Cyclic Leibniz Rule, Cohomology
and Non-renormalization Theorem
in Lattice Supersymmetry

M. Sakamoto (Kobe University)
in collaboration with M. Kato and H. So

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



Supersymmetry on lattice 2

It would be of great importance to reveal
non-perturbative aspects of SUSY theories.

Great success of Lattice Gauge theory suggests
that Lattice SUSY Theory, if possible, could
provide a poweriul tool to analyze non-perturvative
properties of the theories.

But « . o
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Supersymmetry on lattice 34

For more than 30 years, no one has succeeded
satisfactorily to realize supersymmetry algebra
on lattice!

In'my talk, I'would like to discuss

O What are obstacles to construct Lattice SUSY?

i How can we circumvent them?
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SUSY algebra and Leibniz rule 44

infinitesimal SUSY transtf: infinitesimal
— ey
Supersymmetry algebra: | { dg , 0o } = 5pJ
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SUSY algebra and Leibniz rule 4

infinitesimal SUSY transf: infinitesimal
— ey
Supersymmetry algebra:  {dg , dgr } = dp

op () = (0pd)h + p(0p1h) —— [eibniz rule
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SUSY algebra and Leibniz rule 4

infinitesimal SUSY transf. infinitesimal
\ translation

Supersymmetry algebra:  {dg , dgr } = dp

0p (D)) = (0pd)h + d(dpr) ~—— eibniz rule
linear realization of op on lattice
5P¢ = V¢ equivalent to a certain

difference operator
on lattice
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SUSY algebra and Leibniz rule 4

infinitesimal SUSY transf: infinitesimal
— ey
Supersymmetry algebra:  {dg , dgr } = dp

0p (D)) = (0pd)h + d(dpr) ~—— eibniz rule
linear realization of op on lattice

opp = V¢

equivalent to a certain
difference operator

V(qbzp) = (ng)f(p + Qb(vw) on lattice

SUSY algebra on lattice would require
the LLeibniz rule for: V-

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



No-Go Theorem 5

No-Go Theorem M.Kato, M.S. & H:So, JHEP.05(2008)057

There Iis no difference operator V' on lattice
satisfying the following three properties:

) discrete translation invariance
i) locality
i) Leibniz rule v (¢y) = (Vo) + o (Vp)
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No-Go Theorem 5

No-Go Theorem M.Kato, M.S. & H.So, JHEP.05(2008)057

There Is no difference operator V' on lattice
satisfying the following three properties:

) discrete translation invariance
i) locality
i) Leibniz rule v (¢y) = (Vo) + o (V)

The No-Go theorem tells us that we cannot realize
SUSY algebra with' V. on lattice!
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Our approach to construct lattice SUSY models@

Our: strategy to construct lattice SUSY models is

fullSUSY algebra ——

Leibniz rule —

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



Our approach to construct lattice SUSY models@

Our strategy to construct lattice SUSY models is

Nilpotent SUSY subalgebra

full SUSY algebra —— ) )
(0g)” = (0q’)" = {0q;0q } =0

Leibniz rule — Cyclic Leibniz rule
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Complex SUSY quantum mechanics on lattice (7

Lattice action

S = (V¢—7 VQb-l-) - (F—vF-I-) o i(X—a V)Z-I-) - Z(V)Z—v X-I—)
—AL (04 * 04 ) + 224 (X4 X+ * ¢4)
AL(F_y b d) — 22_(x—r X * b_)

' atti int
difference operator: (V@)n = > Vinm mﬁ attice points

inner. product: (¢, ¥) = fqﬁn?#n
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Complex SUSY quantum mechanics on lattice (7

Lattice action

S=(Vo_,Voi) — (F_, Fy) — i(x—, VX+) + «(VX—;x+)
—AL(Fp, 04 * 04 ) + 224 (X4 X+ * &4)
—A_(F_, 90— x_) —2A_(x—s X— * $—)

' atti int
difference operator: (Vo)n, = > Vium mﬁ attice points

inner. product: (¢, v) =) onUn,

A crucial pointis that the field productis generalized such that

field product: ontn, —— (P * ) = D anm@iﬂmj
i T |

same lattice point Fields are allowed to interact
between different lattice points!
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Discrete translation invariance & Locality 34

~—lattice point
difference operator: (Vg), = > V SRR

-1

field product: (¢ * ¥), = Y. Mupim®O1Wm
Ilm

We impose translation invariance & locality on difference
operators and! field proeducts.

