SEARCHES @ CMS SEARCHES FOR SUPERSYMMETRY USING RAZOR VARIABLES AT CMS

SUSY 2016 The University of Melbourne Melbourne, Australia

Javier Duarte Caltech JULY 5, 2016

OUTLINE

- Motivation: expanded natural SUSY
- Why razor variables?
- Searches
 - Inclusive search for squarks and gluinos
 - Exclusive search for anomalous $H \rightarrow \gamma \gamma$ production
- New topological triggers
- Outlook

NATURAL SUSY

- Lightest Higgs boson mass is connected with
 - Higgsino masses (tree level)
 - stop/sbottom masses (1 loop)
 - gluino mass (2 loop)
- Naturalness = all contributions are of the same order as the physical Higgs mass (no fine-tuning) \tilde{g} _____
- "Acceptable" fine-tuning implies Higgsinos lighter than ~300 GeV stops lighter than ~700 GeV gluinos lighter than ~1.5 TeV¹
- Possible spectrum:

1. M. Papucci, et al. JHEP 1209 (2012) 035

SUSY SIMPLIFIED MODELS

• One heavy particle (gluino), one invisible particle (neutralino), one possible decay channel (bb) $100\% = BR(\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0)$

NATURAL SUSY SIMPLIFIED MODELS

- Extended "natural" spectrum: allow multiple decay channels to see how it impacts our sensitivity $r = \frac{BR(\tilde{\alpha} \rightarrow h\bar{h}\tilde{\alpha}^{0})}{r}$
- Possible gluino decay topologies
 (depending on branching ratios x, y, z)

$$\begin{aligned} x &= & \mathrm{BR}(\widetilde{\mathbf{g}} \to b\bar{b}\widetilde{\chi}_{1}^{0}) \\ y &= & \mathrm{BR}(\widetilde{\mathbf{g}} \to t\bar{t}\widetilde{\chi}_{1}^{0}) \\ z &= & \mathrm{BR}(\widetilde{\mathbf{g}} \to tb\widetilde{\chi}_{1}^{\pm}) \end{aligned}$$

INCLUSIVE RAZOR

• Treat all events as "dijets + MET" by clustering particles into two pseudo-jets, called megajets $R \equiv \frac{M_T^R}{M_P}$

$$M_{R} = \sqrt{(|\vec{p}_{j1}| + |\vec{p}_{j2}|)^{2} - (p_{z}^{j1} + p_{z}^{j2})^{2}}$$
$$R \equiv \frac{M_{T}^{R}}{M_{R}} \quad M_{T}^{R} \equiv \sqrt{\frac{E_{T}^{\text{miss}}(p_{T}^{j1} + p_{T}^{j2}) - \vec{E}_{T}^{\text{miss}} \cdot (\vec{p}_{T}^{j1} + \vec{p}_{T}^{j2})}{2}}$$

Gluino signal events well-separated from SM background events

left) and R² (right) for di

es The normalised

WHY RAZOR FOR NATURAL SUSY?

- Behavior of razor variables largely invariant under different gluino decay modes
 - Slight dependence on the presence of top quarks: More tops \rightarrow lower M_R response, larger M_R resolution

neglecting mass of bb, tt, tbW* systems,

$$M_{\Delta} = \frac{m_{\tilde{g}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{g}}}$$

SEARCHES @ CMS

INCLUSIVE RAZOR

DATA-DRIVEN BACKGROUND PREDICTION

 $f_{\text{Razor}}(x,y) \propto (b[(x-x_0)(y-y_0)]^{1/n} - 1) \exp\{-bn[(x-x_0)(y-y_0)]^{1/n}\}$

- Fit the 2D distribution of data with an empirical function in a background-enriched sideband, and extrapolate to the signal-sensitive region
- Extensive validation of functional form performed on 2010-2015 data and MC

Caltech

FIT SYSTEMATIC UNCERTAINTIES

- Size of background systematic uncertainty in signal-sensitive region varies between ~40%-100%
- Example from 8 TeV fit shows how variation of shape parameters affects background prediction

TARGET AND STRATEGY

- Same basic strategy as in Run 1 with short-term target of gluino-mediated signal models
- Select and categorize events based on jets and leptons
 - Perform maximum likelihood fit in a **sideband** of R^2 and M_R and quantify agreement between SM backgrounds and data
- All-hadronic channel (MultiJet) uses custom razor trigger

b/t/q

b/t/q

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

b/t/q

b/t/q

SUS-15-004 2D FIT PROJECTION

• Alternate representation of the data, fit prediction, and their agreement provides greater density of information

Javier Duarte

Caltech

SUS-15-004 SELECTED RESULTS IN DATA

- No significant deviation observed in any data category
- Scattered ~2 σ "local" deviations consistent with fluctuations

