Component versus Superspace Approaches to D=4, N=1 Conformal Supergravity

Ryo Yokokura Keio univ.

7 July 2016 SUSY2016 @ The university of Melbourne

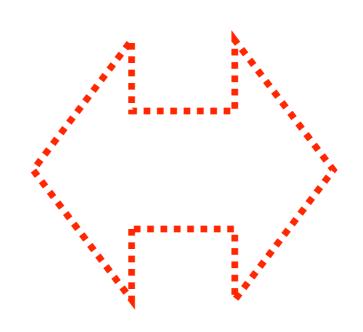
with Taichiro Kugo and Koichi Yoshioka to be published in PTEP [arXiv:1602.04441]

Conformal SUGRA puzzle

restricted?

component

practical ◎
symmetry △



superspace

practical \triangle

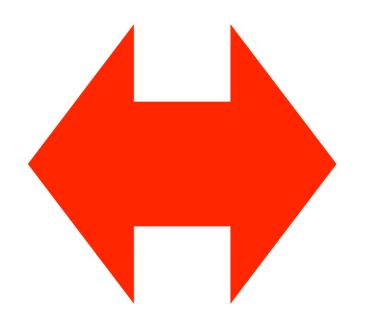
symmetry O

What we did

not restricted!

component

practical ○
symmetry △



superspace

practical \(\triangle \)
symmetry \(\triangle \)

4DN=1SUGRA

- · A candidate beyond SM and Einstein gravity
- Low-energy string effective actions
- Construction:
 - Gauge theory of super-Poincaré symmetry

Conformal SUGRA

Gauge theory of superconformal (SC) sym.

- Super-Poincaré extended to SC
- · Having more gauge freedoms

Poincaré

· Poincaré SUGRA obtained by gauge-fixing

What is the most different point?

conformal

S-transformation in SC

$$\overset{Q}{\Longrightarrow}$$
 rule: ladder operators

$$0 = \frac{Q}{S} F \stackrel{Q}{\rightleftharpoons} \cdots$$

Q (SUSY generator): raising scale weight S (SUSY of inversion): lowering scale weight

$$\{Q,S^T\} = -\frac{1}{2}C^{-1}D + \frac{1}{2}\sigma^{ab}C^{-1}M_{ab} + i\gamma_5C^{-1}A$$
 scale Lorentz chiral

Component approach

T. Kugo and S. Uehara (1985)

· Conformal multiplet defined by Q transf. laws

$$\mathcal{V}_{A} = [\mathcal{C}_{A}, \mathcal{Z}_{\alpha A}, ...] = [\mathcal{C}_{A}]$$

$$0 \stackrel{Q}{\longleftarrow} \mathcal{C}_{A} \stackrel{Q}{\rightleftharpoons} \mathcal{Z}_{\alpha A} \stackrel{Q}{\rightleftharpoons} \cdots$$

A: general spinor indices

$$\delta_Q(\varepsilon)\mathcal{C}_A = \frac{1}{2}\bar{\varepsilon}i\gamma_5\mathcal{Z}_A$$

· Transf. laws determined by SC transf. laws of \mathcal{C}_A

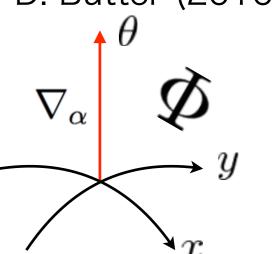
$$\delta_S \mathcal{Z} \sim \delta_S \delta_Q \mathcal{C} = (\delta_M + \delta_D + \delta_A) \mathcal{C}$$
Lorentz scale chiral

Superspace approach

D. Butter (2010)

· Q = SC covariant spinor deriv. ∇_{α}

$$Q_{\alpha}\Phi_{A} = \nabla_{\alpha}\Phi_{A}$$



· Primary superfield vanishing by S transf.

$$S_{\alpha}\Phi_{A}=0$$

· Component obtained by setting $\theta = 0$

$$\mathcal{C}_A = \Phi_A|_{\theta=0} \quad \mathcal{Z}_{\alpha A} = (\nabla_\alpha \Phi_A)|_{\theta=0}$$

Additional restriction?

