DBI action of real linear superfield in 4D N = 1 conformal supergravity

Shuntaro Aoki
Waseda University (Japan)

Based on collaboration with Yusuke Yamada (U.Keio)

JHEP06(2016)168

2016/7/7
Outline

- DBI action of real linear multiplet in global SUSY
- short review of conformal SUGRA
- DBI action of real linear multiplet in conformal SUGRA
- Summary
Introduction

- DBI Lagrangian

\[1 - \sqrt{\det (\eta_{ab} + \partial_a \phi \partial_b \phi + B_{ab} + F_{ab})} \]

\(\phi \) : scalar \hspace{1em} B_{ab} : anti-symmetric tensor \hspace{1em} F_{ab} : Field strength of vector

It describes effective action of D-brane.
Introduction

- DBI Lagrangian

\[1 - \sqrt{\det (\eta_{ab} + \partial_a \phi \partial_b \phi + B_{ab} + F_{ab})} \]

\(\phi \) : scalar \quad B_{ab} \quad : \text{anti-symmetric tensor} \quad F_{ab} \quad : \text{Field strength of vector}

It describes effective action of D-brane.

- What I want to do
 = extend it to SUSY version based on superfield

 - SUSY is manifest
 - easy to generalize
 - ...

※ We focus on four dimension.
Each part is constructed separately.

This part can be constructed in 4D N=1 SUSY using \textit{linear superfield}.

What is linear superfield? How do we construct it?
DBI of real linear superfield in global SUSY (Review)

X: chiral

$\bar{D}_\dot{\alpha} X = 0,$

X: complex scalar ψ: Weyl spinor F: auxiliary field

L: linear

$D^2 L = \bar{D}^2 L = 0$

C: real scalar χ: Majorana spinor b_{ab}: anti-symmetric tensor

$B_a = \frac{1}{\sqrt{2}} \varepsilon_{abcd} \partial^b b^{cd}$

※ There exists duality relation between chiral and linear (linear-chiral duality)
DBI of real linear superfield in global SUSY (Review)

Constraint

\[
X - \frac{1}{4} X \bar{D}^2 \bar{X} - \bar{D}_\alpha L \bar{D}^{\bar{\alpha}} L = 0,
\]

We call DBI of linear superfield

linear-chiral dual

\[
1 - \sqrt{\det \left(\eta_{ab} + \frac{1}{2} \partial_a \phi \partial_b \phi \right)}
\]

J. Bagger, A. Galperin (1997)

(comes from N=2 partial breaking)
Outline

- DBI action of real linear multiplet in global SUSY
 - Constraint is important !!
 - short review of conformal SUGRA

- DBI action of real linear multiplet in conformal SUGRA

- Summary
Short review of Conformal SUGRA

Conformal SUGRA is “good” tool for constructing SUGRA action.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>M</th>
<th>D</th>
<th>A</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>SUSY</td>
<td>Lorentz</td>
<td>dilation</td>
<td>u(1)</td>
<td>S-SUSY</td>
<td>conformal boost</td>
</tr>
</tbody>
</table>

Poincare SUGRA \hspace{1cm} \text{conformal SUGRA}
Short review of Conformal SUGRA

Conformal SUGRA is “good” tool for constructing SUGRA action.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>M</th>
<th>D</th>
<th>A</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>SUSY</td>
<td>Lorentz</td>
<td>dilation</td>
<td>u(1)</td>
<td>S-SUSY</td>
<td>conformal boost</td>
</tr>
</tbody>
</table>

Why are they needed?

- Weyl rescaling is not required due to larger symmetries.
- Different formulations of SUGRA can be treated in a unified manner. (Old minimal or New minimal)

Compensator

- Chiral compensator S_0
- Linear compensator L_0

(unphysical multiplet)
Short review of Conformal SUGRA

Conformal SUGRA is “good” tool for constructing SUGRA action.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>M</th>
<th>D</th>
<th>A</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>SUSY</td>
<td>Lorentz</td>
<td>dilation</td>
<td>u(1)</td>
<td>S-SUSY</td>
<td>conformal boost</td>
</tr>
</tbody>
</table>

Poincare SUGRA

Conformal SUGRA

The multiplet of conformal SUGRA Φ is characterized by weights of dilation and $u(1)$ called Weyl w and chiral weight n.

$$D\Phi = w\Phi$$

$$A\Phi = n\Phi$$

e.g. chiral multiplet $w=n$
Linear multiplet $w=2$, $n=0$
Outline

- DBI action of real linear multiplet in global SUSY
 - Constraint is important !!
- short review of conformal SUGRA
 - compensator determines formulation of SUGRA.
 - multiplet has specific weights.
- DBI action of real linear multiplet in conformal SUGRA

- Summary
How do we construct DBI action of linear multiplet in SUGRA?