<u>SUS-15-004</u>

SIGNAL INJECTION

• Simulated signal injection for $m_{\widetilde{g}} = 1400 \text{ GeV}, m_{\widetilde{\chi}_1^0} = 100 \text{ GeV}$ illustrates how an excess consistent with SUSY would appear

RUN 2 LIMITS

 For a massless LSP, gluino is 5¹⁸⁰⁰ excluded below **1650 GeV** with 2.1 fb⁻¹ at 13 TeV in four-bottom-quark final
 state

SUS-15-004

<u>SUS-15-004</u>

RUN 2 LIMITS

- For a massless LSP, gluino is 1800 excluded below 1650 GeV with 2.1 fb⁻¹ at 13 TeV in four-bottom-quark final 1000 state
- Compare with Run 1 limit
 1400 GeV with 19.3 fb⁻¹ at
 8 TeV

BRANCHING RATIOS

• Scan the triangular branching ratio phase space in (x,y)

SUS-16-004 SUMMARY OF RUN 2 LIMITS

For generic branching ratio, gluino is excluded below ~1600 GeV

First branching-ratio independent gluino limit from LHC!

SEARCHES @ CMS

RAZOR H-> VV

RAZOR H→ ¥¥ SEARCH

Javier Duarte

Caltech

- Search for electroweak SUSY production (Higgsinos, Winos, Binos)
- Selection:
 - Tag events using $H \rightarrow \gamma \gamma$
 - Categorize using Higgs p_T and photon resolution
- Discriminating variables M_R and R^2
- Background prediction in R²-M_R plane by interpolating from m_{yy} sidebands
- Look bin-by-bin in R²-M_R plane for an excess

<u>SUS-14-017</u>

HIGH RES CATEGORY

M_R region	R^2 region	observed events	expected background	<i>p</i> -value	significance (σ)
150 - 250	0.00 - 0.05	363	$357.6^{+9.6}_{-9.4}$ (syst.)	0.40	0.3
150 - 250	0.05 - 0.10	149	$139.4^{+5.6}_{-5.4}$ (syst.)	0.23	0.7
150 - 250	0.10 - 0.15	35	$32.5^{+3.4}_{-3.1}(\text{syst.})$	0.34	0.4
150 - 250	0.15 - 1.00	7	$8.0^{+1.7}_{-1.4}$ (syst.)	0.40	-0.3
250 - 400	0.00 - 0.05	218	$207.9^{+7.0}_{-6.8}$ (syst.)	0.27	0.6
250 - 400	0.05 - 0.10	20	$14.7^{+2.5}_{-2.1}$ (syst.)	0.13	1.1
250 - 400	0.10 - 1.00	3	$2.7^{+0.8}_{-0.6}$ (syst.)	0.43	0.2
400 - 1400	0.00 - 0.05	109	$101.6^{+5.0}_{-4.8}$ (syst.)	0.26	0.7
400 - 1400	0.05 - 1.00	5	$0.5^{+0.4}_{-0.2}$ (syst.)	0.002	2.9
1400 - 3000	0.00 - 1.00	0	$0.9^{+0.5}_{-0.3}(\text{syst.})$	0.44	-0.1

2.9σ local excess is 1.6σ after look-elsewhere effect

→ excess not consistent with standard EWK SUSY models

RAZOR TRIGGERS

- 4 triggers designed for different aspects of SUSY/DM/Higgs phase space
 - Dijet trigger (squark pair production)
 - Quadjet trigger (gluino pair production)
 - R² trigger (DM direct production / large transverse imbalance)
 - $H \rightarrow bb$ trigger (Higgs-aware SUSY à la $H \rightarrow \gamma\gamma$ 8 TeV excess)

SUMMARY AND OUTLOOK

- The CMS SUSY search program at 13 TeV has produced stringent limits on many natural SUSY scenarios
 - gluinos excluded below ~1600 GeV for generic BR

Caltech

- Interesting excess seen in razor $H \rightarrow \gamma \gamma$ analysis, so we developed a trigger to search in the $H \rightarrow bb$ channel
- Forthcoming razor $H \rightarrow \gamma \gamma$ analysis of 2015+2016 13 TeV data as well as inclusive razor analysis of 2016 13 TeV data: stay tuned!

