24th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2016), Melbourne July 4, 2016

Search for Supersymmetry in Events with two or more Leptons in pp Collisions at 13 TeV at CMS

Jan Hoss

on behalf of the CMS collaboration

Leptonic SUSY searches at 13 TeV

- Several beyond the SM scenarios predict leptons in final state, including SUSY
- Leptons provide clean signature and allow for robust event reconstruction
- Three CMS SUSY searches for events with two or more leptons (electrons or muons)

- Early searches with **2.3 fb**⁻¹ of pp collisions collected in 2015: focus on models with **strong** squark and gluino production and R-parity conservation
 - Increased cross-sections at new energy frontier of 13 TeV
 - Require jets and missing transverse energy
 E_T^{miss} in final state

The CMS detector

- Nearly hermetic multi-purpose particle detector consisting of
 - Silicon pixel and strip tracker for vertex and track reconstruction, $|\eta| < 2.4$
 - Scintillating crystal electro-magnetic calorimeter (lead tungsten)
 - Hadronic sampling calorimeter (brass/scintillator), $|\eta| < 5.0$

Solenoid for 3.8 T magnetic field

Muon detectors outside of the solenoid $|\eta| < 2.5$

2-stage trigger system

- Level-1 trigger: information from calorimeters and muon systems
- High level trigger rate 1 kHz

SUSY searches at CMS

- All three analyses employ dilepton triggers and have similar kinematic acceptances for the leptons and require ≥ 2 jets and E_T^{miss} in final state
 - E_T^{miss}: negative vectorial sum of momenta of all reconstructed particles
 - Hadronic activity $H_{
 m T}=\sum_{jets}p_{
 m T}$, $m_{\ell\ell}$ refers to dilepton invariant mass
- Main goals:
 - Opposite-sign analysis: scrutinize two different 2.6 3.0σ excesses in 8 TeV data from CMS and ATLAS
 - Same-sign and multilepton analysis: improve sensitivity for various models in uncharted territory

Opposite-sign same-flavor dilepton search

- Two sub-searches targeting different models
 - both selecting two loosely isolated opposite-sign, same-flavor (ossf) leptons with $p_{\scriptscriptstyle T} > 20~\text{GeV}$

Opposite-sign same flavor dilepton

- On-Z search (dilepton $m_{\ell\ell}$ compatible with Z mass):
 - targets T5ZZ GBSM model → scrutinize 3.0σ excess quoted by ATLAS in 8 TeV
 - New: signal regions with higher granularity in N_{jets} and E_T^{miss} , plus ATLAS-like region
- Edge search (inclusive in dilepton $m_{\ell\ell}$):
 - search for edge in dilepton $m_{\ell\ell}$ spectrum, sensitive to T6bbslepton model \rightarrow scrutinize 2.6 σ excess found by CMS in 8 TeV
 - Signal regions (SR) kept as in 8 TeV, plus exclusive SR in b-jet multiplicity (N_{bjet})
 - Additional SR filling gaps in $m_{\ell\ell}$ spectrum of 8 TeV search

Search strategy

Cut and count analysis in various search regions

Opposite-sign same flavor dilepton

- Edge search (off-Z): binning in forward and central detector region, dilepton $\mathcal{M}_{\ell\ell}$, and b-jet multiplicity
 - → 20 exclusive SR and 10 inclusive ones for comparison with 8 TeV

low mass 20-70 below Z on-Z above Z high mass >120-70 dilepton invariant mass (GeV)

- On-z search: binning in number jets (N_{jet})
 - SRA: N_{jet} = 2-3 and H_T > 400 GeV further binning in b-jet multiplicity and E_T^{miss} ■ SRB N_{jet} > 3 \rightarrow 16 exclusive signal regions
 - ATLAS-like SR: $H_T + p_T^{l_1} + p_T^{l_2} > 600 \,\text{GeV}$ $E_T^{\text{miss}} > 225 \,\text{GeV}$ $\Delta \phi_{E_T^{\text{miss}}, j_1, j_2} > 0.4$
- Signal regions require 2 or more jets and $E_T^{miss} > 100$ GeV, inclusive in N_{bjet}
- Control regions for data driven background estimation
 - Drell-Yan enriched: ≥2 jets, E_T^{miss} < 50 GeV
 - ttbar enriched: 2 jets, 100 < E_T^{miss} < 150 GeV

Background estimation

- Flavor symmetric background, produce $(e^{\pm}\mu^{\mp})$ as often as $(\mu^{+}\mu^{-}, e^{+}e^{-})$
 - dominant: ttbar with genuine E_T^{miss} minor contributions: WW, $Z/\gamma^*(\to \tau\tau)$, tW
 - estimated with opposite flavor control sample,
 corrections for different selection efficiencies
- Flavor correlated lepton production
 - mostly Drell-Yan with instrumental E_T^{miss}
 (minor contributions: ZZ, WZ, ttZ)
 - Assumption: instrumental E_T^{miss} from limited detector resolution for hadronic recoil against Z → measure E_T^{miss} shape with γ + jets control sample (E_T^{miss} template technique)