In global

\[X - \frac{1}{4}X \bar{D}^2 \bar{X} - \bar{D}_\alpha L \bar{D}^\alpha L = 0, \]

In conformal SUGRA

?
difficulty

we cannot apply these operators to arbitrary multiplet.

e.g.,

Spinor derivative in conformal SUGRA cannot be applied unless weights of operand must satisfy $w=n$.

L has weights $w=2$, $n=0$.

$X - \frac{1}{4} X D^2 X - D_\alpha L \bar{D}^{\dot{\alpha}} L = 0,$
U- associated derivative

\[D^{(u)} L \]

T. Kugo and S. Uehara, (1985)

U-multiplet

\[u = \{ C_u, Z_u, H_u, K_u, B_{au}, \Lambda_u, D_u \}, \]

It can be applied to any multiplet.

\[\bar{D}_\alpha L \bar{D}^{\alpha} L \] \rightarrow \[D^{(u)} L \bar{D}^{(u)} L \]
How do we construct DBI action of linear multiplet in SUGRA?

In global

\[X - \frac{1}{4} X \bar{D}^{2} \bar{X} - \bar{D}_{\alpha} L \bar{D}^{\alpha} L = 0, \]

In conformal SUGRA

\[X + \frac{1}{2} X \Sigma \left(\frac{1}{v} \bar{X} \right) + \frac{1}{4s} \bar{D}^{(u)} L \bar{D}^{(u)} L = 0 \]

\(u, v, s : \) general multiplet
How do we construct DBI action of linear multiplet in SUGRA?

In global

\[X - \frac{1}{4} X \bar{D}^2 \bar{X} - \bar{D}_\alpha L \bar{D}^\alpha L = 0, \]

In conformal SUGRA

\[X + \frac{1}{2} X \Sigma \left(\frac{1}{\nu} \bar{X} \right) + \frac{1}{4s} \bar{D}^{(u)} L \bar{D}^{(u)} L = 0 \]

\(u, \nu, s \): general multiplet

This term is not necessarily chiral (we must impose chirality condition)
how three multiplets u,v,s are restricted by the chirality condition

※We choose **compensator** as u,v,s-multiplet

= gravitational correction

Remember

Chiral compensator S_0 (Old minimal)
Linear compensator L_0 (New minimal)

Old minimal formulation 😞

- chirality condition cannot be satisfied no matter how we choose the form of u,v,s.

New minimal formulation 😊

If $u = (L_0)^n, v = L_0^2, s = L_0$

- chirality condition is satisfied.

e.g.

$$\frac{1}{L_0} D(L_0) L \bar{D}(L_0) L.$$
Main result

In global

\[X - \frac{1}{4} X \bar{D}^2 \bar{X} - \bar{D}_\alpha L \bar{D}^\alpha L = 0, \]

In conformal SUGRA

\[X + \frac{1}{2} X \Sigma \left(\frac{1}{L_0^2} \bar{X} \right) + \frac{1}{4L_0} \bar{D}^{(L_0)} L \bar{D}^{(L_0)} L = 0, \]

can be realized in new minimal

\[S_B = \int d^4x \sqrt{-g} \left[\frac{1}{2} R + 1 - \sqrt{1 - B \cdot B + \partial C \cdot \partial C - (B \cdot \partial C)^2} \right]. \]
Summary

- construct DBI action of real linear multiplet in SUGRA

- derive the condition under which DBI action can be realized in SUGRA (chirality condition)

- show that it can be constructed in new minimal SUGRA

future prospects

- relation to N=2 supergravity?
- application to cosmology

Thank you!!