) discrete translation invariance

Vim = V(n —m), M = M(I —n,m —n)

if) locality

0 W L T S RO [ L i

exponentially exponentially

The locality. condition quarantees that
the Iinteractions become. local in the continuum limit.
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N=2 nilpotent SUSYs

N=2 Nilpotent SUSYs: (5.)% = (6_)% = {6.,0_} = oJ

> -

L I 0r , P §5_
85 +\ t 2
X+ X+ X— X —
_ J
(0404 = X+ (0_X4 = 1tV
on x4 = o O B = —iVix
01 X— = —tVo_ { 0_p_ = —x_
5_|_F_ = —’LV)Z_ 5_X_ i _
\ others = 0 \ others = 0
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N=2 nilpotent SUSYs and Cyclic Leibniz rule

We require that the lattice action|is invariant under; 04 .
0+S =0
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g

N=2 nilpotent SUSYs and Cyclic Leibniz rule €@

We require that the lattice actionis invariant under. 04- .
0+S =0
{

(VX+.,0+ *d+) + (Vo+, 04 * x+) + (Vo+ ., x+ *P+) =0
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g

N=2 nilpotent SUSYs and Cyclic Leibniz rule €@

We require that the lattice actionis invariant under. 04- .
0+S =0
{

(VX+, 0+ *d+) + (VoL , 04+ * X+) + (Vod+ , X+ * 1) =0

We call this Cyclic Leibniz rule.
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Cyclic Leibniz rule vs. Leibniz rule 114

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSYSs.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,C* A)+ (VC, Ax*B) =0

3. Leibniz Rule (LR)
(VA, BxC)+ (A, VB *xC)+ (A, B¥xVC) =0
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Cyclic Leibniz rule vs. Leibniz rule 114

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSY3s.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,CxA)+ (VC, A*xB) =0

3. Leibniz Rule (LR)
(VA, BxC) + (A, VB xC) + (A, Bx=VC) :T:O
No-Go theorem

The Cyclic Leibniz Rule can be realized on lattice,
but the Leibniz Rule cannot!

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



An example of Cyclic Leibniz rule |12

An explicit example of the Cyclic Leibniz Rule::

(V¢)n = %(¢n—|—1 — ¢n—1)

(Qb “ w)’n — %(2¢n+1¢n+1 -r 2¢n—1¢n—1
¢n-|—1¢n—1 ¢n—1¢n+1)

M. Kato, M.S: & H.So, JHEP 05(2013)089
DiKadoh & N.Ukita, PTEP 2015(2015)103B04

which satisty: i)discrete trans/ation invariance,
nlocality and i) Cyclic Leibniz Rule.
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An example of Cyclic Leibniz rule 12

An explicit example of the Cyclic Leibniz Rule::

(V¢)n = %(qbn—l—l — ¢n—1)

(¢ # /‘p)n = %(2¢n—|—1¢n—|—1 -r 2¢n—1¢n—1
qbn-l—l??bn—l qbn—lwn—l—l)

M.Kato, M.S:. & H.So, JHEP 05(2013)089
D.Kadoh & N.Ukita, PTEP 2015(2015)103B04

which satisfy i)discrete trans/ation invariance,
N)locality and i) Cyclic Leibniz Rule.

!

The field product (¢ * ©¥)n is non-trivial!
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Advantages of Cyclic Leibniz rule (CLR) (13

Advantages of our lattice model with CLR are given by,

CLR no CLR

nilpotent SUSYs

Nicolai maps

non-renormalization
theorem

cohomology
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Advantages of Cyclic Leibniz rule (CLR) 134

Advantages of our lattice model with CLR are given by,

CLR no CLR

nilpotent SUSYs 04 , 0— 0= 04 + 0—

Nicolai maps

non-renormalization
theorem

cohomology
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Advantages of Cyclic Leibniz rule (CLR) 134

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1

non-renormalization
theorem

cohomology
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Advantages of Cyclic Leibniz rule (CLR)

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1
non-renormalization
theorem O X

cohomology
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Advantages of Cyclic Leibniz rule (CLR) 134

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1
non-renormalization
theorem O X
cohomology non-trivial trivial
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Advantages of Cyclic Leibniz rule (CLR) 134

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1
non-renormalization
theorem O X
cohomology non-trivial trivial
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Non-renormalization theorem in continuum @&

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model in continuum

S = /d433{ /d29d2§ &1(9)d(0) - /d20 Wi(®) +c.c.}
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Non-renormalization theorem in continuum €€

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model In continuum
chiral superfield |

S = /d433{ /d29d2§ &1(9)d(0) - /d29 Wi(D) - c.c.}
D term F term
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Non-renormalization theorem in continuum €€

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model In continuum
chiral supertield |

S = /d4az{ /d29d2§ &1(9)®(6) - /d20 Wi(D) - c.c.}
D term F term

Non-renormalization Theorem

There is no quantum correction to the F-terms
In any order of perturbation theory.
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Problem in defining chiral superfield on lattice 15

An important property is that the E term WA(®) depends
only on the chiral superfield ®(x,0), which is defined by.

