS SUSY searches concentrating on photonic final states are ongoing! New interesting results are expected soon, covering both electroweak and strong production

 Motivation
 Single Photon
 Diphoton
 Summary

 ○
 ○
 ○
 ○
 ●

Summary

Summary:

- Photonic final states well motivated in GMSB SUSY scenarios
- 8 TeV CMS searches for SUSY in photon final states almost completed
 - many CMS exclusion limits for both strong and electroweak production
 - also using a special parked data set with low trigger thresholds (CMS-SUS-14-016)
 - No excess of events, electroweak exclusions:
 - TChiNg: $M_{NLSP} < 570$ GeV, TChiWg: $M_{NLSP} < 680$ GeV
 - \bullet $\,$ GGM: Mass splitting of M_{wino} and M_{bino} up to 200 GeV
 - GGM: $M_{wino} < 710 \text{ GeV} (M_{wino} = M_{bino} + 10 \text{ GeV})$
- First 13 TeV CMS SUSY results in photonic final states (CMS-PAS-SUS-15-012)
 - no excess of events, T5gg exclusion:
 - $\bullet~$ ${\rm M}_{\tilde{g}}\lesssim$ 1600 GeV, nearly independent of χ_1^0 mass
- Many 13 TeV CMS SUSY searches concentrating on photonic final states are ongoing! New interesting results are expected soon, covering both electroweak and strong production

Thank you for your attention!

BACKUP

Single Photon ∼ **Systematic Uncertainties**

Systematic uncertainties:

Source	Sample	Rel. uncertainty (on total BG)
$V\gamma$ normalization	$V\gamma$	24 % (19 %)
γ jets normalization	γ jets	14 % (1 %)
Tag&Probe fit	$e o \gamma$	11 % (0.3 %)
Cross-section measurement	$t\bar{t}\gamma$	26 % (3 %)
MC simulation	diboson	50 % (1 %)
MC simulation	multijet	100 % (0 %)
PDF uncertainty on acceptance	signal	<0.1-11 %
PDF and scale uncertainty	signal	4-8 %
Luminosity	diboson, multijet, and signal	2.6 %
Trigger efficiency	diboson, multijet, and signal	1.2 %
Jet energy scale	diboson, multijet, and signal	1-2 %

Single Photon ∼ **Results**

Event yields:

	$E_{\rm T_{\sim}}^{\rm miss}$ sig. > 200,	E_{T}^{miss} sig. < 200, E_{T}^{miss} sig. < 200		$E_{\rm T}^{\rm miss}$ sig. > 200,	
	$S_{\rm T}^{\gamma} > 600 {\rm GeV}$	$S_{\rm T}^{\gamma} > 600 {\rm GeV}$	$S_{\mathrm{T}}^{\gamma} < 600 \mathrm{GeV}$	$S_{\mathrm{T}}^{\gamma} < 600 \mathrm{GeV}$	
$V\gamma$	4.7 ± 1.2	7.0 ± 1.8	42.3 ± 10.4	5.0 ± 1.3	
γ jets	0.1 ± 0.1	1.3 ± 0.3	3.4 ± 0.7	$0.0\pm<0.1$	
$t \bar{t} \gamma$	0.3 ± 0.1	1.1 ± 0.3	5.5 ± 1.5	0.4 ± 0.1	
Diboson	0.1 ± 0.1	0.2 ± 0.1	1.5 ± 0.8	0.2 ± 0.1	
$e ightarrow \gamma$	$0.1~\pm<0.1$	$0.1~\pm<0.1$	1.6 ± 0.2	0.2 ± 0.1	
Multijet	0.0	0.0	0.0	0.0	
Background	5.3 ± 1.2	9.7 ± 1.8	54.3 ± 10.6	5.8 ± 1.3	
Data	4	4	65	8	
Signal	6.9 ± 0.2	1.7 ± 0.1	1.1 ± 0.1	$0.7\pm<0.1$	
Acceptance [%]	26.5 ± 0.9	6.7 ± 0.3	4.2 ± 0.2	2.6 ± 0.2	

Single Photon ∼ Subdominant Backgrounds

Datadriven e $\rightarrow \gamma$ fakes:

- lacktriangle Rerun analysis with same photon definition, but $N_{Pixelseed} > 0 \; (\gamma_{pixel})$
- Scale distributions with factor $f_{e \to \gamma} / (1 f_{e \to \gamma})$
- MC: using MC truth info, Data: tag&probe on Z-resonance (Ref.: CMS AN-13-240, Yutaro et al.)
- Simulation: $f_{e \rightarrow \gamma}^{\rm sim} = (0.95 \pm 0.05 \text{ (stat.)} \pm 0.09 \text{ (sample)}) \%$
- lacktriangle Data: $f_{e
 ightarrow\gamma}^{\,
 m data}=$ (1.48 \pm 0.10 (measurem.) \pm 0.13 (sample)) %
- lacktriangle Closure: generated electron criterion: $\Delta R({
 m gen.~e,~} \gamma_{
 m tight}) < 0.1$

From Simulation:

- t̄t̄γ
- Diboson (WW, WZ, ZZ)
- QCD (negligible)

Single Photon ∼ Cutflow Table

Cut	TChiNg_500		$TChiWg_650$		GGM_640_630	
	N_{signal}	ε	N_{signal}	ε	$N_{\rm signal}$	ε
generated	51.0	1.0	21.2	1.0	29.9	1.0
$ \not\!\!E_T ext{ filters} $	50.98	1.0	21.16	1.0	29.86	1.0
$E_T > 100 \text{ GeV}$	46.1	0.90	19.9	0.94	27.6	0.93
$\geq 1\gamma_{\rm tight} \ (p_{\rm T} > 40 \ {\rm GeV})$	28.5	0.56	12.9	0.61	17.7	0.59
$r9(\gamma_{tight}) > 0.9, \eta(\gamma_{tight}) < 1.44$	26.7	0.52	12.3	0.58	17.0	0.57
$\Delta R(1^{st}\gamma, \text{ nearest jet}) > 0.5$	26.1	0.51	12.1	0.57	16.6	0.56
$H_T > 100 \text{ GeV}$	21.8	0.43	10.4	0.49	14.3	0.48
control + signal region	21.4	0.42	10.2	0.48	14.1	0.47
signal region	16.3	0.32	8.7	0.41	12.0	0.40

Single Photon ∼ **GGM Acceptance**

Diphoton \sim ee and ff reweighting

