H Non-H

Non-Hadronic Searches for Dark Matter at CMS

Bhawna Gomber

University of Wisconsin - Madison SUSY 2016 July 4-8 Melbourne, Australia

- Signatures of Dark Matter at the CMS
- Detection in CMS
- Different Channels
 Monophoton : 2015 (2.3 fb⁻¹)
 Mono-boson (W) : 2012 (19.7 fb⁻¹)
 Mono-boson (Z) : 2012 (19.7 fb⁻¹)
 ZH : 2015 (2.3 fb⁻¹)

+ Detection Techniques

Scattering of DM particles on nuclei of detector material ; detect recoil. For a given cross section sensitivity scales with detector size.

+ Detection Techniques

Assume annihilation of DM particles, eg. In the sun. Detect annihilation products.

Scattering of DM particles on nuclei of detector material ; detect recoil. For a given cross section sensitivity scales with detector size.

Detection Techniques

Assume annihilation of DM particles, eg. In the sun. Detect annihilation products.

Scattering of DM particles on nuclei of detector material ; detect recoil. For a given cross section sensitivity scales with detector size.

Bhawna Gomber, Dark Matter Searches at CMS

+ Dark Matter at the LHC (Run-1)

Scale of Interaction Λ

New physics expressed with a contact interaction between DM and SM particles.

Use effective field theory (EFT) to describe interactions in a model independent way.

7/5/16

EFT and Simplified Models

- EFT depend only on two parameters: •
 - DM mass m_{χ} and interaction scale $\Lambda \approx M \,/\, \sqrt{g_{\chi} \, g_{_{q}}}$

Simplified Model, Run2

mediator

M, *Q*

- EFT are reliable only if $M^2 \gg \langle Q^2 \rangle$ not always true at LHC • energies!
 - **Truncation**: remove signal events where $Q^2 > M^2 \sim g_{\chi} g_a \Lambda^2$

spin independent spin dependent

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$
D5	qq	vector	$rac{1}{M_\star^2} ar\chi \gamma^\mu \chi ar q \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu u} \chi \bar{q} \sigma_{\mu u} q$

$$\chi$$
 is a Dirac fermion

How to make DM visible at the LHC? **Mono-X Signatures – simple and striking**

Search for Pair Produced Dark Matter in **Mono-photon** Channel

- Characterized by a high-energy photon and large $E_{\rm T}^{\rm miss}$
 - Photon from initial-state EM radiation
 - 8 TeV: EFT with contact interaction, $qq\chi\chi$
 - 13 TeV: Simplified model with intermediate boson in s-channel, $qq \rightarrow V \rightarrow \chi\chi$
 - Electroweak model with direct photon-DM interaction
 - 13 TeV only: EFT with dimension-7 operator, γγχχ

CMS-PAS-EXO-16-014

Mono-photon : Event Selection

Search for single photon recoiling against MET

- One energetic photon $p_T > 175$ GeV, $|\eta| < 1.44$
- Missing Transverse Energy : MET > 170 GeV
- Azimuthal separation between photon and MET $\Delta \Phi$ (photon, MET) > 2
- Reject backgrounds
 - **Backgrounds with leptons** ($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$)
 - Lepton veto: reject e or μ with $p_{\rm T} > 10 {\rm ~GeV}$
 - Noncollision backgrounds (electronic noise, beam-halo & cosmicray muons):
 - Timing: EM showers within ± 3 ns of the time expected for collision product
 - Backgrounds with jets (γ+jets)
 - Azimuthal separation between closest jet and MET $\Delta \Phi$ (jet, MET) > 0.5

+ Mono-photon Results: Limits on Visible Cross Section

• Using the CL_s construct and a profile-likelihood test statistic, 95% CL limits are set on the cross section × acceptance at 8 TeV, in a region defined by $E_{\rm T}^{\rm miss} > 140$ GeV and different photon $E_{\rm T}^{\gamma}$ minimum cuts

• For comparison, the limit on the 13 TeV cross section is shown for $E_{\rm T}^{\rm miss} > 170 \, {\rm GeV}, \ E_{\rm T}^{\ \gamma} > 175 \, {\rm GeV}:$ $\sigma_{13 \, {\rm TeV}} \times {\rm A} < 10.7 \, {\rm fb}$

Translate production cross-section limit into DM-nucleon limit

Purpose : to compare to direct detection limits

+ Mono-photon: Limits on DM-Nucleon X-section

• For each model, limits on the DM-pair production at the LHC $(qq \rightarrow \chi\chi)$ Translated into limits on the DM-nucleon elastic scattering $(\chi N \rightarrow \chi N)$ and compared with results from direct-detection experiments