T. Kugo and S. Uehara (1985)

$$0 \stackrel{?}{\leftarrow} \mathcal{Z}_{\alpha A} \stackrel{Q}{\rightleftharpoons} \cdots$$

- · Introducing spinor derivative $\mathcal{D}_{lpha}[\!(\mathcal{C}_A)\!]:=[\!(\mathcal{Z}_{lpha A})\!]$
- Additional restriction occurs?

$$\delta_S \mathcal{Z}_{\alpha A} \sim (\delta_M + \delta_D + \delta_A) \mathcal{C}_A = 0$$

Lorentz scale chiral

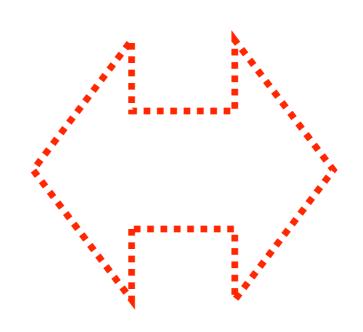
· Previous superspace approach restricted?

Conformal SUGRA puzzle

restricted?

component

practical ◎
symmetry △



superspace

practical \triangle

symmetry O

Results

Restriction does not exist.

$$0 = \bigoplus_{S} \Phi_A \stackrel{Q}{\rightleftharpoons} \nabla_\alpha \Phi_A \stackrel{Q}{\rightleftharpoons} \cdots$$

$$\cdot \stackrel{Q}{\Longrightarrow}$$
 rule: S transforming $abla_{lpha} \Phi_A$ to Φ_A not 0

· Consistent with component $0 \leftarrow \mathcal{C}_A \stackrel{Q}{\rightleftharpoons} \mathcal{Z}_{\alpha A} \stackrel{Q}{\rightleftharpoons} \cdots$

$$\cdot \left[0 - \mathcal{Z}_{\alpha A} \right]$$
 : not required by $\stackrel{Q}{\rightleftharpoons}$ rule

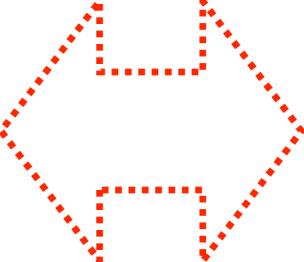
Correspondence

not restricted!

component

practical ○
symmetry △

Conformal multiplet



superspace

practical \(\triangle \)
symmetry \(\triangle \)

Correspondence of conformal multiplet

component	superspace
\mathcal{C}_A	$ \Phi_A $
\mathcal{Z}_A	$egin{pmatrix} -i abla_{lpha} \Phi_A \ +i ar{ abla}^{\dot{lpha}} \Phi_A \end{pmatrix} $
\mathcal{H}_A	$\left rac{1}{4} (abla^2 \Phi_A + ar{ abla}^2 \Phi_A) ight $
\mathcal{K}_A	$\left -rac{1}{4}i(abla^2\Phi_A-ar abla^2\Phi_A) ight $
\mathcal{B}_{cA}	$\left \begin{array}{c} rac{1}{2} \left(-rac{1}{2} (ar{\sigma}_c)^{\dot{\gamma}\gamma} [abla_{\gamma}, ar{ abla}_{\dot{\gamma}}] \Phi_A ight) ight $
Λ_A	$\begin{vmatrix} -\frac{i}{4} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\nabla}^2 \nabla_{\alpha} \Phi_A \\ \nabla^2 \bar{\nabla}^{\dot{\alpha}} \Phi_A \end{pmatrix} + 2i \begin{pmatrix} \mathcal{W}_{\alpha} \\ \bar{\mathcal{W}}^{\dot{\alpha}} \end{pmatrix} \Phi_A $
\mathcal{D}_A	$\left \begin{array}{l} rac{1}{4} \left(rac{1}{2} ar{ abla}_{\dot{eta}} abla^2 ar{ abla}^{\dot{eta}} \Phi_A + (-1)(-2i)^2 ar{\mathcal{W}}_{\dot{eta}} ar{ abla}^{\dot{eta}} \Phi_A ight) ight $
	$=\frac{1}{4}\left(\frac{1}{2}\nabla^{\beta}\bar{\nabla}^{2}\nabla_{\beta}\Phi_{A}+(-2i)^{2}\mathcal{W}^{\beta}\nabla_{\beta}\Phi_{A}\right) $

