

Studies of Higgs and flavour physics at the high p_T frontier with ATLAS (top & FCNC)

Jana Schaarschmidt (Weizmann Institute of Science) on behalf of the ATLAS collaboration

SUSY2016 Melbourne. 05.July.2016

Introduction

Fundamental assumptions of the SM:

Flavour changing neutral currents (FCNC) forbidden on the tree level, suppressed at higher-orders

 \rightarrow Lepton flavour conservation of the charged leptons \rightarrow Absence of transition between top and other flavour quarks mediated by neutral gauge bosons

Any deviations would be indications for new physics!

Studies presented in this talk:

- Higgs boson couplings, top Yukawa coupling (ttH, ttZ)
- FCNC in top decays: $t \rightarrow qH$ and $t \rightarrow qZ$
- Single top production via FCNC
- Search for LVF Higgs: $H \rightarrow II'$
- Search for LVF Z: $Z \rightarrow II'$

SM Higgs Productions and Couplings

N

- ATLAS & CMS combined run-1 measurements of Higgs boson couplings
- Production signal strength μ_i : quantifies deviation of production cross section from the SM
- Coupling modifiers κ: Quantifying modification of the Higgs couplings related to BSM κ_r: scale factor for all fermion couplings
 - κ_{v} : scale factor for all weak vector boson couplings

3 / 20

Top quark: Heaviest fundamental particle, decays before it hadronizes, access to Yukawa coupling

- Selecting events with one or two leptons, at least 4 jets, 2 of them btagged
- Neural network trained in 5 signal-enriched categories
 (single-lepton: 5j≥4b, ≥6j3b, ≥6j≥4b and dilepton: 3j3b, ≥4j3b, ≥4j≥4b)
- Matrix element discriminator one of NN input variables
- Large background uncertainties constrained from simultaneous fit of signal and control regions

Physics Letters B 749 (2015) 519-541

$ttH \rightarrow multi-leptons$

- "Cut & count" analysis
- Categorized by number and flavour of leptons:

 $\begin{array}{l} \text{2I (same sign)} + 0\tau + \geq 4j \\ \text{2I (same sign)} + 1\tau + \geq 4j \\ \text{3I (total charge } \pm 1) + \geq 4j \\ \text{4I } + \geq 2j \\ \text{1I } + 2\tau + \geq 3j \end{array}$

	Higgs boson decay mode				
Category	WW^*	au au	ZZ^*	Other	
$2\ell0 au_{ m had}$	80%	15%	3%	2%	
3ℓ	74%	15%	7%	4%	
$2\ell 1 au_{ m had}$	35%	62%	2%	1%	
4ℓ	69%	14%	14%	4%	
$1\ell 2 au_{ m had}$	4%	93%	0%	3%	

· Backgrounds estimated from MC and from data, validated in dedicated control regions

Search for ttH, $H \rightarrow$ bb with all-hadronic top-decays

"tt \rightarrow all-jets" has largest BR (46%) JHEP 05 (2016) 160

- Control regions: 6j3b, 6j≥4b
 Signal regions: 7j3b, 7j≥4b, ≥8j3b, ≥8j≥4b,
 S/B ranges from 0.2-1%
- BDT trained in each category to separate signal and background

Inputs: sum of jet p_{τ} divided by the inv. jet mass

(centrality), min. m_{jj} , m_{bb} for bb closest in ΔR , masses of reconstructed tops, ...

Best-fit signal strength: 1.6 ± 2.6

No ttH evidence yet

Combined ttH significance wrt. bkg-only: 2σ , wrt. SM: 1σ

13 TeV ttH production cross section is factor 3.9 larger than at 8 TeV

 \rightarrow stay tuned for the 13 TeV update

JHEP 05 (2016) 160

- Same production dynamics as ttH, similar kinematic scales (since $m_{_H} \sim m_{_7}$)
- Cross section can be altered wrt. SM by presence of vector-like quarks, technicolor, ...
- Channels: $ttZ \rightarrow tvb qqb + II (3 leptons) or Ivb Ivb + II (4 leptons)$

 Results:
 σ (ttZ) = 0.9 ± 0.3 pb
 MG5_aMCatNLO: 0.76 ± 0.08 pb

 σ (ttW) = 1.4 ± 0.8 pb
 MG5_aMCatNLO: 0.57 ± 0.06 pb

H

- SM: BR(t \rightarrow uH) ~10⁻¹⁷ and BR(t \rightarrow Hc)~10⁻¹⁵, negligible compared to t \rightarrow Wb

Search for tt \rightarrow Wb + Hq, with $H{\rightarrow}\gamma\gamma$

- BR($H \rightarrow \gamma \gamma$) 0.2%, but excellent mass resolution makes it easy to separate it from background - Events selected containing two photons, and other objects consistent with either hadronic or leptonic top decays. Top decays fully reconstructed, cuts on the top masses applied.