+ Mono-photon : Electroweak Dim-7 Operator

- EFT with contact interaction of type $\gamma\gamma\chi\chi$ opens channel $qq \rightarrow \gamma^* \rightarrow \gamma^*$
 - Two main parameters: DM mass $m_{
 m DM}$ and suppression scale Λ
 - Upper limits on the production cross section are translated into lower limits on Λ

Search for Pair Produced Dark Matter in **Mono-W(**{v) Channel

CMS Experiment at LHC, CERN Data recorded: Fri Nov 30 05:20:24 2012 CEST Run/Event: 208307 / 445184756 Lumi section: 287

AT = 2082.6 Ge

MET 0, pt = 1121.12 eta = 0.000 phi = 2.270

Signature: W+MET high pT electron +MET high pT muon+MET

^{funnun}n M+

 $\overline{\chi}$

CMS-PAS-EXO-13-004 20/fb of 2012 pp data at 8 TeV

Phys. Rev. D 91, 092005

2012 results

+ Mono-W(ℓv) : Interference

- Lower rate than mono-jet and mono-photon, but cleaner signature
 Lower background, lower trigger thresholds
- Mono-jet/photon channel insensitive to quark type
- For W possibly different coupling to u- and d-type quarks

If [C(u) = C(d)] destructive interference

If [C(u) = -C(d)] constructive interference \longrightarrow mono-boson more sensitive than mono-jet

Event Selection

- Single electron (muon) trigger with p_T>85(40) GeV
- Kinematics selection:
 - $0.4 < p_T / MET < 2$
 - ∆**Φ** > 2.5

Transverse Mass distribution

$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$$

Background

- Derived from simulation
- Challenge High MT tail
- Main bkg : W->lv with M_T binned Kfactor

■ NLO xsec Bhawna Gomber, Dark Matter Searches at CMS

Mono-W(ℓv): Results and Interpretation

- Analysis performed on 19.7 fb⁻¹ of data at 8 TeV
- Interpretation in terms of DM EFT with contact interaction $qq\chi\chi$
 - Limits on the pp $\rightarrow W(\ell v) \chi \chi$ production from binned-likelihood fit to M_T spectrum
 - Converted to limits on the effective scale Λ

+ Search for Pair Produced Dark Matter in **Mono-Z**(*ll*) Channel

- Characterized by a pair of leptons from a Z boson + large E_{T}^{miss}
 - Very clear signature, relatively low background, simple leptonic triggers

Phys. Rev. D 93, 052011

Mono- $Z(\ell\ell)$: Analysis Strategy

- Signal selection
 - Lepton pair e^+e^- or $\mu^+\mu^-$ with mass in $M_Z \pm 10$ GeV and $p_T(\ell\ell) > 45$ GeV
 - Large $E_{\rm T}^{\rm miss}$ + requirements on $\Delta \varphi(\ell \ell, p_{\rm T}^{\rm miss})$ angle and $E_{\rm T}^{\rm miss}/p_{\rm T}(\ell \ell)$ balance
 - No additional leptons, no b-tagged jets
- Main backgrounds
 - $ZZ \rightarrow 2\ell 2\nu, WZ \rightarrow 2\ell(\ell)\nu$
 - estimated from simulation (with NLO cross section)
 - WW, tt, tW, ττ
 - flavor symmetric, estimated from $e\mu$ data
 - $Z + jets \rightarrow 2\ell + jets$
 - estimated from simulation, with data-driven normalization from DY-enriched control sample

Mono- $Z(\ell\ell)$: Results and Interpretation

- Analysis performed on 19.7 fb⁻¹ of data at 8 TeV in the context of an EFT
 - Limits computed from a profile-likelihood fit to the transverse mass spectrum
 - Limits on the DM-nucleon cross section for different models
 - Truncated limits are also provided

Mono- $Z(\ell \ell)$: Results and Interpretation

- The same data can be used to search for Higgs bosons with invisible decays
 - → Higgs-portal models: Higgs as only mediator between SM and DM

