Top-philic Scalar Dark Matter with a Vector-like Top Partner

Peiwen Wu
Korea Institute for Advanced Study (KIAS)

Collaborated with Pyungwon Ko, Seungwon Baek
based on arXiv: 1606.00072
Outline

• Motivation
 • why flavored DM? why top-flavored?

• Model description

• Properties
 • Thermal relic density
 • Direct/Indirect detection
 • Collider search
 • Complementarity

• Conclusion
SUSY \rightarrow SM flavor \rightarrow Quark+DM flavor \rightarrow MFV \rightarrow U-flavored \rightarrow top-flavored

• SUSY is beautiful and powerful
 • starts from
 • fine tuning of Δm_h
 • ends in
 • (partially) solve fine tuning of Δm_h
 • gauge coupling unification
 • DM candidate

• How about a different starting point?
SUSY → SM flavor → Quark+DM flavor → MFV → U-flavored → top-flavored

- **SM flavor structure**
 - all matters have 3 flavors/generations
 - significant mass hierarchy in both quark and lepton sector
 - broken by SM Yukawa interaction
 - approximate flavor symmetry $U(3)^5$
 - $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$
 - ignore the neutrino masses
SUSY → SM flavor → Quark+DM flavor → MFV → U-flavored → top-flavored

• Maybe a similar flavor structure in new physics sector
 • extend SM flavor to \[U(3)^5 \times U(3)^{\text{DM}}, \text{if DM is complex} \]
 • \[U(3)^5 \times O(3)^{\text{DM}}, \text{if DM is real} \]
 • \[U(3)^{\text{DM}}, O(3)^{\text{DM}} \text{ can be} \]
 • exact: degenerate DM multiplet
 • broken: mass splitting between DM flavors
 • DM is the lightest particle in the dark sector
• LHC is a hadron collider, consider the quark sector

• renormalizable interaction $\propto (Quark)^i \ast [\lambda]_i^\alpha \ast (DM)_\alpha \ast (med.)$

 • (med.) can transform under flavor of
 • both (Quark) and (DM)
 • one of them
 • none (simplest)

 • if (med.) is singlet
 • flavors of (Quark) and (DM) are associated
 • breaking of (Quark) flavor may transfer to (DM)
 • mass splitting in (DM) sector
SUSY → SM flavor → **Quark+DM flavor** → MFV → \(U\)-flavored → top-flavored

- Generally, FCNC generated by \((\text{Quark}) \ast [\lambda] \ast (\text{DM}) \ast (\text{med.})\)
 - alleviated by
 - \(m_{\text{med.}} \sim 500\ \text{GeV}\)
 - but harder to detect
 - \(\lambda \sim 10^{-2}\)
 - but **small annihilation**, cannot obtain \(\Omega_{\text{DM}}h^2 \sim 0.1\)
 - or, make DM couple to SM gauge bosons, more complex model
 - if DM is SM singlet, \([\lambda]\) should be \(O(1)\).
Minimal Flavor Violation (MFV)

All flavor violation comes only from SM Yukawa

$U(3)_\text{DM}$ is identified as $U(3)_{\text{Quark}} = \{Q, U, D\}$, which one?

- Q: more complicate spectrum
- D: flavor constraints from K, B mesons
- U: simple and safe
 - top quark is special in SM, a portal to explore new physics
 - largest hierarchy in quark sector
 - may cause significant splitting in dark sector
SUSY \rightarrow SM flavor \rightarrow Quark+DM flavor \rightarrow MFV \rightarrow \textbf{U-flavored} \rightarrow top-flavored

• Quark-flavored DM: $\mathcal{L} \supset U^i \lbrack \lambda \rbrack^j_i (DM)^j (med.)$

• under MFV, expansion of λ^i_j, m_{DM} in terms of SM Yukawa Y

 • keep lowest order \cite{arXiv:1109.3516 Can Kilic et al}

 • $[\lambda]^j_i = (\alpha \cdot 1 + \beta Y^+ Y)^j_i, \quad [m_{DM}]^j_i = (m_0 \cdot 1 + \Delta m Y^+ Y)^j_i$