T. Kugo, RY and K. Yoshioka (2016)

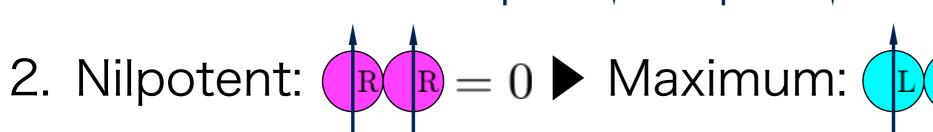
How to obtain

 $abla_{lpha}$ combinations reproducing Q transf. $\{
abla_{lpha},
abla_{eta}\} = 0, \quad \{
abla_{lpha}, ar{
abla}_{\dot{eta}}\} = -2i
abla_{lpha\dot{eta}} \quad
abla_{lpha}$

$$\{\nabla_{\alpha}, \nabla_{\beta}\} = 0, \quad \{\nabla_{\alpha}, \bar{\nabla}_{\dot{\beta}}\} = -2i\nabla_{\alpha\dot{\beta}}$$

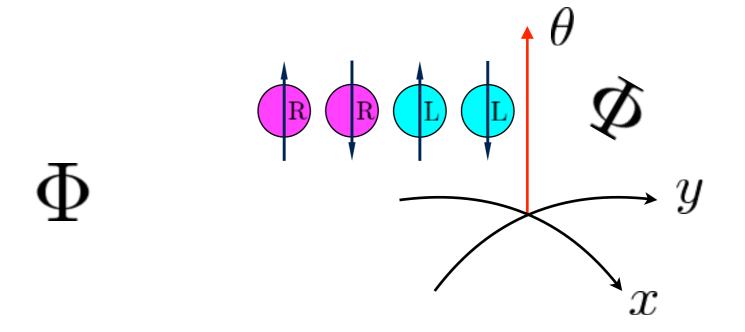
1. Four freedoms

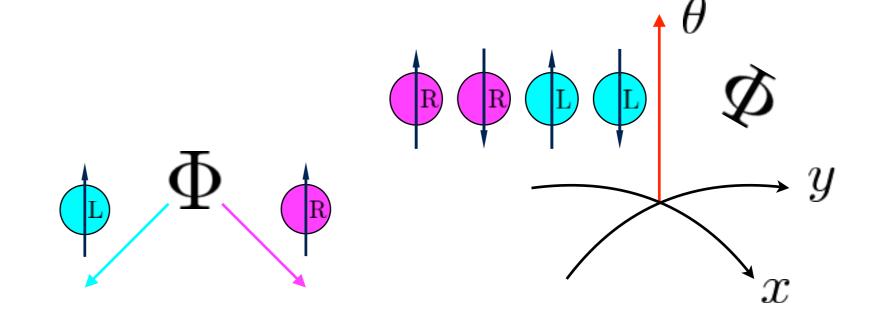
$$\nabla_{\alpha} = \mathbb{R}, \mathbb{R}, \mathbb{L}$$