Upper limit on BR(t \rightarrow qH): 0.79%, expected (0.51 +0.2 -0.1) % \rightarrow 1 σ

JHEP 12 (2015) 061

Search for FCNC $t \rightarrow qH$

Search for t→Hq, with H→bb, single-lepton $BR(H\rightarrow bb) = 58\%$ JHEP 12 (2015) 061 • Similar to ttH(bb) analysis, baseline selection $\ge 4j \ge 2b$, one lepton • 9 categories, signal-enriched regions: 4j3b, 4j4b, 5j3b, 5j≥4b • Signal-background-discriminant built in each category: $D(\mathbf{x}) = \frac{P^{\text{sig}}(\mathbf{x})}{P^{\text{sig}}(\mathbf{x}) + P^{\text{bkg}}(\mathbf{x})}$

P^{sig} and P^{bkg} probability functions for an event to be signal or background-like, function of all possible combinations of the selected objects. Inputs: Reconstructed resonances (H and W), flavour content of the jets.

10 / 20

Search for FCNC t \rightarrow qH

50 45

45

40

35

30

25

20 15E

10

1.5E

0.5

ee4i

ee≥5

eµ4j

eµ≥5

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Events

Data / Bkg

Non-prompt/

q-misid

tt(Z/γ*)

Diboson

Total Bkg unc.

31

Data

tt → WbHc

(BR=1%)

(BB=1%)

μµ4j

µμ≥5j

tt → WbHu

tīW

ttH

Rare

2l1t

Category

Search for t \rightarrow Hq with H \rightarrow WW/ $\tau\tau$

11 / 20

Reinterpretation of sensitive ttH→multi-lepton channels

- $3I + \ge 3j$ with ≥ 2 b-tags or ≥ 4 jets with ≥ 1 b-tag
- 2I (same sign) + 0τ + \geq 4jets with \geq 1 b-tags
- 2I (same sign) + 1τ + \geq 4 jets with \geq 1 b-tag

Search for FCNC $t \to qZ$

<u>12 / 20</u> Eur. Phys. J. C76 (2016) 12

- Events with three leptons (two with same flavor and opposite charge,
 - mass consistent with Z mass)
- 2 or 3 jets (p₁ > 35 GeV),
 - \geq 1 of them b-tagged
- Top mass reconstruction

Sample	Yields
WZ	$1.3 \pm 0.2 \pm 0.6$
$t\bar{t}V$	$1.5\pm0.1\pm0.5$
tΖ	$1.0\pm0.1\pm0.5$
Fake leptons	$0.7\pm0.3\pm0.4$
Other backgrounds	$0.2\pm0.1\pm0.1$
Total background	$4.7 \pm 0.4 \pm 1.0$
Data	3
Signal efficiency $[\times 10^{-4}]$	$7.8 \pm 0.1 \pm 0.8$

Reconstructed masses after signal selection:

With NNLO+NNLL calculation for $t\bar{t}$ cross section and BR(t \rightarrow bW) = 1-BR(t \rightarrow Zq) upper limits on BR(t \rightarrow Zq): Expected: (8 +12 –6) x 10⁻⁴ Observed: 7 x 10⁻⁴

$t\bar{t} \rightarrow b l \nu$ qll candidate event

Run: 213486 Event: 107695979 2012-10-27 23:21:30

Muon 28 GeV Electrons (107 GeV, 19 GeV) MET (84 GeV)

Search for single top produced via FCNC gq $\!\!\!\!\rightarrow t \!\!\!\rightarrow \!\!\!\!\!\!\!\!\rightarrow b l \nu$

 \rightarrow 4x more top than anti-top produced

14 / 20

Eur. Phys. J. C (2016) 76:55

Analysis based on neuralnetwork discriminant Top ranked: m_{T} top, p_{T} lep, $\Delta R(t, lep), p_{T}$ b-jet, lep charge

Upper limit on σ^*BR : Expected 2.9 +1.9 -1.2 pb Observed 3.4pb

Limits set on couplings $\kappa_{_{cgt}}/\Lambda$ and $\kappa_{_{ugt}}/\Lambda$

Using NLO FCNC calculation, limits converted and set on BR of t \rightarrow cg and t \rightarrow ug

[GeV]

 $\mathsf{m}_{\mathsf{T}}^{\tau, \mathcal{E}_{\mathsf{T}}^{\mathsf{miss}}}$

ne Sign

Syst. Unc.