 • $\{\alpha, \beta, m_0, \Delta m\}$ are constants determined by UV complete theory
SUSY → SM flavor → SM+DM flavor → MFV → U-flavored → **top-flavored**

- **Quark-flavored DM:** $\mathcal{L} \supset U^i [\lambda]_i^j (DM)_j (med.)$
- **under MFV**
 - $[\lambda]_i^j = (\alpha \cdot 1 + \beta Y^+Y)_i^j$,
 - $[m_{DM}]_i^j = (m_0 \cdot 1 + \Delta m Y^+Y)_i^j$
 - $\alpha \geq \beta y_t^2$, $m_0 \geq \Delta m y_t^2$
- almost **degenerate** in first 2 generation $DM_{u,c}$
 - small FCNC coupling, less flavor constraints
- considerable **splitting** between $DM_{u,c}$ and DM_{top}
 - $DM_{u/top}$ is the lightest, depending on (+/-) of Δm
- assume DM_{top} is the lightest
 - arrange $\{\alpha, \beta, m_0, \Delta m\}$ to **decouple** masses/couplings of $DM_{u,c}$
SUSY → SM flavor → SM+DM flavor → MFV → U-flavored → top-flavored

• no valence top quark in nucleon
• DM coupling to gluons
 • loop calculation (SUSY) [arXiv: 1007.2601 Junji Hisano et al]
 • (DM, mediator) = (fermion, scalar)
 • (DM, mediator) = (scalar, scalar)
• top-philic DM, EFT operator [arXiv:1009.0618 Kingman Cheung et al]
 • (DM, mediator) = (fermion, scalar/vector)
• Our model: (DM, mediator) = (scalar, fermion)
Model description

• DM: real scalar S
 • SM singlet, couple only to top quark
 • Higgs portal, well studied [arXiv: 1306.4710 J. Cline et al]
 • $\lambda_{SH}S^2|H|^2$ turned off here
• top partner: Vector-like (VL) fermion T
• Z_2 parity: S, T are odd
 • no mass mixing $(S, H), (T, t)$
 • $Br(T \rightarrow St^{(*)}) = 100\%$
 • LHC searches for VL (T, B) do not apply
• gauge invariance
 • (T, t_R) same quantum number

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_S + \mathcal{L}_T + \mathcal{L}_Y + \mathcal{L}_G$$

$$\mathcal{L}_S = \frac{1}{2} \left(\partial_\mu S \right)^2 - \frac{1}{2} m_S^2 S^2$$

$$\mathcal{L}_T = \bar{T}(i\not\!D - m_T)T$$

$$\mathcal{L}_Y = -\left(y_{ST} S \bar{T} t_R + \text{h. c.} \right)$$

$$\mathcal{L}_G = C_{Sg} \frac{\alpha_s}{\pi} S^2 G^{\mu\nu} G^A_{\mu\nu}$$

see SUSY2016 talks by H. Tholen, D. Yamaguchi
Thermal Relic

• pair annihilation
 • $SS \rightarrow t\bar{t}$

• co-annihilation
 • $ST \rightarrow t^* \rightarrow bW^+$
 • $ST \rightarrow t + SM$
 • $SM = g, \gamma, Z, h$
 • $S + t/\bar{t} \rightarrow T/\bar{T} + SM$
 • $SS \rightarrow T\bar{T}$
 • $T\bar{T} \rightarrow SM + SM'$

• loop coupling C_{Sg}
 • [arXiv: 1502.02244, Junji Hisano et al]
 • $SS \rightarrow gg$
 • small for $SS \rightarrow SM + SM'$
 • $SM = g, \gamma, Z, h$
 • proportional to y_{ST}^2
 • important when $y_{ST} > O(1)$
Thermal Relic

• loop coupling C_{Sg}
 • proportional to y_{ST}^2
 • important when $y_{ST} > O(1)$
 • suppressed by large $r = m_T/m_S$
 • heavier particles in the loop
Thermal Relic