D®(x,0) = (gé iea“au)q)(m,e) — 0 In continuum
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Problem in defining chiral superfield on lattice 15

An important property is that the F term W(®) depends
only on the chiral superfield ®(x,0), which is defined by

D®(x,0) = (gé ieauau)q)(m, 0) = 0 in continuum
|2

D®(0),, = (gé z’HaMV,,,)cI)(H)n — 0 on lattice

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



Problem in defining chiral superfield on lattice 15

An important property is that the F term W(®) depends
only on the chiral superfield ®(x,0), which is defined by

D®(z,0) = (gé ieaua,,,)@(:c, 0) = 0 in continuum
|2

D& (), = ( gg iOaMV”)@(H)n — 0 on lattice

However, the above definition ofi the chiral superfield s
IlI-defined because any products of chiral superfields
are not chiral/due to the breakdown of LR on lattice!

- - _ }
Doy =Dy =0 — D((I)lfI)z) # 0
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Problem in defining chiral superfield on lattice 15

An important property is that the F term W(®) depends
only on the chiral superfield ®(x,0), which is defined by

D®(z,0) = (gé iea“a”)@(m, 0) = 0 in continuum
|2

D& (), = ( gg iOaMV“)@(H)n — 0 on lattice

However, the above definition of the chiral superfieldiis
IlI-defined because any products of chiral superfields
are not chiral'due to the breakdown of LR on lattice!

- - _ }
Doy =Dy =0 — D((I)lfI)z) # 0

We cannot introduce chiral superfields on lattice!
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Q-exact form and cohomology 16

D term E term

& = /d%{ /d%d?é &1(9)d(6) - /d29 W((I))J—|— c.c.}

I I
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Q-exact form and cohomology 16¢

D term F term

S = /d%{ /d29d29‘ &1(9)®(6) - /d29 W (®) +c.c.}

I

S = 04.0_ K(pa, Fiy Xty X)) + 04 W (D4, X+ )|+ O—Wi(Pp—, x—)

\ y NN
N~ -V

cohomolagically trivial cohomologically non-trivial
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Q-exact form and cohomology 16

D term F term

S = /d4:13{ /dzedze‘ &1(6)d(0) - /d29 W((I))J—|— c.c.}

I

S—(s_|_5 K(¢:|:9F:|:9X:|:?X:|:)+5+W(¢+9X+))+5 W(¢—9X )

(G y N /

cohomologically tnwy cohomologically non-trivial

—
W has to be 6_-closed but not §_-exact!

W = ZAp(X+a¢+*¢+* Py ) #I_K'
D— 1

(S_W:iZAp(V¢+,¢+*¢+*°°°*¢+):O

P
M. Kato, M.S. & H.So, in preparation Cyclic l.eibniz rule
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Q-exact form and cohomology 16

D term F term

S = /d4w{ /d29d29_ &1(6)d(0) - /d29 W((I))J—|— c.c.}

I

S = 040K (¢pt, Fiy Xty X))+ 0L W (g, x4-) |+ 0- WD, x—)
_ Z Y

cohomolagically triviy cohomologically non-trivial

—
W has to be 6_-closed but not §_-exact!

W= Z)\p(X+a§b+*¢+*“°*¢t) # 0_K'
D e
p—1

5_W:iz}\p(Vd)_|_,qb_|_>x<¢_|_>x<---*d>_|_):O
p

—

The Cyclic Leibniz rule is crucial to.get—— Cyclic Leibniz rule
non-trivial cohomology!
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Non-renormalization theorem in our lattice model €&

D term F term

S = /d4w{ /dzedze‘ &1(6)d(0) - /d29 W((I))J—|— c.c.}

I

S = 040K (pt, Firy Xty X))+ 0L W (g, x4-) |+ 0- WD, x—)

\

-~ N

cohomolagically trivial cohomologically non-trivial

We can prove the non-renormalization theorem for our: lattice model!
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Non-renormalization theorem in our lattice model €%

D term F term

S = /d%{ /d29d29‘ &1(9)®(6) - /d29 W (®) +c.c.}

I

S =0.0_K(pt, Fuyxt,Xt)+0-W (s, xs)H0-W(d_,x—)

\§ N
-~ N

cohomolagically trivial cohomologically non-trivial

We can prove the non-renormalization theorem for our: lattice model!

Non-renormalization Theorem on lattice

There is no quantum correction to
the cohomologically non-trivial terms
In any order of perturbation theory.

