Search for $K^+ \to \pi^+ \nu \bar{\nu}$ at NA62

Michal Zamkovsky

Charles University in Prague

July 2, 2016

Outline

- Theoretical motivation
- NA62 setup
- Event selection and analysis strategy
- Analysis status/prospects

Theoretical motivation

FCNC loop process: s→d coupling and highest CKM suppression

- Very clean theoretically: Short distance contribution and no hadronic uncertainties Hadronic matrix element extracted from well-known decay ${\rm K}^+ \to e^+ \nu \pi^0$
- SM predictions: [Buras et al. arXiv:1503.02693], [Brod, Gorbahn, Stamou, Phys. Rev.D 83, 034030 (2011)]

$$\begin{split} BR(K^+ \to \pi^+ \nu \bar{\nu}) = & (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407} \right)^{2.8} \left(\frac{\gamma}{73.2} \right)^{0.74} \\ BR(K_L^0 \to \pi^0 \nu \bar{\nu}) = & (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388} \right)^2 \left(\frac{|V_{cb}|}{0.0407} \right)^2 \left(\frac{\sin \gamma}{\sin 73.2} \right)^2 \\ = & (3.4 \pm 0.6) \cdot 10^{-11} \end{split}$$

• Experiments:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$
 Phys.Rev.D77, 052003(2008), Phys.Rev.D79, 092004(2009)
 $BR(K^0_{1.} \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8}$ Phys.Rev.D81, 072004(2010)

Testing the Standard Model

- BR $({
 m K}^+ o\pi^+
 uar
 u)$ with 10% uncertainties allows to determine $|V_{td}|$ at 9% $_{
 m [Buras\ 0405132]}$
- With BR(K⁺ $\to \pi^+ \nu \bar{\nu}$), BR(K⁰_L $\to \pi^0 \nu \bar{\nu}$) the CKM unitarity triangle can be built independently from B observables:

Going Beyond the Standard Model

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, arXiv:1507.08672 (2015)]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, arXiv:1507.06316 (2015)]
- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Blazek, Matak Int. J. Mod. Phys. A29 (2014) 1450162; Tanimoto, Yamamoto PTEP (2015) 053B07; Isidori et al. JHEP 0608 (2006) 064]
- Constraints from existing measurements (correlations model dependent): Kaon mixing and CPV, CKM fit, K,B rare meson decays, NP limits from direct searches

Physics programme of NA62 experiment

Main goal:

- Collect O(100) signal events in 2 years $\Rightarrow 10^{13}$ Kaon decays
- Measure BR(${
 m K}^+ o \pi^+
 u ar{
 u}$) with 10% precision
- ullet Signal acceptance $\sim 10\%$
- Systematics: <10% precision background measurement
- ullet > 10^{12} background rejection (< 20% background)

• Further goals:

- Measure $|V_{td}|$ with $\sim 10\%$ accuracy
- \bullet Probe several NP scenarios in $K^+ \to \pi^+ \nu \bar{\nu}$
- ullet Probe NP in similar processes (e.g. ${
 m K}^+
 ightarrow \pi^+ X$)

• Beyond the baseline:

- LFV/LNV decays with 3 tracks in the final state
- Heavy neutrino searches
- π^0 decays
- Dark photon searches

Experiment NA62 at CERN

- SPS experiment NA62 North Area experiment, Prèvessin
- \bigcirc Extracting 74 GeV/c K⁺ from 400 GeV/c proton beam

$\bullet \, \sim 11 \text{MHz of } K^+ \text{ decays}$

Total Length 270m

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

 $4.5\ 10^{12}\ K^{\scriptscriptstyle +}$ decays/ year in fiducial region

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

ullet $\sim 11 \text{MHz of } \mathrm{K}^+ \text{ decays}$

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

 $\bullet \, \sim 11 \text{MHz of } K^+ \text{ decays}$

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
 - Particle ID

 $\bullet \, \sim 11 \text{MHz of } K^+ \text{ decays}$

- High Intensity and fast Timing
- Low Mass Tracking
- Hermetic Vetoing for Photons and Muons
- Particle ID

Experimental status

- NA62 took data in 2014 and 2015
- Beam commissioned up to nominal intensity Tracker:
 - Beam tracker (Gigatracker) partially commissioned
 - Straw spectrometer commissioned
- Cherenkov detectors:
 - Beam Kaon ID (KTAG) commissioned
 - RICH commissioned
- All the other detectors commissioned
- Trigger:
 - L0 commissioned; L1(2) partially commissioned
- Data samples for data quality study (mainly from 2015):
 - Low intensity data taken with a minimum bias trigger (this talk)
 - Samples at half and full intensity taken with a calorimeter trigger