- $SS \rightarrow t\bar{t}, SS \rightarrow gg$
- channels evolve with γ_{ST}

\[\gamma_{ST} = 0.3 \]

\[\gamma_{ST} = 0.5 \]

\[\gamma_{ST} = 1 \]

\[\gamma_{ST} = 10 \]

\[\gamma_{ST} = 0.3 \]
Thermal Relic

- \(SS \rightarrow gg \) ignored for \(y_{ST} < \mathcal{O}(1) \)

- when \(SS \rightarrow t\bar{t} \) is open
 - relaxed \(r \)
 - larger \(y_{ST} \) is more helpful
 - further suppressed \(C_{Sg} \)
 - affect the direct detection

\[r = \frac{m_T}{m_S} \]

\(\lambda_{SH} = |C_{SSgg}| = 0 \)
Thermal Relic

- when $SS \rightarrow t\bar{t}$ is open
 - relaxed r
 - larger γ_{ST} is more helpful
 - further suppressed C_{Sg}
 - affect the direct detection

$SS \rightarrow t\bar{t}, SS \rightarrow gg$

$\gamma_{ST} = 0.3$

$\gamma_{ST} = 0.5$

$\gamma_{ST} = 1$

$\gamma_{ST} = 10$
Direct detection

• large γ_{ST}
 • $SS \rightarrow gg$ can dominate in light m_S region
 • σ_{SI} is correlated with $\Omega_{DM} h^2$
 • excluded by LUX-2015

• $\gamma_{ST} \approx 1$
 • difficult for XENON-1T
 • possibly covered by LZ

• $\gamma_{ST} < 0.5$
 • difficult to detect
Indirect detection (gamma-ray)

- gamma-ray spectrum
 - continuous: dwarf galaxies
- line: galactic region
Indirect detection (gamma-ray)

- continuous: dwarf galaxies
 - [arXiv: 1503.02641, Fermi]

- no $t\bar{t}$?
 - rescale from $b\bar{b}$
 - $\langle \sigma v \rangle_{gg}$ obtained from $u\bar{u}$
 - [arXiv: 1511.04452 F. Giacchino et al]

\[
N_{\gamma,f} = \int_{E_{th}}^{m_{X}} \frac{dN_{f}}{dE} dE.
\]

\[
\langle \sigma v \rangle_{t\bar{t}} = \langle \sigma v \rangle_{b\bar{b}} N_{\gamma,bb}/N_{\gamma,t\bar{t}}
\]
Indirect detection (gamma-ray)

- line: galactic region
- [arXiv: 1506.00013, Fermi]
- conversion from $g g$ to $\gamma\gamma$

$$\frac{\langle \sigma v \rangle_{\gamma\gamma}}{\langle \sigma v \rangle_{gg}} = \frac{9}{2} Q^4 \left(\frac{\alpha_{em}}{\alpha_s} \right)^2 \approx 3.8 \times 10^{-3},$$
Indirect detection (gamma-ray)

• promising to detect $m_S > m_t$
 • complementary to DD
• current results just about to test this model
• improved sensitivity can cover wide regions in $m_S > m_t$
Collider search

• $pp \rightarrow T\bar{T} \rightarrow t\bar{t} + MET$
 • similar to stop search

• CMS 8 TeV [arXiv: 1504.01398]

\[\mathcal{L}_{\text{EFT}} = \frac{m_t}{M_*^3} \bar{t}t\bar{\chi}\chi, \]

\(\chi: \) Dirac fermion

preselection: \(\not{E}_T > 160 \text{ GeV}, \)

\(\not{E}_T > 320 \text{ GeV}, \)

\(M_T > 160 \text{ GeV}, \)

\(M_{T2}^W > 200 \text{ GeV}, \)

\[\min \Delta \phi(j_{1,2}, \bar{\not{p}}_T) > 1.2. \]
Collider search

• Validation
 • cut efficiency for a wide range of m_χ

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>SR $pp \rightarrow tt\chi\chi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Source</td>
</tr>
<tr>
<td>M_χ (GeV)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
Collider search

