

Search for third generation squarks in 13 TeV pp collisions at CMS

Florent Lacroix
(U. of California Riverside)
on behalf of the CMS collaboration

Third generation susy

- Motivations:
 - Naturalness usually requires low squark mass (<1 TeV) to cancel radiation corrections to Higgs masses.
 - 3rd generation quarks can be lighter than all squarks due to large mixing.
- CMS has a broad 13 TeV 3rd generation search program:
 - Diverse selection of signal topologies, classified in produced sparticles and decay channels;
 - Inclusive and dedicated searches, spanning many decay signatures (lepton multiplicity).
- Interpretation of analyses are made with Simplified Model Spectra.

Production mechanisms

- Stop and sbottom quarks can be produced in LHC collisions via:
 - Direct squark pair production by gg fusion or $q\overline{q}$ annihilation;
 - Gluino mediated production.

Direct production

Gluino mediated production

- Production cross-section rapidly falls with mass.
- ~150 events expected in 2015 dataset for 700
 GeV squarks in direct production.
- For heavy stop, look at 8 TeV SUS-13-024

Direct stop production

Different decays depending of the stop and LSP masses:

C through loop, 4-body decay:

→ Soft lepton analysis (SUS-16-011)

Dedicated 0 lepton analyses

Two 0 lepton analyses looking for direct stop production:

SUS-16-007

- High Purity Top Tagging (HPTT):
- Aimed at compressed $\widetilde{t} \rightarrow t \widetilde{\chi}^0$ and $\widetilde{t} \rightarrow b \widetilde{\chi}^\pm$ decays
- Use CMS top tagger with ak8 jets, top p_→>400 GeV
- Categorization of events in orthogonal bins of kinematic variables
 - $M_T(b, MET)$, Njets, Nbjets, presence of top, MET
 - Total of 50 search regions

- High Efficiency Top Tagging (HETT):
- Aimed at medium and large Δm between m(stop) and m(LSP)
- Use custom, highly efficient toptagger
 - Test various combination of three ak4 jets of at least 30 GeV in a cone of radius 1.5
- Categorization of events in bins of Ntop, Nbjets, MET and MT2.

Backgrounds estimation

- TTbar, W+jets and single top
 - With lost lepton(s)
 - From muon+jets control sample, correcting for lepton efficiency (HETT) or using a translation factor (HPTT)
 - With hadronic tau (HETT)
- Z → vv+jets:
 - $Z\rightarrow$ II+jets (normalization) and γ +jets (shape) control region used for HPTT
 - Z→μμ used for HETT
- QCD
 - From inverted deltaPhi and low MET control region, using translation factors
- ttZ and other rare backgrounds
 - Estimated with MC, checks in data

Results of the 0 lepton analyses

 No significant excess observed in the 2.3 fb-1 of data for the 2 analyses. 07/05/2016

High Efficiency Top Tagging (HETT)

Interpretations of the 0 lepton analyses

The 1 lepton stop analysis

Use MT2W or modified topness variables to define search regions:

SUS-16-002

Targeted models	N _{Jets}	$M_{\rm T2}^{\rm W}$ [GeV]	$t_{ m mod}$	Е	miss [GeV]	
Low ΔM	≥ 4	≤ 200		250–325	> 325	
High ΔM	≥ 4	> 200		250–350	350-450	> 450
Boosted High ΔM	= 3	> 200		250–350	> 350	
Compressed $\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0$	= 2		> 6.4	250–350	> 350	

Background estimation

- Lost lepton:
 - Taken from 2 leptons control region
- W+jets:
 - Estimated from 0 b-tag control region
- Rare backgrounds
 - From Monte Carlo simulation

Results

■ No significant excess observed in the 2.3fb⁻¹ of data:

m- [GeV]

• Limits set for different BFs, assuming: $m_{{\widetilde \chi}_1^\pm} = m_{{\widetilde \chi}^0} + 5 \,\, {
m GeV}$

Inclusive O-lepton analyses

- Inclusive analyses described in details in dedicated talks:
 - MHT analysis (SUS-15-002): talk from Kevin Pedro
 - MT2 analysis (SUS-15-003): talk from Mario Masciovecchio

Search with 1 soft lepton

■ Selection : exactly one soft lepton (e or μ) : 5 < p_{τ} < 20 GeV

SUS-16-011

- At least 1 jet, HT>200 GeV, MET>200 GeV, |MET-HT|<0.5 MET, mT> 20 GeV
- Contribution from fakes is small, excellent modeling of all kinematic distributions.
- \blacksquare Builds on experience with low $\boldsymbol{p}_{\scriptscriptstyle T}$ leptons as vetoes for 0-lepton searches.