Scheme for $K^+ \to \pi^+ \nu \bar{\nu}$

Reconstruction based on kinematics:

$$m_{miss}^2 = (P_K - P_\pi)^2 \approx m_k^2 \left(1 - \frac{|P_\pi|}{|P_K|} \right) + m_\pi^2 \left(1 - \frac{|P_K|}{|P_\pi|} \right) - |P_K||P_\pi|\vartheta_{\pi K}^2$$

92% of Kaon decays are kinematically constrained

Analysis strategy and background sources

- Key analysis requirements:
 - 2 signal regions in m_{miss}^2
 - $15 < P_{\pi^+} < 35 \text{ GeV}/c$
 - 65 m long decay region
- \bullet Expected 45 SM signal events/year with ≤ 10 background
- Main background sources:

Decay mode	event/year
$\mathrm{K}^+ o \pi^+ \nu \bar{\nu} \; SM$	45
Total Background	10
$\mathrm{K}^+ ightarrow \pi^+ \pi^0$	5
$\mathrm{K}^+ o \mu^+ \nu$	1
$\mathrm{K}^+ ightarrow \pi^+ \pi^+ \pi^-$	< 1
${ m K}^+ ightarrow \pi^+\pi^-e^+ u$ + other 3 track decays	< 1
$\mathrm{K^+} ightarrow \pi^+ \pi^0 \gamma^{IB}$	1.5
$\mathrm{K}^+ ightarrow \mu^+ u \gamma^{\prime B}$	0.5
$\mathrm{K}^+ ightarrow \pi^0 e^+ (\mu^+) u + ext{others}$	negligible

- Other possible background:
 - Accidental tracks in time with kaon tracks
 - Beam-gas and upstream interactions

Signal topology & kaon ID

One-track selection

- Single downstream track topology
- Beam track matching the downstream track
- Beam track matching a K signal in Kaon ID
- Downstream track matching energy

Time resolutions:

- Kaon ID < 100 ps
- Beam track < 200 ps
- Downstream track < 200 ps
- Calorimeters 1-2 ns

Kinematics

- Technique: Si-pixel tracker; Straw tube tracker in vacuum
- Goal: $O(10^4 \div 10^5)$ suppression factor of the main kaon decay modes
- $P_{\pi^+} < 35 \text{ GeV}/c$: best $\mathrm{K}^+ \to \mu^+ \nu$ suppression
- Kinematics studied on $K^+ \to \pi^+ \pi^0$ selected using LKr calorimeter. Resolutions close to the design. $O(10^3)$ kinematic suppression factor in 2015.

Particle ID

- Technique: RICH and calorimeters
- Goal: O(10⁷) μ/π separation to suppress mainly ${
 m K}^+ \to \mu^+ \nu$ 15 $< P_{\pi^+} <$ 35 GeV/c: best μ/π separation in RICH
- Pure samples of pions and muons selected using kinematics
- RICH: O(10²) μ/π separation, 80% π^+ efficiency in 2015
- Calorimeters: $10^4 \div 10^6~\mu^+$ suppression, $90\% \div 40\%~\pi^+$ efficiency in 2015 using a cut analysis. Room for improvements.

Photon rejection

- Technique: EM calorimeters exploiting correlations between $\gamma s'$ from π^0
- Goal: O(10⁸) rejection π^0 from ${
 m K}^+ o \pi^+ \pi^0$
- $P_{\pi^+} < 35~{
 m GeV}/c \Rightarrow E_{\pi^0} > 40{
 m GeV}$
- Measured on data using ${\rm K}^+ \to \pi^+ \pi^0$ selected kinematically
- 2015 measurement statistically limited

Conlusions

- The decay $K^+\to \pi^+\nu\bar{\nu}$ provides unique opportunities for NP searches complementary to LHC
- The NA62 is aimed at measuring BR(K $^+ \to \pi^+ \nu \bar{\nu}$) with $\sim\!10\%$ precision by collecting O(100) events in two years of data taking
- Most detectors were successfully commissioned during the 2014-2015 runs; detector performance within expectations
- NA62 is taking data in 2016-2018

Further NA62 physics programme

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10^{-12}
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}
$\pi^+\chi\chi$	New Particle	_	10^{-12}
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10^{-11}
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10^{-11}
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R_{K}	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	$O(10^6)$
$\pi^0\pi^0\mu^+ u$	χΡΤ	-	$O(10^5)$