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Summary

Potential V(A) =f 2mz(l— Cos(?D

 Limiting Mass Ml

m
. # I\/Ip
* Size P
For f—=6x10"GeV m=10" ev

Maximum Mass M= 10°kg
Size = 500 km



Summary

We only analyze weekly bound condensates

A is a real field. Therefore particle number is
not conserved and the condensate can decay

Weak binding ensures long life

If the number of particles exceeds a critical
value the condensate would collapse. More
about this at the end



Gravitationally bound fermion bubbles

* Quantum degeneracy pressure

balances gravity
M°p

m2

M aximum mass = Chandrasekhar limit = #




Gravitationally Bound Boson States

* Wheeler 1956,”Geons” Phys.Rev.97(2)511

A wave confined to a region by the gravitational
effects of its own energy.

Electro-magnetic or a gravity wave.
Classsical model for stable elementary particles

Such solutions exist(Anderson, Brill 1996). They
are unstable.



Klein-Gordon Geons by Kaup(68)

Kaup considered spherically symmetric, time
independent configurations of a free massive
complex scalar field, satisfying K.G. and
Einstein’s egns. Phys.Rev.172,1331(1968).

Numerically solved the eqns.

Configurations stable under small radial
perturbations.

Maximum allowed mass. Kaup Bound.



Kaup 1968

Mp 2

Kaup Bound for free bosons 33

. . m
Noticed that perfect fluid model does not
work. Radial stress is not the same as stresses
in theta and phi directions.

No equation of state in the conventional
sense.

For 1 GeV mass Kaup Bound 10711 Kg



Introduce Self Interactions

 Mielke, Scherzer PRD24,2011(1981)
* Colpi,Shapiro,Wasserman, P.R.L.57,2485(1986)

2 2
M. ,With A = M forlarge A
m 4 77m

2 ]
A 1s the 4 - scalar self coupling
Comparable to the Chandrasekhar limit when 4 =1and m=1GeV

M
Size \/Z—Zp
m

M . =0.236VA

crit



Ruffini and Bonazzola(1969)

Phys.Rev.187,1767(1969)

Free massive Hermitian scalar field
Second quantize the scalar field. Classical
gravity

Obtained the same results as Kaup



Ruffini-Bonazzola Method

* Spherical symmetry and time independence
ds? =—B(r)dt® + A(r)dr® + r*(d&” +sin” &g*)

* Asymptotically Flat Boundary Conditions
* Regularity at the origin



Ruffini-Bonazzola Method

Einstein’s equations of motion

G, =81GT,

Energy Mdmentum Tensor
1,=0000-q, L

Expand the field in creation annihilation
operators.

Evaluate the expectation of the normal ordered
energy momentum tensor in the N particle
ground state



Ruffini-Bonazzola Method

* Expand the field in creation annihilation
operators

(D(r!t) — Z Rn,I,m(r)YI,m (91 ¢) eXp (_iEn,It) an,I,m + h'C

n,l,m

[an,l,m’ nlm] §II



Ruffini-Bonazzola method

* Construct the N particle state N

| N,000000....>=] Ja"|0>
1

Evaluate the expectation value
<N,0000....|: T, ;| N,00000.... >

and feed it to the R.H.S. of Einstein’s eqgns.

LHS classical expression.

<N,000...| & -v*+v® |N-1,000..>=0

Re-derived the Kaup Bound



(1-Cosine(A/f))potential

* Used by Barranco and Bernal

 We use an expansion method to truncate the
potential

e Solutions are expressed as a function of a
parameter

The parameter space we explore is different
from that of Barranco and Bernal



Ruffini-Bonazzola with (1-Cos(A))
potential

* Add a potential energy term

_ f20201 @ :m_2 > 1 (m ’ 4
V(¢)_fm[1 COS[fj:| 2¢ 24[fj¢+ ........