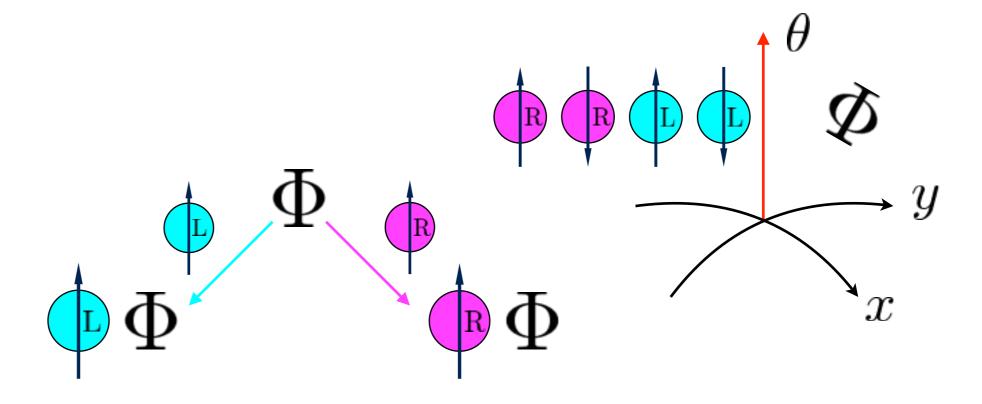


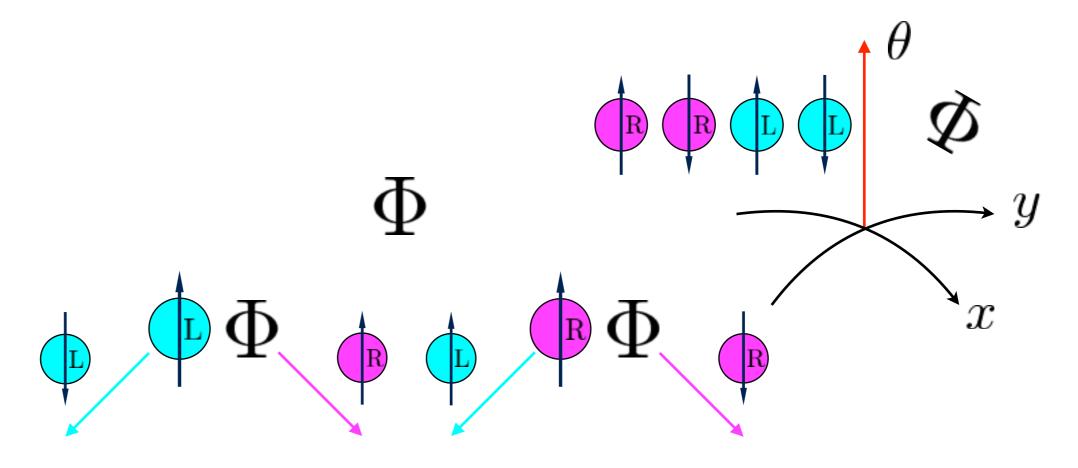
conly singlet (triplet vanishing)