Opposite-sign same flavor dilepton

Background estimation and results

- Flavor symmetric background, produce $(e^{\pm}\mu^{\mp})$ as often as $(\mu^{+}\mu^{-}, e^{+}e^{-})$
 - dominant: ttbar with genuine $E_{\rm T}^{\rm miss}$ minor contributions: WW, $Z/\gamma^*(\to \tau\tau)$, tW
 - estimated with opposite flavor control sample, corrections for different selection efficiencies

- mostly Drell-Yan with instrumental E_T^{miss}
 (minor contributions: ZZ, WZ, ttZ)
- Assumption: instrumental E_T^{miss} fron limited detector resolution for hadronic recoil against Z → measure E_T^{miss} shape with γ + jets control sample (E_T^{miss} template technique)
- No significant deviation between data and predictions

Edge search - invariant mass spectrum

13 TeV data does not confirm the 2.6σ excess found by CMS in 8 TeV

Opposite-sign same flavor dilepton

• Good agreement in $m_{\ell\ell}$ shape for both inclusive b-jet region and >0 b-jet regions and as well for both forward and central detector regions regions

On-Z search: ATLAS-like signal region

CMS data disfavors signal hypothesis in ATLAS-like signal region

Opposite-sign same flavor dilepton

CMS 13 TeV

2.2 fb⁻¹ (13 TeV)

Very good agreement between background prediction and data found

Events/25 GeV - data 10³ **MET Templates** FS background Other SM 10² $\Sigma p_{\tau}(lep_{12}) + H_{\tau} > 600 \text{ GeV}$ $\Delta \phi(\mathsf{E}_\mathsf{T}^\mathsf{miss}, (\mathsf{jet}_{1.2})) > 0.4$ 10 $N_{\text{iets}} \geq 2$ 1

CMS Preliminary

ATLAS reports another 2.2σ excess in a similar region with 13 TeV data

Interpretation

- Absence of excess → set limits on T5ZZ model for massless gravitino
- Asymptotic limits with the LHC-type CL_s method

Opposite-sign same flavor dilepton

on-Z signal regions (most sensitive: SRB)

Limits improved by up to 200 GeV for heavy gluinos

Same-sign dilepton and multi-leptons

- Searches for two leptons of the same change (SSDL) and three or more leptons (multilepton)
- Similar search strategies and data driven estimation techniques for main backgrounds
- Main differences:
 - Background abundance: multi-lepton has very low SM background but also lower signal branching fraction for leptonic final state → smaller signal region granularity than SSDL analysis
 - Background composition: different dominant backgrounds depending on SR
 - SSDL vetos events were dilepton invariant mass is within 15 GeV of m_z, multi-lepton has dedicated on-Z signal regions
 - → some simplified models are only targeted by one of the two searches

Same-sign dilepton search

Multilepton search ≥3 leptons

Search strategies

- Two inclusive analyses → search for SUSY in tails of kinematic distributions
- Both employ a dedicated isolation technique developed for improved lepton selection efficiency in boosted topologies ("multi-isolation")

Same-sign

Individual signal region optimization for best signal/background separation

SSDL

s/b enhancement by dilepton search distinguishing lepton p_T high p_T > 25 GeV (H) and low 10 < p_T < 25 GeV (L)

 3 SRs depending on p_T of the 2 leptons (HH, HL, and LL)

- Further binning in H_T , E_T^{miss} , N_{jet} , N_{biet} , and $M_T^{min*} \rightarrow 66$ exclusive SR
- Reject events with $m_{\ell\ell}$ between 76 and 106 GeV and < 12 GeV

* $M_{\mathrm{T}}^{\mathrm{min}} = \min \left[M_{\mathrm{T}}(\ell_1, E_{\mathrm{T}}^{\mathrm{miss}}), M_{\mathrm{T}}(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}}) \right]$

Multilepton

- Pre-selection:
 - ≥3 well identified and isolated leptons
 - $m_{\ell\ell} > 12 \text{ GeV}$
 - ≥ 2 jets
 - $E_T^{miss} > 50 \text{ GeV}$
- Divide signal events in on- and off-Z according to dilepton $m_{\ell\ell}$
- Binning in number of b-jets, E_T^{miss} and H_T
 - → 2 times 15 exclusive SRs

Multilepton search

≥3 leptons

Non-prompt lepton background

- Prompt leptons: from W, Z, or slepton decays
- Isolation cuts reject non-prompt leptons
 - e.g. heavy flavor decays, misidentified hadrons, photon conversions or muons from light mesons
 - Reducible background from residual non-prompt contribution
- Dominant background in signal regions in the HL part of SSDL and off-Z for multileptons
- Fully data-driven estimation
 - Measure probability for non-prompt lepton which passes loose selection to also pass tight selection ("fake-rate") in QCD enriched control region
 - Reweight yield in control region with fake-rate dependent factor. Control region identical to SR, except that at least one lepton fails tight selection