Evaluate < N |: cos(%) | N >zJO(2 - ;\' Rj IN the large N limit

¢ = aexp(—IEt) R(r) + h.c. i1s the mode expansion



Equations of Motion

. . 2 2 2 12
A A-1  f [E NR? NR +m2(1—J0(X)}
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XZZR\/N
f
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B A-1_ f E<NR +NR —m2(1—JO(X))

Bf 2 Af 2

ABr  par?2 M2|:>
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Rescale

Dimension free radial cdt z=rm,

Rescaled wave function X(z)=2+vN R(r)/f ,
g=Em,A=1+5a(z),and B=1+5b(z)where s =f*/ M
a 1, 1

a':——+z[—g X ? +—X'2+1—J0(X)}
Z 4 4

b':3+z[152x2 s ixe1y JO(X)}
Z 4 4

X"=[—g+g(a'—b')}x'-52(1+5a—5b)X +2(1+0a)d, (¥
Z
a(z),b(z)and X(z)are regular at z=0and vanish at z = cc. X(z)and

b(z)are finite,and a(z)=0at z=0



Expansion method of solution

* Double expansion

* Binding energy is the difference between the
mass and the energy eigenvalue E

Define ¢ tobe E
m

2
L et 5:[|\;j <<l,and A=+1-¢&° = \/Z(m— E)/m<<l

P
the equations can be reduced toa systemof equations depending

Jo

on g and ¢ through 4 = = f only.
A M




Expansion Method

* Expansion parameters

2
L et 52[!\/%} <<l,and A =+1-¢&° z\/Z(m— E)/m<<l

P
Theequations can be reduced to

a systemof equations depending

on ¢ and o through A = Jo = f only.
A M,A

Scale X and zsuchthat X =AY and X = Az



Equations of Motion

* Equations of Motion After Scaling

Scale the wave function X and distance z such that
X=AYand x=Az
Then theequations reduce to

2 (x) :%Y(x)2 —¥

b'(X) =?

Y'(X) =Y(X) - % Y'(X) - % Y(X)* + 2Pb(X) Y(X)

f

A=——
mA



Scaling Method

* Leading Corrections

Leading order corrections are of O(8) and O(5 A°) and they

should be <<1. We want A =

2
<<land 8 1 = (ﬂj <<1.

P P

Thisimplies ML <<A<< % This enables us to cover a
P

wide range of parameter space.



Numerical Solution

* Numerically integrate the equations for a
series of values of lambda and calculate Y(x).

* Y, a, b tend to zero at infinity. a is zero at the
origin. Y is a function with no nodes.

* Y as a function of x for lambda =1 is plotted



Plot of the wave function

 \Wave function for 1=1
Yix




Solutions

y
V(y)=2x j Y (x)2x2dx and V(X ;) << V() = 0.99
0

1 M
M Xgg = m—; AXgq
2

MassM == f—V (o)
mA

R99 —

M X
Roe =5 ~

f° V()
V(o) and X, are computed for a series of values.01< 1 <10
The ratio —2is larger than 0.1throughout therange of 4

V()
Therefore Ry > 0.1M2 =0.1 N2| _00 R,
f M o

Safe from collapse for small 9.




Solutions

For 4 <<1, a linear fit geives an excellent approxiamtion
of Ry,

M 1

R,=Me 573501 5735
fm Am
For 1> 0.5, Ry, (4) = :A—P(O.456 +5.75)
m

Ry, increases throughout therange of A considered
Barranco and Bernal investigated therange 1 ~10° —107°

2
M, 50.264 = 50.26f—

ForA<<1,M(1) = A
m

For A >1,i.e. weak binding V() ~ i—? and

r Me

M=—V(x0)=15 A
mA



Solutions

e Mass has a maximum as a function of lambda

Number of particles in the condensate
M(A)
mv1l—A°
M. Isattainedat A . =.58
For N <N, thereare twomasses M(A,)and M(A,)
giving thesame particle number. AssumeA, > A,, or equivalently
<A <A.ThenM@A,)<M(@A,).
Every Bubble belonging tothe 2 > A__ Branch is unstable

N ~




Plot of the wave function

 \Wave function for 1=1
Yix




Table

f <ﬂ,<MP
MP

m =10"ev and f = 6x10"'GeV




A=1,1(M,4)|M/10%18 | Reo (km) |, (kgm?) | SM (kg)
ke

0.1 1.00 115 155 125,000
0.3 3.45 386 14.3 46,300
0.4 5.08 593 5.80 33,500
0.5 6.33 854 2.43 16,300
0.54 6.56 972 1.70 8,350
0.58 6.63 1076 1.27 1,170
0.62 6.61 1183 95 -5,370
0.8 5.98 1652 32 --23,200
1.0 5.14 2145 0.12 -33,100
2.0 2.78 4499 .0070 -53,400
4.0 1.42 9062 .00050 -88,700
10.0 5.74 22849 .000012  [-267,000
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Conclusions

* Solved the field equation for a spherically

Symmetric configuration when the decay
constant is much less than the Planck scale.

Considered only weakly bound configurations.