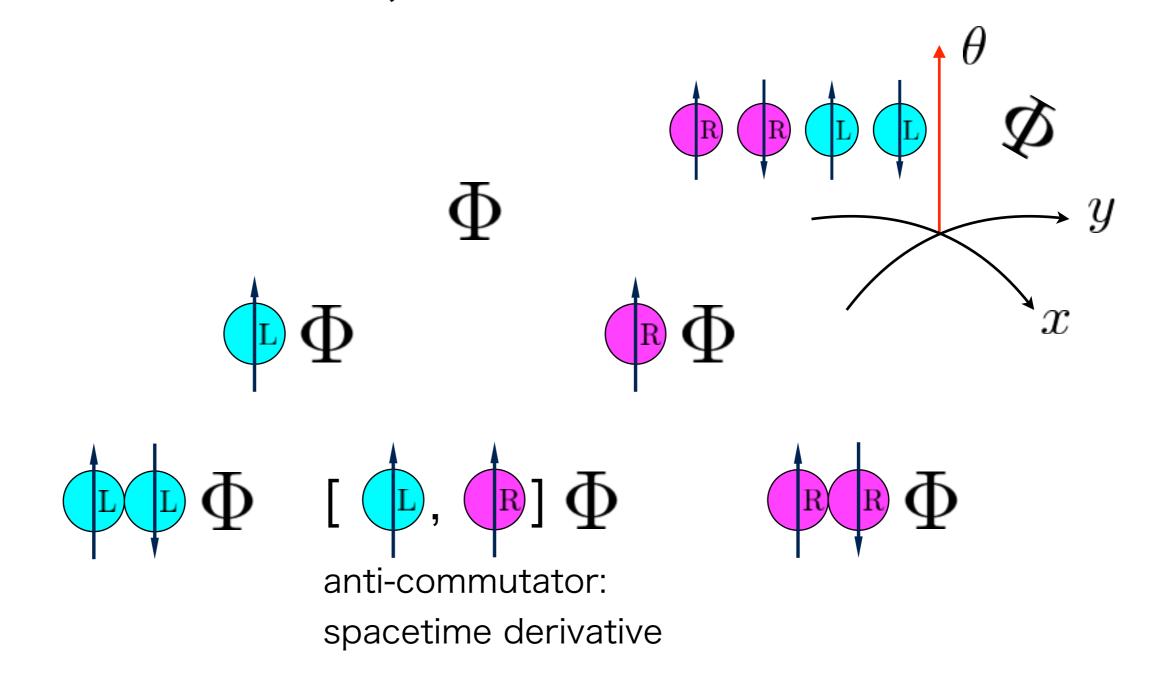
}: spacetime derivative











Correspondences of the 1st, 2nd order

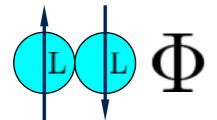
T. Kugo, RY and K. Yoshioka (2016)

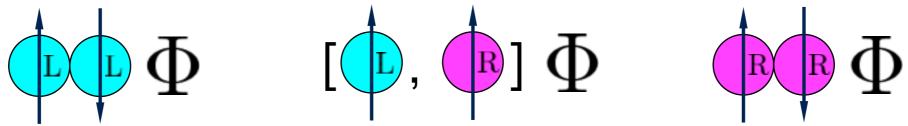
	component	superspace
•	$\overline{\mathcal{C}_A}$	$ \Phi_A $
L R	\mathcal{Z}_A	$\begin{pmatrix} -i \nabla_{\alpha} \Phi_A \\ +i \bar{\nabla}^{\dot{\alpha}} \Phi_A \end{pmatrix}$
	\mathcal{H}_A	$\left rac{1}{4}(abla^2\Phi_A+ar{ abla}^2\Phi_A) ight $
	\mathcal{K}_A	$-rac{1}{4}i(abla^2\Phi_A-ar{ abla}^2\Phi_A) $
	${\cal B}_{cA}$	$ \frac{1}{2} \left(-\frac{1}{2} (\bar{\sigma}_c)^{\dot{\gamma}\gamma} [\nabla_{\gamma}, \bar{\nabla}_{\dot{\gamma}}] \Phi_A \right) $

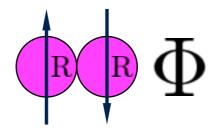
These combinations reproducing the transf. laws (Kugo and Uehara '85)

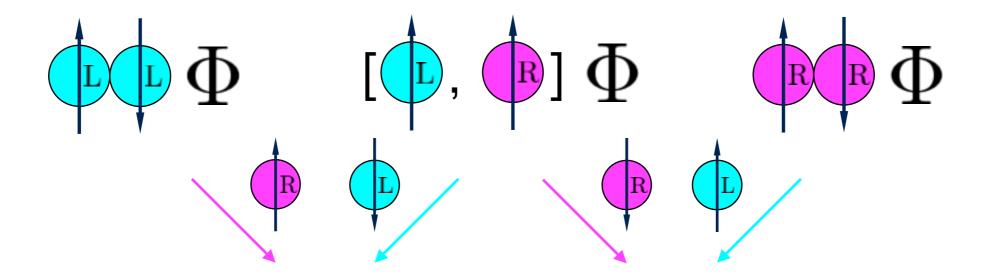
$$\delta_{Q}(\varepsilon)\mathcal{C}_{A} = \frac{1}{2}\bar{\varepsilon}i\gamma_{5}\mathcal{Z}_{A},$$