Same-sign dilepton search

Multilepton search ≥3 leptons

SUS-15-008

Closure test of the tight-to-loose method in ttbar MC for SSDL HH region

Other backgrounds

- WZ diboson production:
 - important in regions without b-tags and in multilepton on-Z regions
 - Semi data-driven: normalize yields in control region
- Rare standard model processes (e.g. ttW, ttZ..)
 - Dominant background in tail regions
 - Estimated from simulation with appropriate experimental and theoretical uncertainties
- Charge-flip background:
 - Small background in same-sign analysis arising from charge mis-measurements
 - Measure probability in Z \rightarrow e⁺e⁻ events: 10⁻⁵ 10⁻³ → reweight yield of opposite-sign lepton pair events
 - Found to be negligible for muons

Same-sign dilepton search

Same-sign

dilepton search

Multilepton search ≥3 leptons

Results

Good agreement between prediction and data found in all 66 signal regions of the same-sign dilepton search

Same-sign dilepton search

- Largest deviations: local significance of 2.2σ in HL SR8 and 1.8σ in HH SR10
 - Both SRs: $N_{biet} = 1$, $M_T < 120$ GeV, $N_{iets} = [2;4]$, $E_T^{miss} = [50;200]$, $H_T = [300;1125]$

in the HH p_⊤ region

Signal regions in the HL p_⊤ region

Signal regions in the LL p_⊤ region

For detailed signal region definition see back-up

Interpretations

- Same-sign analysis pushes limit for gluino mass in T1tttt model about ≈200 GeV beyond 8 TeV result
- Model independent exclusion limits for production of samesign dilepton pair set as function of E_T^{miss} and H_T
 - $\rightarrow \sigma \cdot A \cdot \epsilon < 1.7 \text{ fb in } H_{\scriptscriptstyle T} \text{ and } E_{\scriptscriptstyle T}^{\scriptscriptstyle miss} \text{ tails}$

SUS-15-008

Results

0

1

2

> 3

inclusive

 ≥ 2

150 - 300

150 - 300

50 - 150

150 - 300

50 - 300

> 300

-150

 Also multilepton analysis observes no significant deviation from the expected SM background yields

Right plots: inclusive baseline yields

Multilepton search ≥3 leptons

SR₂

SR5

SR6

SR9

SR10

SR4

SR7

SR8

SR11

SR12

SR15

SR13

all Fig. SUS-16-003

SR14

off-Z all SR

on-Z all SR

Interpretation

- T1tttt: limit on gluino mass improved by ≈100 GeV w.r.t. 8 TeV
- Multilepton search ≥3 leptons

- Set limits on sbottom and chargino mass in T6ttWW model (off-Z regions sensitive)
 - exclude $m_{sbottom}$ < 475 GeV for $m_{chargino}$ = 200 GeV
 - 8 TeV result (19.5 fb⁻¹) not yet reached with 2.3 fb⁻¹ at 13 TeV
- On-Z regions sensitive on T5qqqqWZ model
 - Exclude gluino masses up to 825 GeV, and neutralino masses up to 550 GeV

Summary

- Three searches for SUSY exploring final states with two or more leptons have been performed at CMS with 2.3 fb⁻¹ of pp collision data at 13 TeV
- Several advancements improved the sensitivity of the searches w.r.t. run 1, e.g. signal region optimization and improved lepton reconstruction and isolation techniques
- No significant excess of data over the expected SM background has been found
 - New results of the opposite-sign same-flavor search **disfavor the signal hypothesis** in two different search regions where CMS and ATLAS reported excesses of 2.6 and 3.0σ in 8 TeV data
 - The same-sign dilepton and the multilepton searches pushed exclusion limits on sparticle masses in various simplified models beyond the 8 TeV limits and added additional interpretations, including model independent limits on SS dilepton pair production

We have to look behind the next corner!

Opposite-sign same flavor dilepton

Same-sign dilepton search

Multilepton search ≥3 leptons

References

Opposite-sign same flavor dilepton

Search for SUSY in same-sign dilepton events at 13 TeV, CMS PAS SUS-15-008

Same-sign dilepton search

Search for SUSY in same-sign dilepton events at 13 TeV, CMS PAS SUS-15-008 submitted to EPJC, arXiv:1605.03171