• Validation

• kinematic variables: $E_T, m_T, m_T^W, \min \Delta \phi(j_{1,2}, \not{p}_T)$
Collider search

• Results
 • exclude m_T from 300 (450)-850 GeV for $m_S = 0$ (200) GeV

• future improvement:
 • off-shell t, W^\pm
 • mono-jet
Combination

- complementarity between DD/ID
- large γ_{ST}: excluded by LUX and Fermi
- perturbative $\gamma_{ST} \in (0.5, 1)$: about to be tested in future

\[
\gamma_{ST} = 0.5
\]

\[
\gamma_{ST} = 1
\]
Conclusion

• **Flavored** DM is an interesting framework
 • rich particle spectrum

• Top-flavored, 3 parameters \(\{ y_{ST}, m_S, m_T \} \)
 • annihilation: \(m_S < m_t \): (ST), moderate \(m_t \): (SS), large \(m_t \): (T\(\bar{T}\))
 • DD/ID: large \(y_{ST}, SS \rightarrow gg \) dominant, excluded by LUX and Fermi
 • **Complementarity**: DD (ID) in \(m_S < (>)m_t \)
 • Collider: \(m_T \) excluded between 300 (450)-850 GeV for \(m_S = 0 \) (200) GeV

• LHC Run-2 will further test **Flavored** DM
Thank you
Back up
stop search, CMS

\[m_{\tilde{t}} \text{ [GeV]} \]

\[m_{\tilde{\chi}_1^0} \text{ [GeV]} \]

\[m_{\tilde{t}} \text{ [GeV]} \]

\[m_{\tilde{\chi}_1^0} \text{ [GeV]} \]
stop search, EXO vs SUSY in boosted top
Loop coupling C_{sg} \cite{arXiv:1502.02244, Junji Hisano et al}

\begin{align}
C_{s}^{g}q & = \frac{1}{4} \sum_{k=1}^{3} \left[(a_{q}^{g} + b_{q}^{g}) f_{4}^{(i)}(M; m_{Q}, m_{W_{Q}}) + (a_{q}^{g} - b_{q}^{g}) f_{4}^{(i)}(M; m_{Q}, m_{W_{Q}}) \right], \tag{53}
\end{align}

where $f_{4}^{(i)}$ and $f_{4}^{(j)}$ ($i = a, b, c$) correspond to the contribution of the diagram i in Fig. 2. They are given as follows:

\begin{align}
f_{4}^{(a)}(M; m_{1}, m_{2}) & = -m_{3}m_{2}(M^{2} + m_{1}^{2} - m_{3}^{2}) \Delta_{L}, \tag{54}
\end{align}

\begin{align}
f_{4}^{(b)}(M; m_{1}, m_{2}) & = \frac{m_{1}m_{2}(\Delta + m_{2}^{2}(M^{2} - m_{1}^{2} + m_{3}^{2}))}{6\Delta^{2}} L, \tag{55}
\end{align}

\begin{align}
f_{4}^{(c)}(M; m_{1}, m_{2}) & = m_{2}(-2m_{1}^{2} + m_{1}^{2} + 2m_{3}^{2} - 2m_{1}m_{2}(M^{2} + m_{1}^{2} - m_{3}^{2})) \frac{\Delta^{2}}{6m_{1}^{2}L}, \tag{56}
\end{align}

\begin{align}
f_{4}^{(d)}(M; m_{1}, m_{2}) & = f_{4}^{(i)}(M; m_{2}, m_{1}) \tag{56},
\end{align}

\begin{align}
f_{4}^{(e)}(M; m_{1}, m_{2}) & = f_{4}^{(i)}(M; m_{3}, m_{1}) \tag{57},
\end{align}

\begin{align}
f_{4}^{(f)}(M; m_{1}, m_{2}) & = \frac{M^{2} + m_{1}^{2} + m_{3}^{2}}{2\Delta} - \frac{m_{1}^{2}m_{3}^{2}}{\Delta} L, \tag{58}
\end{align}