Backgrounds estimation

- 1 lepton background:
- W and top (1 lepton) with 1 soft lepton, hard neutrino
- ullet 1 lepton control region: high $p_{\scriptscriptstyle au}$ lepton, soft MET
- Uncertainties: W polarization, W/tt composition, lepton efficiency
- 2 leptons background:
- Top (2 lepton)
- Significant background in MT tail
- Control region: SR + 1 extra lepton
- Uncertainties: lepton efficiency, acceptance

• Fakes:

- Small after tight ID/ISO and large MET
- Use MC for MT<120 GeV, fake rate method above

Results of 1 soft lepton analysis

■ No significant excess observed in the 2.3fb⁻¹ of data:

Summary of direct stop results

No significant excess observed so far...

Direct sbottom production

- Dedicated analysis
- Selection:

N _{jets}	[2,3]		
1st-jet p _T	$> 100\mathrm{GeV}$		
2nd-jet p_{T}	> 75 GeV		
Veto fourth jet	$p_{\mathrm{T}} > 50 \mathrm{GeV}$		
Lepton and isolated track veto	$p_{\rm T} > 10~{ m GeV}$		
b jet	1st and 2nd-jet are b jets		
E _T ^{miss}	> 250 GeV		
$\Delta \phi(j_{123}, E_{\mathrm{T}}^{\mathrm{miss}})$	> 0.4		
$\Delta \phi(j_1, E_{\rm T}^{\rm miss})$	-		
$\min M_{\mathrm{T}}(\mathbf{j}, E_{\mathrm{T}}^{\mathrm{miss}})$	$> 250 \mathrm{GeV}$		
H_{T}	> 200 GeV		
$m_{\rm CT}$	> 250 GeV		

- Backgrounds estimation:
 - Lost lepton background
 - From single e/μ control sample (transfer factor)
 - **■ Z**→νν
 - From Z→μμ sample
 - QCD multijets
 - From inverted deltaPhi and low MET control region

07/05/2016

SUS-16-001

Direct sbottom results

■ No significant excess observed in the 2.3fb⁻¹ of data:

Gluino mediated production

Gluino can decay via a virtual stop or a virtual sbottom

Gluino pairs decaying to 4 tops:

■ Interpretation made by 0-lepton inclusive analyses, 1 lepton analyses and multilepton analyses, cf talks from:

- Javier Duarte (razor)
- Mario Masciovecchio (MT2)
- Kevin Pedro (MHT)
- Tai Sakuma (alphaT)
- Claudia Seitz (single lepton)
- Jan Hoss (multilepton)

Gluino masses excluded up to almost1.6 TeV for m(LSP)=0 GeV

Gluino pairs to 4 bottoms

Gluino pairs decay to 4 b-quarks:

• Interpretation made by 0-lepton inclusive analyses, cf talks from:

- Javier Duarte (razor)
- Mario Masciovecchio (MT2)
- Kevin Pedro (MHT)
- Tai Sakuma (alphaT)

Gluino masses excluded up to almost1.8 TeV for m(LSP)=0 GeV

More results

T5++++DM175, T5++++degen, T1++bb, T5++cc, T6++WW....

SUS-16-004

Conclusion

- Large number of CMS analyses covering stop and sbottom searches for direct or gluino mediated production.
- No excess observed, limits have been set for Simplified Models.
- Exciting months ahead, stay tuned: high luminosity expected for this year!
- ICHEP 3rd generation talk by Nadja Strobbe on Aug 3rd.

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

BACK UP

SLIDES

Definition of 1 lepton variables

$$M_{\rm T2}^{\rm W} = \min\{m_y, \text{ consistent with: } [p_1^2 = 0, (p_1 + p_\ell)^2 = p_2^2 = M_{\rm W}, \ \vec{p}_{\rm T}^1 + \vec{p}_{\rm T}^2 = \vec{E}_{\rm T}^{\rm miss}, \quad (3)$$

$$(p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2]\},$$

where m_v is the fitted mother particle mass, and p_1 , p_2 , b_1 , and b_2 , are the decay components.

$$t_{\text{mod}} = \ln(\min S) \text{ with } S(\vec{p}_W, p_{\nu, z}) = \frac{(m_W^2 - (p_\nu + p_\ell)^2)^2}{a_W^4} + \frac{(m_t^2 - (p_b + p_W)^2)^2}{a_t^4}.$$
(4)

We select events with $t_{\rm mod} > 6.4$. The definition of topness used in this analysis is modified from the one originally proposed in [33]; namely, the terms corresponding to the leptonic top quark decay and the center-of-mass energy are dropped. The reason is that in events with low jet multiplicity the second b-jet is often not identified. In these cases, the discriminating power of the topness variable is reduced when a light-flavor jet is used instead in the calculation. Modified topness as presented here is more robust against such effects and provides better performance in these search region as compared to $M_{\rm T2}^{\rm W}$. The calculation of modified topness in this analysis uses resolution parameters $a_{\rm W}=5\,{\rm GeV}$ and $a_{\rm t}=15\,{\rm GeV}$. The distribution of modified topness for events with two jets is shown in Fig. 3 (right).