For QCD axions mass of the bubble is of the
order of 10719 kg.

Radius 100-1000 km.
No galaxy sized bubbles?



Decay Process

* Bound states combine and emit a plane wave

state
AN
/

* Three bound states produce one relativistic
state which escapes from the condensate

* Momentum is absorbed by the remaining N-3
particle state



Decay Calculation
* Calculate <N-3, p |V(A) |N>

A=R(r)exp(— |Et)a+j a,exp(ip.r—Iiet) +h.c.

\/f

* Bound state wave function is localized at a
distance scale R= 1/mA

* Momentum uncertainty mA . The small
width of the momentum distribution for weak
binding makes this process rare.



Condensate Decay

 Emitted particle is relativistic. It has energy
3E, which is close to 3m for small binding
energy.

* This particle will escape from the bound state
and given enough time from the local
neighborhood.
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Life Time

e Life time formula

f4 mM
T:amstEXp(b ¥

a=59.23, and b=.13

e M is the mass of the condensate

)



Ratio of Lifetime to the Age of the
Universe

— my=10"ey




Collapse Beyond Criticality

Recent paper by Chavanis -Print:
arXiv:1604.05904 predicts collapse to a BH

Ongoing work. Higher order will stop it

Will form a bound state at 1 meter (Madelyn
Leembruggen)

Corresponds to large binding. Will decay
before the collapse

No BH formation


http://arxiv.org/abs/arXiv:1604.05904

Backup Slides



Self gravitating condensates with
attractive interactions

Quantum pressure keeps the condensate from
collapse up to a certain limiting mass

Use the variational method to analyze it

Analized by CM physicists(Stoof, Journal of
Statistical Physics 97,Freire,Arovas,
P.R.A.59,1461

Simple variational ansatz is to assume the
density to be constant up to a certain radius
and zero beyond it.



Astrophysical sized BEC’s using Gross-
Pitaevskii method

 Employed by Bohmer and Harko and by
Chavanis

 Employs the Hartree-Fock approximation and
the pseudo potential Hamiltonian

* Valid when the inter-particle separation is
greater than the particle particle scattering
length.



Gross-Pitaevskii formalism
H= Z[—+V(r)j+ 9> S(F—F,)

i<]j

Arh‘a
g:
m

YEE R =[[0F)

Expectation of Hin WY (r,1,, ,T)

, a thescattering length

N (N —1)

2
E:jd"’r(Nf—ww+NV<r)|<D(r>|2+ g|@(r)[")
m
With the rescaling ¥ (F) = VNO(F)

e = Jar( v v OO+ 2w L



Gross—Pitaevskii equation

* Derivation of the GP equation
* Extremize E with N the particle number fixed.

Extremize E - #N with respect toW~

{P(F) == VAR (E) +V ()PP + 9 WD) P ()



Gross-Pitaevskii formalism

* Time dependent equation

. 2
17 O¥(r,Y = —h—Vz‘P(F) +V(F)P(r)+g| () |2 Y(r)
ot 2m




Variational Method
Minimize the energy

E_#* 3Gm°N _3naN

= — +
N 2mR? 5R 2mR®
a is the scattering length.

Solve theequation o =0
oR

Upperlimit formass=mN_= M, L ~M, 1
ma A

Derived by Chavanis



GP Poisson System

* Supplement the GP with the Poisson equation

* Follow the method of Bohmer, Harko

Com.Ast.Part.Phy.06,025(2007). Recent work
by Chavanis

" 2

iha\lj(r’t)_—h—v LIf(r)+mV(r)\If(r)+g|‘P(r)| Y (r)
ot 2m

VAV =42Gp

o(F,)=m¥" ¥
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Axions and GP Egn

. M _f
e Maximum Mass # —=

 Corresponding Radius #~2=

fm
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Decay Process

* Bound states combine and emit a plane wave

state
AN
/

* Three bound states produce one relativistic
state which escapes from the condensate

e Momentum is absorbed by the left over N-3
particle state



Decay Calculation
* Calculate <N-3, p |V(A) |N>

A=R(r)exp(— |Et)a+j a,exp(ip.r—Iiet) +h.c.

\/f

* Bound state wave function is localized at a
distance scale R= 1/mA

* Momentum uncertainty mA . The small
width of the momentum distribution for weak
binding makes this process rare.



Life Time

e Life time formula

f4 mM
T:amstEXp(b ¥

a=59.23, and b=.13

e M is the mass of the condensate

)