Multilepton search ≥3 leptons

Search for SUSY in multilepton events at 13 TeV, CMS PAS SUS-16-003

All public CMS SUSY results here → link

Back-up

OSSF - measurement of R_{SF/OF}

- Method 1) measure R_{SF/OF} in CR which is enriched in flavor symmetric background
 - $N_{jet} = 2$, $100 < E_t^{miss} < 150$ GeV, $m_{\parallel} < 70$ GeV, $m_{\parallel} > 110$ GeV
 - Measure yields N_{OF} and $N_{SF} \rightarrow R_{SF/OF} = N_{SF}/N_{OF}$
 - Validate extrapolation to signal region with ttbar MC
- Method 2) determine R_{SF/OF} from factorized efficiencies
 - Ratio of lepton ID and reco efficiencies $r_{\mu/e} = \sqrt{N_{\mu^+\mu^-}/N_{e^+e^-}}$ from DY control region (N_{jet}>1, E_T^{miss}<50 GeV, 60 < m_{||} < 120 GeV)
 - Ratio of trigger efficiencies: $R_T = \sqrt{\epsilon_{\mu^+\mu^-}^T \epsilon_{{
 m e}^+{
 m e}^-}^T}/\epsilon_{e^\pm\mu^\mp}^T
 ightarrow R_{SF/OF} = \frac{1}{2}(r_{\mu/e} + r_{\mu/e}^{-1}) \cdot R_T$

	Central		Forv	vard				
	Data	MC	Data	MC				
$\frac{1}{2} (r_{\mu/e} + r_{\mu/e}^{-1})$	1.008 ± 0.013	1.008 ± 0.012	1.022 ± 0.042	1.026 ± 0.046				
R_T	1.003 ± 0.072	1.027 ± 0.067	1.061 ± 0.090	1.029 ± 0.071				
		$R_{SF/OF}$						
from factorization	1.011 ± 0.074	1.035 ± 0.068	1.084 ± 0.103	1.057 ± 0.087				
direct measurement	1.055 ± 0.061	1.050 ± 0.013	1.107 ± 0.134	1.079 ± 0.021				
weighted average	$\textbf{1.037} \pm \textbf{0.047}$	$\textbf{1.049} \pm \textbf{0.013}$	$\textbf{1.097} \pm \textbf{0.068}$	$\textbf{1.079} \pm \textbf{0.020}$				

OSSF - E_Tmiss template technique

- Determine **shape** of $E_T^{\rm miss}$ spectrum of DY background from $\gamma + {\rm jets}$ control sample
- Reweight to match Z and photon p_T in simulation for each SR
- **Normalize** obtained E_T^{miss} distribution in Z+jets CR (E_T^{miss} < 50 GeV)
- Uncertainty: statistical power of γ + jets events in SR (10-50%) including statistical uncertainty on normalization (4-10%)

Signal region	SRA; b-veto	$SRA; \geq 1 \text{ b-tag}$	SRB; b-veto	SRB; ≥ 1 b-tag	ATLAS Signal Region
Uncertainty	4~%	10 %	3 %	6 %	3 %

• MC closure: use $\gamma+{
m jets}$ to predict Z+jets and take discrepancy as uncertainty for respective SR

$E_{T}^{miss}[GeV]$	0 - 50	50 - 100	100 - 150	150 - 225	225 - 300	≥ 300
SRA, b-veto	1 %	4 %	4 %	5 %	15 %	35 %
SRA, with b-tags	1 %	3 %	5 %	10 %	30 %	40 %
SRB, b-veto	1 %	2 %	4 %	10 %	20 %	25 %
SRB, with b-tags	2 %	3 %	10 %	10 %	50 %	50 %
ATLAS Signal Region	2 %	2 %	10 %	10 %	10 %	_

OSSF - result tables (onZ search)

Table 4: Results for the on-Z search, binned in all the variables.

N _{jets} /H _T	N_{b-jets}	$E_{ m T}^{ m miss}$	predicted	observed
		100-150	$28.2^{\ +5.4}_{\ -4.8}$	28
SRA	0		6	
	0	225-300	$3.3^{+2.5}_{-1.0}$	5
2-3 jets		> 300	$1.9^{+1.4}_{-0.7}$	6
		100-150	$14.2^{\ +4.4}_{\ -3.3}$	21
and $H_T > 400$	> 1	150-225	$5.8^{+3.4}_{-2.1}$	6
unu 11 _T > 400	≥ 1	225-300		1
		> 300		3
		100-150		20
SRB	0	150-225	$8.2^{+3.4}_{-2.1}$	10
	== 0	225-300	$0.8^{+1.2}_{-0.2}$	2
		> 300		0
		100-150	$44.6^{+7.7}_{-6.6}$	43
≥ 4 jets	\ 1	150-225		22
	≥ 1	225-300		3
		> 300		3
	ATLAS	S - SR:		
$H_T + p_T^{l_1} + p_T^{l_2} > 600 \text{ GeV}$	$E_{\rm T}^{ m miss} > 225~{ m GeV}$	$\Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}}, j_1, j_2} > 0.4$	$12.0 {}^{+4.0}_{-2.8}$	12

OSSF - result tables (edge search)

