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 We have proved the No-Go theorem that the Leibniz rule 
cannot be realized on lattice under reasonable assumptions.

 We proposed a lattice SUSY model equipped with the cyclic 
Leibniz rule as a modified Leibniz rule.

 A striking feature of our lattice SUSY model is that the non-
renormalization theorem holds for a finite lattice spacing.

 Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of SUSY.
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guarantee full SUSYs ?

We have to extend our analysis to higher dimensions. 
In particular, we need to find solutions to CLR in more 
than one dimension.
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