150

LFV of H decays can appear in composite Higgs, RS models, models with >1 Higgs doublet

15 / 20

- Hadronic τ with p₁>45 GeV
- Electron or muon p₁>26 GeV
- Veto on b-jets, inclusive in #jets
- SR1: m_τ(I,MET) > 40 GeV, m_τ(τ,MET) < 30 GeV
- SR2: m₁(I,MET) < 40 GeV, m₁(τ,MET) < 60 GeV

Events / 10 GeV

.5

0.5

100

-50

50

Data - Bkg.

ATLAS

 $\mu \tau_{had}$ events

 $\sqrt{s} = 8 \text{ TeV}$ [L dt = 20.3 fb⁻¹

100

 2.2σ excess in SR2 in $H \rightarrow \mu \tau$ reduced to 1.3σ combining both SR

Search for Lepton Flavor Violation in H decays

- Selecting events with OS e and μ
- $e\mu$ sample: e has leading p_{τ} , μ e sample: μ has leading p_{τ}

16 / 20

- H→τµ present only in µe sample since electron from τ decay is soft
- SM backgrounds symmetric under exchange of e with μ (except reco and trigger efficiencies)

 \rightarrow eµ sample used for background estimation in the µe sample

No excess over bkg. observed

 $\mu \tau_{_{had}} \text{ and } \mu \tau_{_{lep}} \text{ combined: } 1\sigma$

Combined best-fit BR values: $H \rightarrow e\tau$: -0.34 +0.64 -0.66 $H \rightarrow \mu\tau$: 0.53 ± 0.51

JHEP11(2015)211

ATLAS ATLAS Expected + 2a $\sqrt{s} = 8 \text{ TeV} \int L dt = 20.3 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV} \int L dt = 20.3 \text{ fb}^{-1}$ Excluded $\mu \tau_{had}$, SR1 eτ_{had}, SR1 $e\tau_{had}$, SR2 $\mu \tau_{had}$, SR2 $\mu \tau_{had}$, Comb $e\tau_{had}$, Comb μτ_{len}, SR_{noJets} eτ_{lep}, SR_{no.lets} $\mu \tau_{len}$, SR with lets eτ_{lep}, SR_{with.lets} $\mu \tau_{len}$, Comb $e\tau_{lep}$, Comb uτ. Comb 0 10 12 14 0 2 10 12 14 95% CL upper limit on Br($H \rightarrow e\tau$), % 95% CL upper limit on Br($H \rightarrow \mu \tau$), %

Search for $H{\rightarrow}e\tau$ and $H{\rightarrow}\mu\tau$ with leptonic τ

Search for Lepton Flavor Violation in Z decays

LVF in Z decays are predicted in models with heavy neutrinos, extended gauge models and SUSY

17 / 20

Very similar analysis as $H \rightarrow \mu \tau$ Kinematic cuts slightly lowered wrt. H No excess observed, a deficit in SR1

Expected limit 2.6^+	SR2	Combined
Observed limit 1.5 Best fit -2.1^+	$\begin{array}{cccc} \overset{1.1}{_{0.7}} & 6.4^{-1.8}_{_{+2.8}} \\ & 7.9 \\ \overset{1.2}{_{1.3}} & 2.6^{+2.9}_{_{-2.6}} \end{array}$	$\begin{array}{c} 2.6^{+1.1}_{-0.7} \\ 1.7 \\ -1.6^{+1.3}_{-1.4} \end{array}$

BSM Higgs searches: A/H $\rightarrow \tau\tau$ and Z' $\rightarrow \tau\tau$

- Z' and A/H $\rightarrow \tau\tau$ in had-had and lep-had final states
- b-tag and b-veto categories for A/H search to account for enhanced b-associated production
- Final discriminant m_{T,tot}:

Events / GeV

 10^{3}

10²

10

1

 10^{-1}

 10^{-2}

1.5

0.5

Data/Pred

18 / 20

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_1) + m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_2) + m_{\rm T}^2(\tau_1, \tau_2)}$$
$$m_{\rm T}(a, b) = \sqrt{2p_{\rm T}(a)p_{\rm T}(b)(1 - \cos\Delta\phi(a, b))}$$