		$N_{ extbf{b-jets}} \geq 0$		$N_{\text{b-jets}} = 0$		$N_{ extbf{b-jets}} \geq 1$	
	$m_{\ell\ell}$ range [GeV]	pred. total (DY)	obs.	pred. total (DY)	obs.	pred. total (DY)	obs.
	20 - 70	470.9 ± 29.9	437	126.7 ± 12.3	132	344.2 ± 23.9	305
	20-70	(4.6 ± 1.3)	437	(3.4 ± 1.0)	132	(1.2 ± 0.3)	303
	70 - 81	132.2 ± 12.6	129	38.2 ± 6.2	33	93.9 ± 10.4	96
	70 - 01	(2.6 ± 0.7)	129	(2.0 ± 0.6)	33	(0.7 ± 0.2)	90
central	81 - 101	247.9 ± 17.8	271	93.1 ± 10.5	106	154.8 ± 13.4	165
centrat	01 - 101	(59.3 ± 7.8)	2/1	(44.4 ± 7.6)	100	(14.9 ± 2.1)	103
	101 - 120	164.7 ± 14.5	163	48.1 ± 7.0	42	116.6 ± 11.8	121
	101 - 120	(2.0 ± 0.6)	103	(1.5 ± 0.5)	42	(0.5 ± 0.1)	121
	> 120	467.8 ± 29.9	507	109.9 ± 11.4	141	357.9 ± 24.6	366
	/ 120	(1.5 ± 0.4)	307	(1.1 ± 0.3)	141	(0.4 ± 0.1)	300
	20 - 70	107.6 ± 11.9	135	34.7 ± 6.0	45	72.9 ± 9.4	90
	20 - 70	(1.5 ± 0.4)	133	(1.1 ± 0.3)	43	(0.4 ± 0.1)	90
	70 - 81	46.6 ± 7.1	50	15.0 ± 3.7	14	31.7 ± 5.7	36
	70 - 01	(1.2 ± 0.3)	30	(0.9 ± 0.3)	14	(0.3 ± 0.1)	30
forward	81 - 101	98.9 ± 10.1	92	44.4 ± 5.9	40	54.5 ± 7.5	52
jorwaru	01 - 101	(23.1 ± 3.0)	92	(17.3 ± 2.7)	40	(5.8 ± 1.2)	32
	101 - 120	76.7 ± 9.6	54	22.3 ± 4.7	19	54.3 ± 7.8	35
	101 - 120	(0.9 ± 0.3)	34	(0.7 ± 0.2)	19	(0.2 ± 0.1)	33
	> 120	299.4 ± 25.0	298	84.9 ± 10.3	92	214.5 ± 19.4	206
	/ 120	(0.7 ± 0.2)	290	(0.5 ± 0.2)	92	(0.2 ± 0.1)	200

OSSF - on-Z signal regions

OSSF - Systematic uncertainties

Source of uncertainty	Uncertainty [%]
Luminosity	4.6%
PDF	$\sim 10\%$
Pileup	$\sim 5\%$
b-tag modeling	2- 5%
Lepton Reconstruction and Isolation	3%
Trigger modeling	5%
Jet energy scale	2-5%
ISR modeling	1%
Statistical uncertainty	5-20%
Total uncertainty	\sim 13-24%

SSDL - tight-to-loose method

- Measure tight-to-loose ratio in non-prompt enriched control region
 - == 1 lepton passing loose selection
 - 1 recoiling jet with $p_T > 40$ GeV, $\Delta R(jet, lep) > 1.0$
 - E_T^{miss} < 20 GeV, M_T < 20 GeV
- Ensure trigger selection is looser than loose selection
- Subtract prompt contamination by measuring MC yield in EKW control region ($E_{T}^{miss} > 20$ GeV, $70 < M_{T} < 120$ GeV)

SSDL - WZ control region

- WZ control region (70% purity)
 - Lepton $p_T > 25/20/10$ GeV for p_T ordered leptons, 3^{rd} lepton forms ossf pair with other lepton such that invariant mass is within 15 GeV around m_7
 - $H_T > 80 \text{ GeV}$, $2 \le N_{\text{jet}} \le 4$, $N_{\text{bjet}} = 0$, $E_T^{\text{miss}} > 30 \text{ GeV}$
- Measured scale factor 1.22 ± 0.35 → compatible with 1