\begin{align}
f_{4}^{(g)}(M; m_{1}, m_{2}) & = \frac{2m_{1}m_{2}}{\Delta} - m_{1}m_{2}(M^{2} + m_{1}^{2} + m_{3}^{2}) \frac{\Delta}{L}, \tag{59}
\end{align}

with

\begin{align}
\Delta(M; m_{1}, m_{2}) & = M^{4} - 2M^{2}(m_{1}^{2} + m_{2}^{2}) + (m_{1}^{2} - m_{2}^{2})^{2}, \tag{60}
\end{align}

\begin{align}
L(M; m_{1}, m_{2}) & = \begin{cases}
\frac{1}{\sqrt{\Delta}} \arctan \left(\frac{m_{1}m_{2} - M^{2} + \sqrt{\Delta}}{m_{1}m_{3} - M^{2} - \sqrt{\Delta}} \right) & (\Delta > 0) \\
\frac{2}{\sqrt{\Delta}} \arctan \left(\frac{\sqrt{\Delta}}{m_{1}m_{2} - M^{2}} \right) & (\Delta < 0)
\end{cases}, \tag{61}
\end{align}
co-annihilation

Conditions for coannihilation to reduce LSP relic density

If there is another R-odd species χ_2 almost degenerate in mass with the LSP χ_1,

and if χ_2 has a big annihilation cross section with itself and/or with χ_1,

and if χ_1 can efficiently convert to χ_2,

then χ_1 and χ_2 can freeze out together at a lower temperature resulting in a smaller dark matter abundance than if without the existence of χ_2.

\[
\begin{align*}
\chi_1\chi_1 &\leftrightarrow SM, \quad \chi_1\chi_2 \leftrightarrow SM, \quad \chi_2\chi_2 \leftrightarrow SM \\
\chi_1 SM &\leftrightarrow \chi_2 SM, \quad \chi_2 \leftrightarrow \chi_1 SM
\end{align*}
\]

efficient conversion: $\langle \Gamma \rangle _{1SM \rightarrow 2SM} + \langle \Gamma \rangle _{1SM \rightarrow 2} \gg H$

$\Rightarrow \frac{n_1}{n_2} \approx \frac{n_{1eq}}{n_{2eq}}$ (this can be checked by explicitly solving for n_1 and n_2

\[
\frac{dn}{dt} + 3Hn = -\sum_{i,j=1}^{2} \langle \sigma v \rangle _{ij \rightarrow SM} \frac{n_{1eq} n_{2eq}^{i}}{n_{2eq}^{j}} [n^2 - n_{eq}^2]
\]

(Recall w/o coannihilation: $\frac{dn_X}{dt} + 3H(T)n_X = -\langle \sigma v \rangle _{XX \rightarrow SM'} \left[n_X^2 - (n_{eqX})^2 \right]$)
3.1 Review of the Boltzmann equation with coannihilations

Consider annihilation of N supersymmetric particles χ_i ($i = 1, \ldots, N$) with masses m_i and internal degrees of freedom (statistical weights) g_i. Also assume that $m_1 \leq m_2 \leq \cdots \leq m_N < m_N$ and that R-parity is conserved. Note that for the mass of the lightest neutralino we will use the notation m_{χ} and m_1 interchangeably.

The evolution of the number density n_i of particle i is

$$\frac{dn_i}{dt} = -3H n_i - \sum_{j=1}^{N} (\sigma_{ij} v_i) (n_i n_j - n_i m_i n_j^m)$$
$$- \left[\sum_{j \neq i} \left(\sigma_{X_{ij}} v_i \right) (n_i n_X - n_i m_i n_X^m) - \left(\sigma_{X_{ji}} v_j \right) (n_j n_X - n_j m_j n_X^m) \right]$$
$$- \sum_{j \neq i} \left[\Gamma_{ij} (n_i - n_i^m) - \Gamma_{ji} (n_j - n_j^m) \right].$$

The first term on the right-hand side is the dilution due to the expansion of the Universe. H is the Hubble parameter. The second term describes $\chi_i\chi_j$ annihilations, whose total annihilation cross section is

$$\sigma_{ij} = \sum_{X} \sigma_{(\chi_i\chi_j \rightarrow X)}.$$ \hspace{1cm} (28)