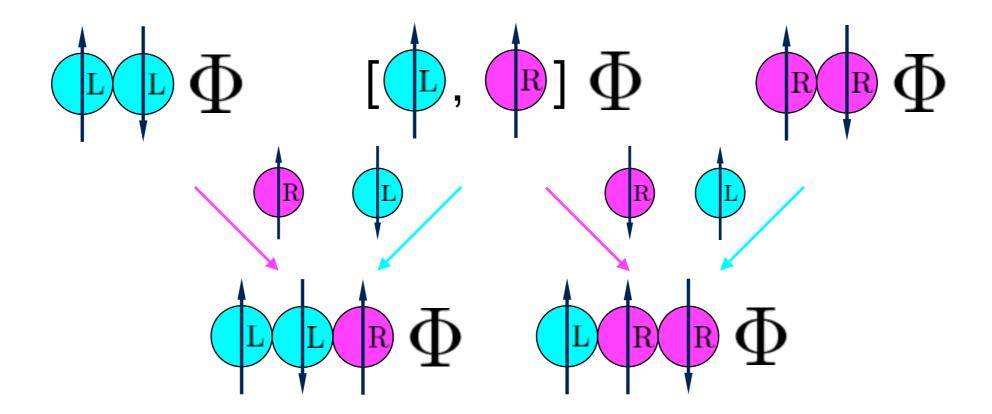
$$\delta_{Q}(\varepsilon)\mathcal{Z}_{A} = (-)^{A}\frac{1}{2}(i\gamma_{5}\mathcal{H}_{A} - \mathcal{K}_{A} - \mathcal{B}_{A} + \mathcal{D}\mathcal{C}_{A}i\gamma_{5})\varepsilon.$$