SSDL - baseline region

SSDL - signal regions

2 SS high p_{T} leptons (HH)

N_{b}	M _T ^{min} (GeV)	E _T miss (GeV)	N _{jet}	$H_{\rm T} < 300{\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125 {\rm GeV}$		
		50 - 200	2-4	SR1	SR2			
	< 120	50 - 200	≥ 5		SR4			
	< 120	> 200(*)	2-4		SR5			
0		> 200 \	≥ 5		SR6			
U		50 - 200	2-4	SR3	SR7			
	> 120	30 - 200	≥ 5					
	/ 120	> 200(*)	2-4		SR8			
		> 200	≥ 5					
		50 - 200	2-4	SR9	SR10			
	1 > 120	30 200	≥ 5		SR12			
		> 200(*)	2-4		SR13			
1		> 200	≥ 5		SR14			
-		50 - 200	2-4	SR11	SR15	SR32		
		> 200(*)	≥ 5					
			2-4		SR16			
			≥ 5					
		50 - 200	2-4	5	SR18			
	< 120		≥ 5		SR20			
		> 200(*)	2-4		SR21			
2		7 -00	≥ 5	0714	SR22			
		50 - 200	2-4	SR19	SR23			
	> 120		≥ 5		CDQ.			
		> 200(*)	2-4		SR24			
					≥ 5	CDOE	CDO	
	< 120	50 - 200	≥ 2	SR25	SR26			
≥ 3		> 200(*)	≥ 2	SR27	SR28			
	> 120	> 50(*)	≥ 2	SR29	SR30			
Inclusive	Inclusive	> 300	≥ 2		SR31			
	•							

1 high p_T and 1 low p_T lepton (HL)

Inclusive

Inclusive

$N_{\rm b}$	M _T ^{min} (GeV)	E _T ^{miss} (GeV)	N _{jet}	$H_{\mathrm{T}} < 300\mathrm{GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125{\rm GeV}$	
		50 - 200	2-4	SR1	SR2		
0	< 120	30 – 200	≥ 5		SR4		
U	< 120	> 200(*)	2-4	SR3	SR5		
		> 200	≥ 5		SR6		
		50 - 200	2-4	SR7	SR8	_	
1	< 120	30 – 200	≥ 5		SR10	_	
1	< 120	> 200(*)	2-4	SR9	SR11		
		/ Z00 · /	≥ 5		SR12	_	
		50 - 200	2-4	SR13	SR14	SR26 —	
2	< 100	< 120	30 – 200	≥ 5		SR16	
2	< 120	> 200(*)	2-4	SR15	SR17	<u> </u>	
		/ Z00 · /	≥ 5		SR18		
> 3	< 120	50 - 200	≥ 2	SR19	SR20		
≥ 3	120	> 200(*)	≥ 2	SR21	SR22		
- · ·		= 0(#)		ana.	CDe 4	1	

$N_{\rm b}$	M _T ^{min} (GeV)	H _T (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 200] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 200{ m GeV}$
0	< 120	> 300	SR1	SR2
1			SR3	SR4
2			SR5	SR6
≥ 3			SR7	
Inclusive	> 120		SR8	

2 SS low p_T leptons (LL)

SSDL - results

	HH event	yields	HL event	yields	LL event	yields
Region	Expected SM	Observed	Expected SM	Observed	Expected SM	Observed
SR1	36.0 ± 7.0	39	44.1 ± 10.9	40	1.99 ± 0.94	1
SR2	12.8 ± 2.1	16	8.5 ± 2.1	9	0.14 ± 0.07	0
SR3	1.05 ± 0.36	2	0.61 ± 0.36	0	3.4 ± 1.5	2
SR4	1.49 ± 0.52	0	1.01 ± 0.38	3	0.04 ± 0.03	0
SR5	2.29 ± 0.49	4	1.40 ± 0.37	0	0.15 ± 0.28	0
SR6	0.11 ± 0.04	0	0.08 ± 0.04	0	0.02 ± 0.01	0
SR7	0.91 ± 0.31	0	26.4 ± 7.6	24	0.03 ± 0.01	0
SR8	0.16 ± 0.06	0	5.4 ± 1.5	13	0.10 ± 0.10	0
SR9	21.6 ± 5.2	26	0.34 ± 0.20	0		
SR10	8.6 ± 1.4	15	2.37 ± 0.99	2		
SR11	2.10 ± 0.92	3	1.29 ± 0.65	0		
SR12	2.24 ± 0.40	1	0.05 ± 0.04	0		
SR13	1.09 ± 0.21	3	4.2 ± 1.3	3		
SR14	0.25 ± 0.11	0	2.11 ± 0.69	1		
SR15	0.37 ± 0.12	0	0.06 ± 0.03	0		
SR16	0.19 ± 0.08	0	0.42 ± 0.09	1		
SR17	4.9 ± 1.0	4	0.29 ± 0.15	0		
SR18	2.90 ± 0.47	1	0.10 ± 0.08	0		
SR19	0.47 ± 0.09	0	0.11 ± 0.06	0		
SR20	1.43 ± 0.25	3	0.18 ± 0.17	0		
SR21	0.40 ± 0.10	0	0.001 ± 0.001	0		
SR22	0.08 ± 0.04	0	0.04 ± 0.04	0		
SR23	0.17 ± 0.06	0	0.03 ± 0.03	0		
SR24	0.14 ± 0.04	1	0.21 ± 0.17	0		
SR25	0.21 ± 0.06	0	1.25 ± 0.53	1		
SR26	0.46 ± 0.12	1	0.25 ± 0.12	0		
SR27	0.005 ± 0.016	0				
SR28	0.03 ± 0.02	0				
SR29	0.02 ± 0.01	0				
SR30	0.02 ± 0.01	0				
SR31	1.91 ± 0.32	1				
SR32	0.85 ± 0.18	1				