SEARCHES @ CMS

BACKUP

710

4

GLUINO PAIR PRODUCTION

Gluino pair production cross section at the 13 TeV LHC is
 10x-50x greater than 8 TeV in the accessible phase space

STOP PAIR PRODUCTION

Stop pair production cross section at the 13 TeV LHC is
 5x-15x greater than 8 TeV in the accessible phase space

HIGGS AND NATURALNESS

- Without SUSY, the Higgs mass would "naturally" be enormous, unless certain parameters are delicately fine-tuned to 1 part in 10,000,000,000,000,000
- With SUSY, the Higgs mass matches what we see without excessive fine tuning

HIGH RES CATEGORY

M_R region	R^2 region	observed events	expected background	<i>p</i> -value	significance (σ)
150 - 250	0.00 - 0.05	363	$357.6^{+9.6}_{-9.4}(\text{syst.})$	0.40	0.3
150 - 250	0.05 - 0.10	149	$139.4^{+5.6}_{-5.4}$ (syst.)	0.23	0.7
150 - 250	0.10 - 0.15	35	$32.5^{+3.4}_{-3.1}$ (syst.)	0.34	0.4
150 - 250	0.15 - 1.00	7	$8.0^{+1.7}_{-1.4}$ (syst.)	0.40	-0.3
250 - 400	0.00 - 0.05	218	$207.9^{+7.0}_{-6.8}$ (syst.)	0.27	0.6
250 - 400	0.05 - 0.10	20	$14.7^{+2.5}_{-2.1}$ (syst.)	0.13	1.1
250 - 400	0.10 - 1.00	3	$2.7^{+0.8}_{-0.6}$ (syst.)	0.43	0.2
400 - 1400	0.00 - 0.05	109	$101.6^{+5.0}_{-4.8}$ (syst.)	0.26	0.7
400 - 1400	0.05 - 1.00	5	$0.5^{+0.4}_{-0.2}$ (syst.)	0.002	2.9
1400 - 3000	0.00 - 1.00	0	$0.9^{+0.5}_{-0.3}(\text{syst.})$	0.44	-0.1

2.9σ local excess is 1.6σ after look-elsewhere effect

Javier Duarte

Caltech

RUN 2 SIGNAL SYSTEMATICS

Updated Run 2 signal systematic uncertainties

SYSTEMATIC UNCERTAINTIES	
LEPTON SELECTION EFFICIENCY	
LEPTON TRIGGER EFFICIENCY	
LUMINOSITY	
JET ENERGY SCALE	
B-TAGGING EFFICIENCY	
FASTSIM LEPTON EFFICIENCY	
FASTSIM B-TAGGING EFFICIENCY	
I S R	
PARTON DENSITY FUNCTIONS	
REN. AND FAC. SCALES	
PILEUP REWEIGHTING	
MC STATISTICS	

BASELINE SELECTION

- For all boxes, we select events that have at least four jets with $p_T>40$ GeV and $|\pmb{\eta}|{<}3$
 - In the MultiJet box, we also require at least two jets with $p_{\rm T}>80$ GeV and $|\pmb{\eta}|{<}3$
 - Within each box, we categorize events which have 0, 1, 2, ≥3 btags

Event category	B-Tag bins	Selection cuts
		single electron triggered events,
		one tight electron, $p_T(e) > 25$ GeV,
Electron + Multijet	0 b-tag, 1 b-tag, 2 b-tag, 3 or more b-tags	$M_T > 120 { m GeV}$,
		\geq 4 jets with $p_T >$ 40 GeV,
		$M_R > 400 { m GeV}, R^2 > 0.15$
		single muon triggered events,
	0 b-tag, 1 b-tag, 2 b-tag, 3 or more b-tags	one tight muon, $p_T(\mu) > 20$ GeV,
Muon + Multijet		$M_T > 120 { m GeV}$,
		\geq 4 jets with p_T > 40 GeV,
		$M_R > 400 { m GeV}, R^2 > 0.15$
		hadronic razor triggered events,
		$\Delta \phi < 2.8$,
Multijot	0 h tag 1 h tag 2 h tag 2 ar mara h taga	no veto electrons or muons,
wiunger	0 b-tag, 1 b-tag, 2 b-tag, 5 01 more b-tags	\geq 4 jets with p_T > 40 GeV,
		≥ 2 jets with $p_T > 80$ GeV,
		$M_R > 500 \text{ GeV}, R^2 > 0.25$

RAZOR VARIABLES (SCALING)

- Empirically we found that, for each background, the tail of the MR distribution is well-modeled by a falling exponential for different R cuts
- The exponents follow a linear relation with respect to the cut position, allowing for an analytic description of the tail

Javier Duarte

Caltech

MOTIVATION FOR 2D RAZOR PDF

- As you increase the cut on R2, the exponential slope on MR becomes steeper
 - Exp. slope increases linearly with the R2 cut
- Same thing for MR \leftrightarrow R2

(1)
$$\int_{y_{\min}}^{\infty} dy f(x, y) \propto e^{-kx}, \quad k = by_{\min} + c$$

2)
$$\int_{x_{\min}}^{\infty} dx f(x, y) \propto e^{-ky}, \quad k = bx_{\min} + c$$