The third term describes $\chi_i \rightarrow \chi_j$ conversions by scattering off the cosmic thermal background,

$$\sigma_{X_{ij}} = \sum_{Y} \sigma_{(\chi_i X \rightarrow \chi_j Y)}$$ \hspace{1cm} (29)

being the inclusive scattering cross section. The last term accounts for χ_i decays, with inclusive decay rates

$$\Gamma_{ij} = \sum_{X} \Gamma_{(\chi_i \rightarrow Y_j X)}.$$ \hspace{1cm} (30)
Direct detection

- **parton effective coupling**
 - $\mathcal{L}_{eff} = \sum_{p=q,g} C_S^p \mathcal{O}_S^p$
 - $\mathcal{O}_S^q = m_q S^2 \bar{q} q$
 - $\mathcal{O}_S^g = \frac{\alpha_s}{\pi} S^2 G^{A\mu\nu} G_{\mu\nu}^A$

- **nucleon effective coupling**
 - $\mathcal{L}_{SI}^{(N)} = f_N S^2 \bar{N} N$
 - $f_N/m_N = \sum_{q=uds} C_S^q f_{Tq}^{(N)} - \frac{8}{9} C_S^g f_{Tg}^{(N)}$

- **nucleus scattering**
 - $\sigma = \frac{1}{\pi} \left(\frac{m_{\text{tar}}}{m_S + m_{\text{tar}}} \right)^2 |n_p f_p + n_n f_n|^2$
Direct detection

- General formalism
 - refer to 1502.02244

- Effective Langragian

- DM-parton coupling
 - $C_S^p = C_S^p(y_{ST}, m_S, r)$

3 Formalism: real scalar boson DM

Next we briefly show the results for the case of real scalar boson DM. We may use a similar procedure to that given in the previous section to formulate effective theories for the WIMP.

3.1 Effective Lagrangian

The effective interactions of the real scalar ϕ with quarks and gluon are expressed by

$$L_{\text{eff}} = \sum_{p=q,g} C_S^p \mathcal{O}_S^p + \sum_{p=q,g} C_{T_2}^p \mathcal{O}_{T_2}^p ,$$

with

$$\mathcal{O}_S^q = \phi^2 m_q \bar{q} q ,$$

$$\mathcal{O}_S^g = \frac{g_s}{\pi} \phi^2 G^{\mu\nu} G_{\mu\nu} ,$$

$$\mathcal{O}_{T_2}^q = \frac{1}{M^2} \phi i \partial^\mu i \partial^\nu \phi \mathcal{O}_\mu^q ,$$

$$\mathcal{O}_{T_2}^g = \frac{1}{M^2} \phi i \partial^\mu i \partial^\nu \phi \mathcal{O}_{\mu\nu}^g .$$

Note that there is no spin-dependent interactions in the case of scalar boson DM.
Direct detection

• DM-nucleon coupling
 • $f_N = f_N(C_S^q, C_S^g)$

• scattering cross section
 • $\sigma = \sigma(f_N, m_S)$

3.3 Scattering cross sections

We now ready to evaluate the scattering cross section of the real scalar boson with a target nucleus. The spin-independent coupling of the real scalar boson with a nucleon defined by

$$\mathcal{L}_{\text{SI}}^{(N)} = f_N \phi^2 N N,$$

is evaluated as

$$f_N / m_N = \sum_{q=u,d,s} C_S^q(\mu_{\text{had}}) f_{Tq}^{(N)} - \frac{8}{9} C_S^q(\mu_{\text{had}}) f_{Tq}^{(N)} + \frac{3}{4} \sum_{q} C_{Tq}^q(\mu) [q(2; \mu) + \bar{q}(2; \mu)] - \frac{3}{4} C_{Tq}^q(\mu) g(2; \mu).$$

In the scalar boson case, there is no spin-dependent coupling with a nucleon. By using the effective coupling, we calculate the scattering cross section of the real scalar boson with a target nucleus as follows:

$$\sigma = \frac{1}{\pi} \left(\frac{M_T}{M + M_T} \right)^2 |n_p f_p + n_n f_n|^2.$$
Direct detection