M. Kato, M.S. & H.So, in preparation
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Summary «

v- We have proved the No-Go theorem that the Leibniz rule
cannot be realized/on lattice under reasonable assumptions.

v- We proposed a lattice SUSY model equipped with the cyclic
Leibniz rule as a modified Leibniz rule.

v A striking feature of; our lattice SUSY modellis that the non-
renormalization theorem holds for a finite lattice spacing.

v Our; results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.
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Remaining tasks |19

d|Extension to higher dimensions

We have to extend our analysis to higher aimensions.
In particular;, we need to find solutions te CLLR in more
than one dimension.

diinclusion ofigauge fields

l)
O Nilpotent SUSYs with CLLR <= full SUSYs

Are nilpotent SUSYs extended by CLLR enough to
guarantee full SUSYs ?
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SUSY transformations of superfields 21¢

Wi (04,0 ) = x+ 1+ 0+ Fy 4+ 0-iV@+ +- 0107V x+
Ay (01) = o+ + 04 x+

transform under SUSY' transformations 44 as

d
0+:0(04.) = Eo(gi)
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Nicolai maps 1224

Two Nicolaimaps:
EL = Vo &= o140t
- =V £ P 5

Action: § = Sg I Sy
Se = (§+,6+) = (£—,6-)

(Vo+, dL*d1) n 0
CLR
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Proof of No-Go Theorem 23

difference operator: (Va), = Y V,.m®m
field product: (¢ * 1), = Y. Myim®i1¥m
Ilm

SUSY 2016 at the University of Melbourne, July 4 - 8, 2016



Proof of No-Go Theorem 23

difference operator: (V¢),, = > Vi.m®m
field product: (¢ * 1), = Y. Myim®i1m
Ilm

) translation invariance
Vim = V(n — m)
Miyim = M(I — n,m — n)
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Proof of No-Go Theorem 23

difference operator: (V¢),, = > Vi.m®m
field product: (¢ * ©¥), = Y. Muim®O1¥m
Ilm
i) locality

V(m)
M1, m)

|m|—o0o

> 0/ (exponentially)

|1L;|m| =0

> 0/ (exponentially)

holomorphic representation
V(z) = Y V(m) 2™

i =~ on 1 —e<|z|,|lw|<1+e€
M(z,w) = > M(l,m) z'w™
lm

V(z), M(z,w) have to be holomorphic on 1 —e < |z|, |w| < 1+ &
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Proof of No-Go Theorem 23

difference operator: (V¢),, = > Vi.m®m
field product: (¢ * 1), = Y. Myim®i1m
Ilm

ii) Leibniz rule
Vg 1) = (Vo) =i+ o (Vap)
M(z, w) (V(zw) — V(z) — V(w)) =0
V(zw) — V(z) — V(w) =0
V(z) < log =z

log z is non-holomorphic on 1 — e < [z| < 1 f €.

SRR

The lL.eibniz rule cannot be realized on lattice!
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n — an—l—l — an
(V(_)qb)n = ¢n _ ¢n—1
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n = ¢n—|—1 — an
(V(_)¢)n = ¢n B ¢n—1

== V(+) (¢¢)n = ¢n—|—1¢n—|—1 — OnWUn
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n = ¢n—|—1 — an
(V(_)¢)n = ¢n B ¢n—1

— V(b)) = dnt1Pnt1 — ntn
= (¢n—|—1 — an)’l,bn_|_1 ~+ qbn(wn—l—l — ¢n)
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n = ¢n—|—1 — an
(V(_)¢)n = ¢n B ¢n—1

— Vo)), = dnt1¥ni1 — dnthn
= (¢n—|—1 — ¢n)¢n+1 ~+ ¢n(¢n—|—1 — ¢n)
= (V(—I_)qb)nwn—l—l _I_ ¢n(v(+)¢)n
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n = ¢n—|—1 — an
(V(_)¢)n = ¢n B ¢n—1

— V(b)) = dnt1Pnt1 — Onn
= (¢n—|—1 — ¢n)¢n+1 ~+ ¢n(¢n—|—1 — ¢n)

= (V<+><b)nwn# o <b?(v<+>¢)n
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Examples of difference opreators 5 4

Forward/Backward difference opreators:

(V(+)¢)n = ¢n—|—1 — an
(V(_)¢)n = ¢n B ¢n—1

— V(b)) = dnt1Pnt1 — ntn
= (¢n+1 — ¢n)¢n+1 ~+ ¢n(¢n—|—1 — "pn)

= (V<+><b)n¢n¢1 o <b?(v<+>¢)n

£ (VD) 1y, + b7 (V D),

V(&) do not satisfy the Leibniz rule!
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