

Search for Dark Matter with The XENON1T Experiment

Marie-Cécile Piro
Rensselaer Polytechnic Institute

On behalf of the XENON collaboration

Outlines

- Direct Detection
- XENON1T at LNGS
- Detector principle
- XENON1T Overview
- Expected Backgrounds
- Status
- Summary and Outlook

Direct detection: Interaction Cross Section

General form of cross section for the WIMP interaction with matter :

$$\sigma_A = 4G_F^2 \left(\frac{M_{\chi} M_A}{M_{\chi} + M_A}\right)^2 C_A F(q^2)$$

Nuclear enhancement factor

Depends on the target used for the detector!

Axial-Vector: Spin-Dependent (SD)

$$C_A^{SD} \propto \left\langle S_{p,n} \right\rangle^2$$

Scalar: Spin-Independent (SI)

$$C_A^{SI} \propto A^2$$

Direct Detection with Xenon

- High mass number: A ~ 131
 - → SI interactions scale as A²
- 50% odd isotopes:
 - → 129Xe, 131Xe for SD interactions
- High stopping power:
 - → Z=54, ρ = 3 gcm⁻³
- Accessible cryogenic temperatures:
 - → Liquid at 182 K at 2 bar.

- Low intrinsic radioactivity:
 - \rightarrow No long-lived radioisotopes (with the exception of ¹³⁶Xe, $T_{1/2}$ = 2.2 x 10²¹ y),
 - → 85Kr can be reduced to sub-ppt
- Efficient scintillator:
 - → High light yield, light output at 178 nm and fast response.

Finally What we need ???

The detection depends of: WIMP mass, spin coupling, background!

 $1 \, keV \le \text{Re} \, coil \, Energy \le 100 \, keV$ _______ Low threshold detectors.

Very low Rate — Large volume detectors.

Background is the principal problem of all Dark Matter experiments!

Enemies: muon-induced neutrons, gammas, neutrons, intrinsic betas decays, alpha background, neutrinos!

XENON AT LNGS

- XENON Experiment is located at Laboratori Nazionali del Gran Sasso in Italy.
- Rock coverage from the mountain of 1.4km (3600 m w.e.)

XENON collaboration

- 21 institutions
- ~150 collaborators

XENON as a detector medium

XENON EXPERIMENT:

Active target :

Double phase Xenon (gas + liquid).

→ Favourable nucleus for SI.

• Detector:

Time Projection Chamber (TPC) within a cryostat.

Read-out:

Photomultipliers: 248 PMTs from Hamamatsu.

[PMT model: R11410-21 (3"), 6 R8520 in the veto region]

XENON1T Detector Principle

9

XENON1T Detector Principle

- Background discrimination : $\frac{S2}{S1_{ER}} > \frac{S2}{S1_{NR}}$
- **Z-position**: Drift time proportional to interaction depth
- X-Y position: Hit pattern on photo-sensors

XENON1T Overview and Status

XENON1T Infrastructure

Water Tank: a Water Cherenkov Muon Veto

- XENON1T cryostat immersed into 700 m³ of demineralised water.
- Tank cladded with high-reflectivity foils and equipped with 84 high QE PMTs.
- Passive shield against external background as neutrons, gammas from the environment.

^{*} XENON1T Muon Veto paper: JINST 9 P11006 (2014)"

XENON1T: Overview

Purification System

- Charge/light attenuated by impurities
- Outgassing continuously contaminates Xe
- → Continuous recirculation
- Cleaning of 3.5 tons of xenon
- → High flow rate : goal 100 SLPM
- High flow parallel purifiers:
- \rightarrow Purification for electronegative elements (O₂, H₂O) with hot zirconium oxide getter.
- → Gas cleaned to one part per billion (ppb)
- HALO+ Analyser:
- → Monitor performance of purifier
- \rightarrow Continuously measure H₂O concentration.

Slow Control System

- Ensures the complete safety of the experiment.
- Distributed local controllers per subsystem; central monitoring, control and database.
- Based on industrial process control hardware and software (GE)
- Critical operations are guarded and can be executed only if conditions are safe.