- mass fraction f_{Tq}^N
- quantum mechanics
- expectation value

As for the scalar-type quark operators \mathcal{O}^q, we use the results from the lattice QCD simulations. The expectation values of the scalar bilinear operators of light quarks between the nucleon states at rest, $|N\rangle$ ($N = p, n$), are parametrized as

$$f_{Tq}^{(N)} \equiv \langle N|m_q\bar{q}|N\rangle/m_N,$$

which are called the mass fractions. These values are shown in Table 1. Here, m_N is the nucleon mass. They are taken from Ref. 12, in which the mass fractions are computed by using the results from Refs. 13,14.

up to the leading order in α_s. The relation beyond the leading order in α_s is also readily obtained from the trace-anomaly formula. By evaluating the operator (5) in the nucleon states $|N\rangle$, from $\langle N|\Theta^\mu\mu|N\rangle = m_N$ we then obtain

$$\langle N|\frac{\alpha_s}{\pi} G^A_{\mu\nu} G^{A\mu\nu}|N\rangle = -\frac{8}{9}m_N f_{Tq}^{(N)}.$$

with $f_{Tq}^{(N)} \equiv 1 - \sum_{q=u,d,s} f_{Tq}^{(N)}$. Notice that the r.h.s. of Eq. (6) is the order of the typical hadronic scale, $\mathcal{O}(m_N)$. That is, although we include a factor of α_s/π in the definition of \mathcal{O}^q, its nucleon matrix element is not suppressed by α_s/π. This is the reason why we have defined \mathcal{O}^q to contain α_s/π.
Indirect detection

• General formalism, two factors

 • astrophysical

 • particle physics

\[\mu_\gamma (\Phi_{PP}) \equiv (A_{\text{eff}} T_{\text{obs}}) \Phi_{PP} J, \]

\[J \equiv \int_{\Delta \Omega(\psi)} \int_{\ell} [\rho(\ell, \psi)]^2 d\ell d\Omega(\psi), \]

\[\Phi_{PP} \equiv \frac{\langle \sigma_A v \rangle}{8\pi m_\chi^2} \int_{E_{th}}^{m_\chi} \sum_f B_f \frac{dN_f}{dE} dE, \]
2 Simplified Model

The basic module consists of a massive scalar (assumed complex for simplicity, though the modification to a real field is simple) χ that is a gauge singlet to play the role of dark matter, and a set of massive (typically complex) colored scalars ϕ (in representation r of $SU(3)_C$) to act as the mediator with the SM. These basic pieces are described by the Lagrangian,

$$\mathcal{L} = \nabla\mu \chi^* \partial^\mu \chi - m_\chi^2 |\chi|^2 + (D_\mu \phi)^\dagger D^\mu \phi - m_\phi^2 |\phi|^2$$

(2.1)

where $D_\mu \phi$ is a covariant derivative that includes interactions with the electroweak gauge fields (in cases where ϕ is charged under $SU(2) \times U(1)$) and coupling to the gluons G_μ^a:

$$D_\mu \phi \equiv \partial_\mu \phi - i g_s \frac{\lambda^a}{2} G^a_\mu \phi \quad \text{Electroweak}$$

(2.2)

Figure 2: The product of quartic interaction λ_d with the square root of product of r dimensional color representation of ϕ and N_f, number of flavors with mass less than m_χ, required to saturate the observed dark matter density as a thermal relic, are represented as colored contours in the plane of m_ϕ-m_χ. Almost all the parameter space where $m_\phi < m_\chi$ is compatible with a thermal relic density. Where $m_\phi > m_\chi$, the DM annihilation proceeds via loops and, only a small region of parameter space is allowed without including any additional couplings.

Figure 3: Current (solid line) and projected (dashed line) bounds on $\sum \lambda_{d} T_{\nu} \sqrt{N_{f}}/m_{\phi}^{2}$ based on searches for dark matter-Xenon scattering by LUX. The region above the solid line is excluded.