SSDL - Systematic uncertainties

Source	Typical uncertainty (%)
Lepton selection	2
Trigger efficiency	4
Jet energy scale	2–10
b tagging	5
Pileup	1–5
Integrated luminosity	2.7
Scale variations (ttZ and ttW)	11–13
Parton distribution functions ($t\bar{t}W$ and $t\bar{t}Z$)	4
W^\pmW^\pm normalization	30
Other backgrounds	50
Monte Carlo statistical precision	1–30
Nonprompt leptons	30–36
Charge misidentification	26
WZ normalization	30

SSDL - Interpretations

Multileptons: non-prompt lepton background estimation

- Define application region for each signal region
 - → at least one lepton passing the loose but failing the tight selection
- Events in application region need to satisfy same cuts and categorization as for signal regions
- Weight each event in the application region with a transfer factor
 - 1 fakeable lepton: f/(1-f)
 - 2 fakeable leptons: $-f_i f_j/((1-f_i)(1-f_j))$
 - 3 fakeable leptons: product of all f/(1-f)
- Application region dominated by events with 1 loose lepton and 2 tight leptons

Multileptons: non-prompt lepton background estimation

- Measure tight-to-loose ratio in fake enriched control region
 - == 1 lepton passing loose selection
 - 1 recoiling jet with $p_T > 40$ GeV, $\Delta R(jet, lep) > 1.0$
 - E_T^{miss} < 20 GeV, M_T < 20 GeV
- Ensure trigger selection is looser than loose selection
- **Subtract prompt contamination** by measuring MC yield in EKW control region ($E_{\tau}^{miss} > 20$ GeV, $70 < M_{\tau} < 120$ GeV)

electrons

Multileptons - WZ control region

- Measure scale factor in WZ enriched control region with 84% purity
 - 3 tight leptons, nominal ID, ISO, and p_T
 - $N_{\text{jets}} < 2$ Orthogonality to SR
 - $N_{\text{b-jets}} = 0$
 - $30 \le E_T^{miss} \le 100 \text{ GeV}$ Prevent signal contamination
 - At least on On-Z ossf pair
 - $M_T^{3rd lep} > 50 \text{ GeV}$ Suppress DY
- Scale factor measured with 2.3 fb⁻¹: 1.08 \pm 0.15 \rightarrow compatible with 1
- From uncertainty: assign 15% flat uncertainty for WZ normalization
- b-tag SF and JES uncertainty considered
- Theoretical uncertainty for extrapolation to higher b-jet multiplicities are added. Conservative estimate from Z → 2 lepton study: 10% (20%) for SR below (above) H_T = 400 GeV, 30% SR13

Multileptons - SR inclusive distributions (off-Z regions)

Multileptons - SR inclusive distributions (on-Z regions)

Multileptons - yields (off-Z regions)

- Expected and observed yields in 2.3 fb⁻¹ for the off-Z signal regions
- Yields for two different T1tttt mass points are given for comparison

b-tags	H _T (GeV)	E _T ^{miss} (GeV)	Expected	Observed	T1tttt $(m_{\tilde{g}}=1000\text{GeV}, m_{\tilde{\chi}_1^0}=600\text{GeV})$	T1tttt $(m_{\tilde{g}}=1150\text{GeV}, m_{\tilde{\chi}_1^0}=100\text{GeV})$	SR
	60-400	50-150	19.26 +4.81	18	0.23 ± 0.06	0.00 ± 0.00	SR1
0 b-tags	60-400	150-300	$1.16^{+0.31}_{-0.20}$	4	0.14 ± 0.04	0.04 ± 0.01	SR2
0 b-tags	400-600	50-150	$1.20^{+0.47}_{-0.40}$	3	0.05 ± 0.02	0.00 ± 0.00	SR3
	400-000	150-300	$0.29^{+0.44}_{-0.09}$	0	0.06 ± 0.02	0.04 ± 0.01	SR4
60-400	50-150	16.57 ± 4.52	24	0.92 ± 0.20	0.03 ± 0.01	SR5	
1 b tage	00-400	150-300	$2.32^{+0.80}_{-0.76}$	1	0.65 ± 0.14	0.07 ± 0.02	SR6
1 b-tags	400-600	50-150	$0.67^{+0.45}_{-0.09}$	2	0.25 ± 0.06	0.04 ± 0.01	SR7
	400-000	150-300	$0.48^{+0.29}_{-0.07}$	0	0.33 ± 0.08	0.09 ± 0.02	SR8
	60-400	50-150	$4.49^{+1.81}_{-1.79}$	4	1.12 ± 0.24	0.04 ± 0.01	SR9
2 b-tags	00-400	150-300	$0.31^{+0.44}_{-0.09}$	1	0.86 ± 0.18	0.08 ± 0.02	SR10
2 b-tags	400-600	50-150	$0.40^{+0.27}_{-0.26}$	0	0.42 ± 0.10	0.05 ± 0.02	SR11
	400-000	150-300	$0.08^{+0.43}_{-0.08}$	0	0.58 ± 0.13	0.13 ± 0.03	SR12
60-600	≥ 3 b-tags	50-300	$0.13^{+0.43}_{-0.09}$	0	2.26 ± 0.47	0.21 ± 0.05	SR13
> 600	inclusive	50-300	$1.84^{+0.44}_{-0.37}$	3	1.49 ± 0.31	1.47 ± 0.30	SR14
inclusive	inclusive	≥ 300	$1.62^{+1.22}_{-1.19}$	0	1.95 ± 0.40	3.04 ± 0.61	SR15