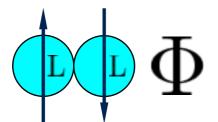


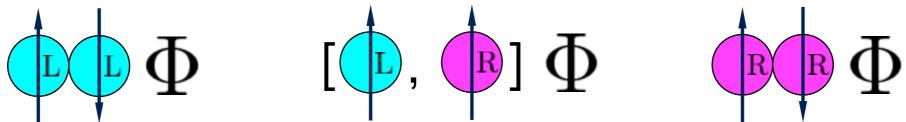


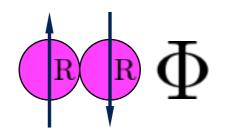


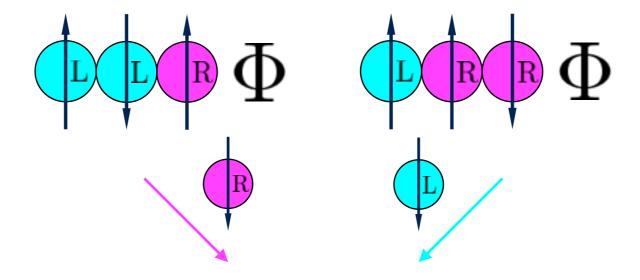


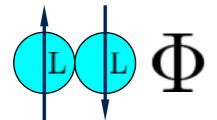


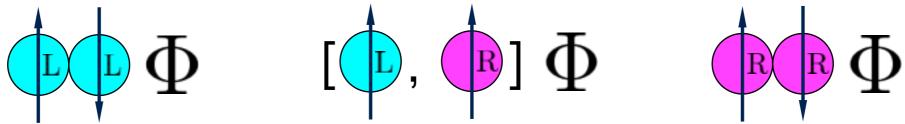


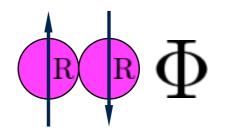


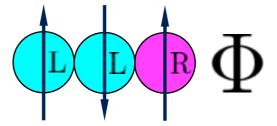


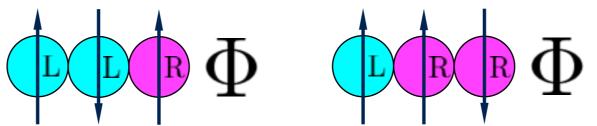


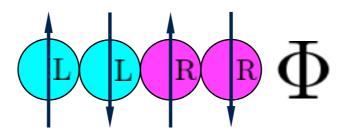




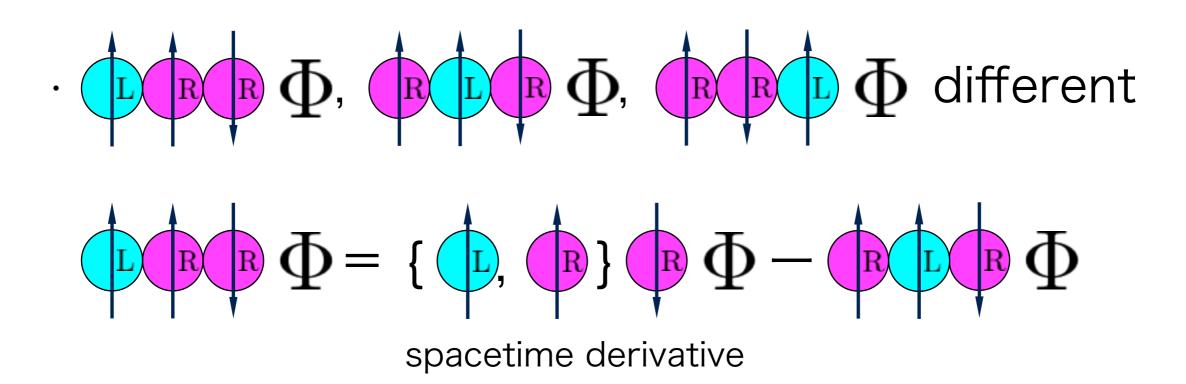








Nontrivial combinations



· Which combination reproducing Q transf. law?

Correspondences of the 3rd, 4th order

T. Kugo, RY and K. Yoshioka (2016)

	component	superspace
L R R	Λ_A	$\begin{vmatrix} -\frac{i}{4} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\nabla}^2 \nabla_{\alpha} \Phi_A \\ \nabla^2 \bar{\nabla}^{\dot{\alpha}} \Phi_A \end{pmatrix} + 2i \begin{pmatrix} \mathcal{W}_{\alpha} \\ \bar{\mathcal{W}}^{\dot{\alpha}} \end{pmatrix} \Phi_A $
L L R R	\mathcal{D}_A	$ \frac{1}{4} \left(\frac{1}{2} \bar{\nabla}_{\dot{\beta}} \nabla^2 \bar{\nabla}^{\dot{\beta}} \Phi_A + (-1)(-2i)^2 \bar{\mathcal{W}}_{\dot{\beta}} \bar{\nabla}^{\dot{\beta}} \Phi_A \right) $
		$ = \frac{1}{4} \left(\frac{1}{2} \nabla^{\beta} \bar{\nabla}^{2} \nabla_{\beta} \Phi_{A} + (-2i)^{2} \mathcal{W}^{\beta} \nabla_{\beta} \Phi_{A} \right) $

$$\mathcal{W}_{\alpha} = \frac{1}{8} [\bar{\nabla}_{\dot{\alpha}}, \{\bar{\nabla}^{\dot{\alpha}}, \nabla_{\alpha}\}]$$

These combinations reproducing the transf. laws (Kugo and Uehara '85)

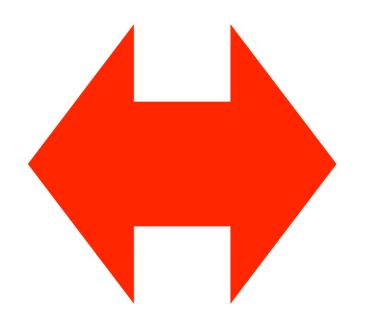
$$\begin{split} \delta_{Q}(\varepsilon)\mathcal{H}_{A} &= \frac{1}{2}\bar{\varepsilon}i\gamma_{5}(D\mathcal{Z}_{A} + \Lambda_{A}), \\ \delta_{Q}(\varepsilon)\Lambda_{A} &= (-)^{A}\frac{1}{2}(\sigma \cdot \mathcal{F}_{A} + i\gamma_{5}\mathcal{D}_{A})\varepsilon \\ &+ \frac{1}{8}\left(\gamma_{m}\varepsilon R_{ab}(Q)\gamma_{m}(\Sigma^{ab}\mathcal{Z})_{A} + \gamma_{5}\gamma_{m}\varepsilon R_{ab}(Q)\gamma_{5}\gamma_{m}(\Sigma^{ab}\mathcal{Z})_{A}\right) \end{split}$$

What we did

not restricted!

component

practical ○
symmetry △



superspace

practical \(\triangle \)
symmetry \(\triangle \)