26

Н

r'r

• Signal: SM-like Higgs (125 GeV), $B(H \rightarrow invisible) = 100\%$

Mono- $Z(\ell\ell)$: Results and Interpretation

- The same data can be used to search for Higgs bosons with invisible decays
 - → Higgs-portal models: Higgs as only mediator between SM and DM
- Signal: SM-like Higgs (125 GeV), $B(H \rightarrow invisible) = 100\%$ 13 TeV 7+8 TeV 2.3 fb⁻¹ (13 TeV) B(H→ inv) [pb] CMS $\sigma_{qq \rightarrow ZH} imes B(H \rightarrow invisible)$ (pb) 95% CL limits Observed **CMS** Preliminary Combination of Z(bb)H Observed limit Median expected $ZH \rightarrow 2I + E_{\tau}^{miss} + 0/1$ -jets and Z(II)H, $H \rightarrow$ invisible Expected $\pm 1\sigma$ ······ Expected limit Expected $\pm 2\sigma$ $\sqrt{s} = 8$ TeV (Both ZH channels) Expected limit (1σ) $\sigma^{SM}_{qq \rightarrow ZH}$ $L = 18.9 - 19.7 \text{ fb}^{-1}$ Expected limit (2σ) х b $\sqrt{s} = 7 \text{ TeV} (Z(II)H only)$ $= 4.9 \, \text{fb}^{-1}$ ////// σ_{zн} (SM) 2 0.8 0.6 0.4 0.2 150 200 250 300 350 400 450 500 550 600 105 110 115 120 125 135 140 145 m_H [GeV]

Higgs boson mass (GeV)

27

Н

2980

4

Phys.

EUC.

LHC dark matter searches are exciting.

- Major opportunity for new physics!
- No DM yet 😕
- Several LHC BSM searches reintepreted in terms of dark matter models.
- Work closely with theorists to develop theoretical assumptions and models.
- Complementary to direct detection experiments.
- LHC Run 2 data taking is going pretty well
 - New exciting results will come soon. Stay Tuned ©

Bhawna Gomber, Dark Matter Searches at CMS

+ Monolepton ξ= -1 (max. Sensitivity)

2012 results in comparison to monojet and some direct detection experiments, 90% C.L.

Non Collision Backgrounds

- Non-collision backgrounds are estimated using the ECAL timing information
- First we look at full timing distribution of photons
 - Default supercluster reconstruction algorithm discards hits with |t| > 3 ns cut
 - Full re-reconstruction of 2015 performed removing this constraint

Halo Template : Mip total energy > 4.9 GeV

Spike Template : Full candidate selection and reverse the topological shower shape spike cleaning cuts

Prompt Template : W Candidates selection with pixel match and good shower shape

Beam Halo : 13.41 +/- 6.27 events Spike : 5.63 +/- 2.2 events

Bhawna Gomber, Exotica MET+X Group Meeting

Full Timing

+ Electron Selection

High redundancy of mu system, 4 stations along track Iron between stations may cause **bremsstrahlung** for O(TeV) muons p_T <200 GeV tracker in B=3.8T, p_T >200 GeV mu+tracker

Dedicated muon selection:

- Special algorithm to consider showering
- At least 1 pixel hit
- Number of measured tracker layers > 8
- Transverse impact parameter d0 < =0.2cm (Z'), 0.02cm (W') reject cosmics, value for W' tighter than other analyses, Z' rejects in addition back-to-back muons
- >= 2 matched muon segments
- Relative track isolation <0.10 in $\Delta R < 0.3$
- No cut on chi2 cut introduces a 4-6% inefficiency for muons >500 GeV

+ Photon Selection

- ✓ Background contamination and invariant mass resolution depends on:
 - pseudorapidity
 - cluster shape, i.e. conversion probability (R9)

- \checkmark Same approach like H->\gamma\gamma standard cut-based photon-ID
 - ECAL fiducial region (lηl < 2.4 excluding EB-EE gap)
 - Isolation and identification requirements:

	barrel		endcap	
	$R_9 > 0.94$	$R_9 < 0.94$	$R_9 > 0.94$	$R_9 < 0.94$
PF isolation sum, chosen vertex	6	4.7	5.6	3.6
PF isolation sum worst vertex	10	6.5	5.6	4.4
Charged PF isolation sum	3.8	2.5	3.1	2.2
$\sigma_{i\eta i\eta}$	0.0108	0.0102	0.028	0.028
H/E	0.124	0.092	0.142	0.063
R ₉	0.94	0.298	0.94	0.24

+ Higgs Modes : CMS VBF

Depending on its nature, DM will couple to theHiggs in various ways. Assuming a Higgs -> Invisible branching, one can search in several channels.

Interference Parameterized by ξ = -1,0,+1

Largest cross section for $\xi = -1$ For $M_{\chi} < 70$ GeV same cross section for V and AV coupling of fixed ξ

Interference type influences M_T shape \implies impact on sensitivity

Limits on production cross section

+ Light Mediator Case

- The most tricky case is that of light mediator
- First step : put in a mediating particle (e.g s-channel Z') and look at limits vs m_z

- EFT gives good/conservative results above a few hundred GeV (high M)
 - Region I EFT is good
 - Region II EFT underestimate
 - Region III EFT overestimate

Buchmeller, Dolan, McCabe, arXiv: 1308.6799

40

Bhawna Gomber, Dark Matter Searches at CMS

+ Reach at 14 TeV?

Gain sensitivity with increasing sqrt(s). At 14TeV and 300/fb. Reach in lambda O(x2) Main challenge MET in high PU.