Function satisfying (1) and (2) is:

$$f_{\rm th}(x,y) = (b(x-x_0)(y-y_0) - 1)e^{-b(x-x_0)(y-y_0)}$$

SENSITIVITY WITH B-TAGGING

- For 8 TeV, majority of background is tt+jets, which populates 1b-tag and 2b-tag
- b-tagging based on "combined secondary vertex" algorithm
- The large mass, relatively long lifetimes and hard daughters of bottom hadrons can be used to identify the hadronic jets into which the b quarks fragment
- Discriminator uses secondary vertex and the kinematic variables associated with this vertex, such as flight distance and direction
- b-tagging has dependence on pT, so we expect the MR shape to have some dependence on the b-tag bin (so we allow the ≥2b-tag shape to differ from the 1b-tag shape)

SUS-13-011 **1 LEPTON BDT** EPJC 73 (2013) 2677

Javier Duarte

Caltech

 After tight single lepton selection, optimize different multivariate boosted decision trees (BDTs) for different regions of phase space based on signal-sensitive observables

SUS-13-011 EPJC 73 (2013) 2677

M

1 LEPTON DETAILS

- Define a multivariate boosted decision tree (BDT) based on several signal sensitive observables, e.g. $E_T^{\rm miss}, M_{T2}^W$
- M_{T2}^W = minimum mother particle mass consistent with observed and assumed kinematic constraints

LHC CL_S LIMIT SETTING

$$\begin{aligned} \mathsf{LHC} \ \mathsf{CL}_{\mathsf{s}} \\ \mathcal{L}(\text{data}|\sigma, \hat{\theta}_{\sigma}) \pi(\hat{\theta}_{\sigma}) &\geq \mathcal{L}(\text{data}|\sigma, \theta) \pi(\theta) \quad \forall \, \theta, \, \text{fixed} \, \sigma \\ \mathcal{L}(\text{data}|\hat{\sigma}, \hat{\theta}) \pi(\hat{\theta}) &\geq \mathcal{L}(\text{data}|\sigma, \theta) \pi(\theta) \quad \forall \, \theta, \sigma \\ \tilde{q}_{\sigma} &= -2 \log \left(\frac{\mathcal{L}(\text{data}|\sigma, \theta_{\sigma})}{\mathcal{L}(\text{data}|\hat{\sigma}, \hat{\theta})} \right), \quad 0 \leq \hat{\sigma} \leq \sigma \\ \mathbf{CL}_{\mathsf{s}+\mathsf{b}}(\sigma) &= \int_{\tilde{q}_{\sigma}^{\mathsf{obs}}}^{\infty} d\tilde{q}_{\sigma} \ f(\tilde{q}_{\sigma}|\sigma, \hat{\theta}_{\sigma}^{\mathsf{obs}}) \\ \mathbf{CL}_{\mathsf{b}} &= \int_{\tilde{q}_{\sigma}^{\mathsf{obs}}}^{\infty} d\tilde{q}_{\sigma} \ f(\tilde{q}_{\sigma}|\sigma, \hat{\theta}_{0}^{\mathsf{obs}}) \end{aligned}$$

- b-only (s+b) full fit on data => best fit for b-only (s+b) nuisance parameters
- All nuisances fixed to ML estimators at toy generation
- Profile Likelihood ratio (s+b vs. best-fit s+b) test statistic re-fit in the full region

SUSY PRODUCTION AT THE LHC

 Protons collide, producing two squarks, which then decay to two quarks and two invisible particles

Caltech

WHAT WE SEE

- We can't directly observe the invisible particles, but we observe missing transverse momentum
- How can discriminate signal How can we estimate the from background? hidden masses of the super particles? proton proton Missing Missing energy energy

Javier Duarte

Caltech

-SM

SUSY

RAZOR VARIABLES

Transform to a more symmetric frame where the visible momenta are equal

Caltech

In this frame, we compute the **razor variables**, functions of the visible and missing momenta

SLHA FOR NATURAL SUSY

• SLHA file can be found at:

https://github.com/CMS-SUS-XPAG/GenLHEfiles/blob/master/slha/T2tb.slha

• Chargino decay branching fractions are:

	BR	NDA	ID1	ID2	ID3		
3.5	L024479E-01	3	1000022	2	-1	# BR(~chi_1+ -> ~chi_10 u	db)
3.5	L024479E-01	3	1000022	4	-3	# BR(~chi_1+ -> ~chi_10 c	sb)
1.1	7008160E-01	3	1000022	-11	12	# BR(~chi_1+ -> ~chi_10 e+	nu_e)
1.1	7008160E-01	3	1000022	-13	14	# BR(~chi_1+ -> ~chi_10 mu+	nu_mu)
6.3	9347234E-02	3	1000022	-15	16	# BR(~chi_1+ -> ~chi_10 tau+	nu_tau)

#