Multileptons - yields (on-Z regions)

- Expected and observed yields in 2.3 fb⁻¹ for the on-Z signal regions
- Yields for two different T5qqqqWZ mass points are given for comparison

b-tags	H _T (GeV)	E _T ^{miss} (GeV)	Expected	Observed	T5qqqqWZ ($m_{\tilde{g}}$ =1000 GeV, $m_{\tilde{\chi}^{\pm}}$ =600 GeV)	T5qqqqWZ ($m_{\widetilde{g}}$ =1150 GeV, $m_{\widetilde{\chi}^{\pm}}$ =100 GeV)	SR
	60-400	50-150	38.01 ± 5.92	39	0.00 ± 0.00	6.85 ± 0.81	SR1
0 b-tags		150-300	$4.48^{+0.84}_{-0.75}$	3	0.82 ± 0.36	4.08 ± 0.62	SR2
	400-600	50-150	$4.88^{+1.49}_{-1.47}$	4	0.38 ± 0.19	0.86 ± 0.29	SR3
		150-300	$1.88^{+0.47}_{-0.39}$	3	0.21 ± 0.13	1.29 ± 0.36	SR4
1 b-tags	60-400	50-150	11.84+2.28	14	-	0.55 ± 0.21	SR5
		150-300	$1.53^{+0.42}_{-0.34}$	1	0.16 ± 0.16	0.49 ± 0.19	SR6
	400-600	50-150	$1.18^{+0.49}_{-0.23}$	1	0.02 ± 0.02		SR7
		150-300	$0.42^{+0.44}_{-0.10}$	3	0.16 ± 0.16	0.29 ± 0.15	SR8
2 b-tags	60-400	50-150	$2.55^{+0.67}_{-0.51}$	2		0.18 ± 0.13	SR9
		150-300	$0.72^{+0.76}_{-0.28}$	0	=:	0.00 ± 0.00	SR10
	400-600	50-150	$0.55^{+0.45}_{-0.13}$	0	0.00 ± 0.00	-	SR11
		150-300	$0.31^{+0.51}_{-0.17}$	0	(*)	-	SR12
60-600	≥ 3 b-tags	50-300	$0.21^{+0.44}_{-0.13}$	0	-	-	SR13
> 600	inclusive	50-300	$4.22^{+0.68}_{-0.63}$	5	3.48 ± 0.65	1.01 ± 0.29	SR14
inclusive	inclusive	≥ 300	$1.41^{+0.50}_{-0.25}$	1	4.85 ± 0.81	2.37 ± 0.44	SR15

Multileptons - Systematic uncertainties

Experimental and theoretical uncertainties

source	magnitude	effect on yield	induces SR migration
luminosity	4.6%	4.6% *	_
jet ES	2 - 8%	1 – 20% *	√
b-tag efficiency	5 - 10%	1 – 20% *	
pileup	5%	3% *	-
lepton efficiencies	2%	2% *	-
HLT efficiencies	3%	3% *	_
HLT lepton effic.	3 - 10%	3 – 10% FastSim signals	_
HLT FastSim	5%	5% FastSim signals	=
FO CR stat.	1 - 100%	1 – 100% (fake bkg. only)	
FR extrapolation	30%	30% (fake bkg. only)	_
EWK subtraction in FR	100% (ewk. SF)	1-5% (fake bkg. only)	_
WZ CR stat. and norm.	15%	15 % (WZ only)	_
MonteCarlo stat.	1 - 100%	1 – 100% *	_
QCD scales	$\times 0.5/ \times 2$	$11 - 13\%(\sigma)/3 - 18\%(A) (t\bar{t}W,t\bar{t}Z,t\bar{t}H)$	
PDFs	_	2-3% (ttW,ttZ,ttH)	-
other bkgs.	50%	50% (rare processes, tribosons, etc.)	-

^{*} ttW,ttZ,ttH, rare processes and signals only

Multileptons - interpretations