- Searches and measurements in the Higgs sector and flavour physics were presented:
- Higgs couplings consistent with that of the SM, ttH process of particular interest since it can probe the top Yukawa coupling
- ttZ 13 TeV cross section measurement
- Searches for FCNC with t \rightarrow qH and t \rightarrow qZ, and single top production through FCNC
- Searches for LVF using Higgs and Z bosons
- No significant excess found anywhere
- Many ATLAS analyses will be updated soon, using around 10/fb of the 13 TeV dataset
- Run-2 expected to deliver 120/fb by end of 2018

Backup

Search for $\tau \to 3 \mu$

- In the SM extremely suppressed (10⁻¹⁴), can be enhanced in BSM models
- ATLAS search for $W \rightarrow \tau \nu$, $\tau \rightarrow 3\mu$ (neutrinoless)
 - MET expected to be back-to-back with the 3-muon-system
 - Invariant mass of the 3 muons equal to the τ mass: $|m_{3\mu} m_{\tau}| < 1$ GeV (loose selection)
 - BDT to separate remaining background from the signal

- Tight selection: BDT score > 0.93
- No data event is found in the signal region after full selection, expected background: 0.19 events
- Observed upper limit on BR($\tau \rightarrow 3\mu$) = 3.76 * 10⁻⁷ (exp. 3.94 * 10⁻⁷) at 90% CL

Run Number: 208970, Event Number: 128422540

Date: 2012-08-21 19: 39: 51 CEST

ttH, $H \rightarrow \tau \tau$ candidate event

Visible $\tau\tau$ mass: 66 GeV

Search for VBF-produced $\textbf{H} \rightarrow \textbf{bb}$

Dedicated L1 **VBF triggers**: Selecting events with either three jets, with one or two of them in the forward detector region (large $|\eta|$), complemented by at least one high p_{τ} b-jet selected by high level trigger \rightarrow VBF triggers increased signal acceptance by 25% compared to standard four-jet triggers

Four selected jets must satisfy p_{T} >50 GeV, central jets $p_{T_{bb}}$ > 100 GeV

- **BDT** trained to separate VBF $H \rightarrow bb$ from non-resonant bkg (tt, multi-jet, W+jets)
- Top ranked input variables:
- jet widths of forward jets,
- p_{T} sum of central jets
- inv. mass of forward jets

Four signal regions defined by cutting on BDT output score

arXiv:1606.02181

m_{bb} distributions (70-300 GeV) in the four signal regions, which are simultaneously fit:

Search for $hh \rightarrow bbbb$

arXiv:1606.04782

Resolved selection: 4 b-jets with $|\eta|$ <2.5, p_{τ} cuts dependent on $m_{4.1}$ $m_{4.1}$ resolution improved by 30% by scaling b-jet 4-momenta such that $m_{hh} = 125$ GeV.

Boosted selection: At least 2 large-R jets with p_{τ} >250 GeV, jet mass > 50 GeV.

Non-resonant search: Limit on $\sigma(pp \rightarrow hh \rightarrow b\overline{b}b\overline{b}) < 1.22 \text{ pb}$

 \rightarrow No significant excess

Resolved analysis:

Additional Higgs bosons are predicted by many BSM extensions, such as 2HDM, MSSM, Higgs Singlett, Higgs Triplett models, NMSSM, etc.

All direct searches at 8 TeV yielded null results, first 13 TeV results extend run-1 sensitivity.

Combined 7 TeV and 8 TeV ATLAS upper limit on BR (H \rightarrow invisible): 0.25 (expected 0.26)

Search for $gb \rightarrow tH^+$, $H^+ \rightarrow tb$

Post bkg-only fit

Data

tt+LF

tī+cc

tī+bb

Other bkg

Total unc.

JHEP03(2016)127

Production in association with a top Decay to top-bottom when $m_{H+} > m_{top}$ • 1₄ rents 1000⊦ \rightarrow Enhanced couplings at low and high tan β Dominant decay in 2HDM when $\cos(\alpha - \beta) \approx 0$

- Signal region: 5jets, 3 b-tagged jets, one high p₁ lepton, huge overlap with signal region for ttH, $H \rightarrow bb$ search
- Huge uncertainties on modelling of tt+bb background
- BDT trained at every mass hypothesis, to separate signal from tt+bb

Post fit BDT outputs:

0.067

1400

800

600

400

200

0.8

-0.8 -0.6 -0.4

-0.2 0 0.2

Data/Bkg

ATLAS

√s=8 TeV, 20.3 fb⁻¹

Total bkg

in sig+bkg fit

H⁺ 300 GeV

shape

 $gb \rightarrow tH^{+}(tb) \geq 5j(\geq 3b)$

 $H^{+} \rightarrow tb$ candidate event

Electron, p_T = 61 GeV 2 light jets 3 b-tagged jets