Control Room — SCADA screens The property of the property of

First light!

One of the first S1 and S2 signals from 3 tons of a dual phase Xe TPC

Both charge and light are being detected. The total mass of 3.2 t of LXe is being continuously purified to reach the desired charge yield at the applied field.

Expected Backgrounds

* Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

Source	Bgd (ev/y)
ER from materials	~0.07
²²² Rn (10µBq/kg)	~1.39
⁸⁵ Kr (0.2 ppt of NATKr)	~0.07
¹³⁶ Xe 2v2β	~0.02
Solar neutrinos	~0.08
Total ER	~1.62
Total NR	~0.46

Single scatter, 1t FV, [1,12]keVee, [4,50]keVr, 99.75% S2/S1 discrimination, 40% NR acceptance

Total Expected Backgrounds

* Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

- 3-70 PE S1 region
- 4-50 keV NR energy region
- 2 t x y exposure
- 99.75% XENON100- like ER rejection
- 40% NR acceptance

- Background estimation:
 - Total Nuclear Background: 0.91 events
 - Total Electronic Background: 3.25 events

Expected Sensitivity

* Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

1.6x10⁻⁴⁷cm² at 50GeV/c² in 2 ton year exposure

Expected Sensitivity

* Physics reach of the XENON1T dark matter experiment JCAP 1604 (2016) no.04, 027"

Expected to overcome presently world-leading limits just within 10 days of data taking in dark matter mode.

Summary and Outlook

XENON1T is in commissioning:

- → Operation of all infrastructures demonstrated.
- → Cherenkov light from muons observed.
- → LXe purification ongoing, electron lifetime increasing.
- → Regular data acquisition / data analysis ongoing.
- → Water tank now is closed and is being filled!
- First science run expected by this fall

Upgrade to XENONnT:

→ An order of magnitude better than XENON1T.

Xenon mass ~7.6 t
Expected Sensitivity (50 GeV, 20ty):
2 x 10⁻⁴⁸ cm²

^{*} Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

Thank you for your attention!

Calibrations

Installation in the Water Tank

- Regular PMT gain calibrations with LEDs
- Deployable external and short-lived internal radioisotopes for calibration
- D-D neutron generator for NR band
- → Currently monitoring light yield and Xe purity

Electronic Recoil background

* Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

ER background in 1 ton FV, (1,12) keV, before ER/NR discrimination

Source	Background $[(kg \cdot day \cdot keV)^{-1}]$	Background $[y^{-1}]$	Fraction $[\%]$
Materials	$(7.3 \pm 0.7) \cdot 10^{-6}$	30 ± 3	4.1
$^{222}\mathbf{Rn}$	$(1.54 \pm 0.15) \cdot 10^{-4}$	620 ± 60	85.4
$^{85}{ m Kr}$	$(7.7 \pm 1.5) \cdot 10^{-6}$	31 ± 6	4.3
$^{136}\mathrm{Xe}$	$(2.3 \pm 0.3) \cdot 10^{-6}$	9 ± 1	1.4
Solar neutrinos	$(8.9 \pm 0.2) \cdot 10^{-6}$	36 ± 1	4.9
Total	$(1.80 \pm 0.15) \cdot 10^{-4}$	$\textbf{720} \pm \textbf{60}$	100

Nuclear Recoil background

^{*} Physics reach of the XENON1T dark matter experiment, JCAP 1604 (2016) no.04, 027"

Source	events / ton / year
CNNS	(1.8 ± 0.3) x 10 ⁻²
Radiogenic	0.6 ± 0.1
Muon-induced	< 0.01

1 t Fiducial volume, (4,50) keV Before discrimination/NR acceptance

XENON dark matter program

* SI WIMP

Xenon target = **15 kg**Sensitivity* (100 GeV, 2007): **8.8 x 10**-44 cm²

Xenon target mass = 62 kgSensitivity* (55 GeV, 2012): $2.0 \times 10^{-45} \text{ cm}^2$

Xenon target mass = 2000 kg

Expected Sensitivity* (50 GeV, 2018):

1.6 x 10⁻⁴⁷ cm²

Sensitivity increases with exposure (target mass, time) and background reduction