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Introduction

▶ Type IIB string theory is 10d
⇒ (Usually) say 6d are ‘compactified’
Compactification has parameters (‘moduli’)

▶ Low energy limit is supergravity
⇒ Compactification affects content of supergravity
⇒ Different compactifications ↔ different low energy theories

▶ Flux associates energy with parameters of compactification
⇒ Important for constructing metastable vacua
⇒ Flux compactification useful to get to particle physics
(But: we will not be talking about moduli stabilisation)
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Motivation: Flux landscape, computational difficulty

Many possible flux compactification choices (‘flux landscape’)
(⇒ Many low-energy theories)
And too difficult to compute in generic compactifications
Computations possible only when there are few moduli

⇒ Large literature on statistical approach, e.g. random matrix
theory (RMT)

But: difficult to verify applicability of RMT techniques, as used
precisely where explicit compactifications not available

Here we present a way to test these statistical methods

Will focus on statistical models of two important matrices:
the Hessian H and the matrix M
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Type IIB flux compactifications, I

Low-energy degrees of freedom include axio-dilaton τ and complex
structure moduli ui (‘large complex structure’ ↔ ui ≳ 1)

Integrally quantised flux wraps cycles of the compactification
⇒ Gives superpotential W (Gukov-Vafa-Witten),

W = N⃗ · Π⃗ = (f⃗ − τ h⃗) · (1, ui, 2F − ujFj , Fi)

N⃗ is the ‘flux vector’, Π⃗ is the ‘period vector’, F is cubic in ui

Kähler potential (in LCS expansion):

K = − ln
(

i
6κijk(u

i − ui)(uj − uj)(uk − uk)− 2Imκ0

)
− ln (−i(τ − τ))

F-term scalar potential:

V = eK
(
KabDaWDbW − 3|W |2

)
,

K: Kähler potential, Kab: Kähler metric, Da: Kähler covariant
derivative (DaW = ∂aW + ∂aKW ), a, b ∈ {τ, ui}
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Type IIB flux compactifications, II

Hessian matrix H,

H =

(
∂a∂bV ∂a∂bV

∂a∂bV ∂a∂bV

)
H important: must be positive definite for metastable vacuum

Matrix M,

M =

(
0 Zabe

−iϑ

Zabe
iϑ 0

)
M important: ∂aV = 0 ⇔ eig’val equation for M (eig’val 2|W |)

Zab ≡ DaDbW , ϑ ≡ arg(W )

RMT spectra for H and M proposed in literature
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Results: Numeric spectra at large complex structure
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Figure 1: In blue: Sampled numerical spectra of M (on left) and H (on
right) in explicit compactification, in units of |W | and m2

3/2. RMT

expectations shown in black. Here τ ∼ 5i and ui ∼ 10i.

▶ Same peaks seen in many compactifications, so universal
▶ Very different from expectations of random matrix theory
▶ Peaks are sharper for larger moduli (not shown)
▶ Peaks visible only for canonically normalised fields and in units

of |W | and m2
3/2 = eK/2W
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Results: Analytic spectra at large complex structure, I

Restrict to LCS 1: (ui)3 dominates W , (ui − ui)3 dominates K
⇒ Can derive analytic spectra:

Spectrum(M) =


|W | multiplicity h1,2− ,

3|W | multiplicity 1 ,

−|W | multiplicity h1,2− ,
−3|W | multiplicity 1 .

Spectrum(H) =


0 multiplicity h1,2− ,

2m2
3/2 multiplicity h1,2− + 1 ,

8m2
3/2 multiplicity 1 .

These are ‘universal’: true for any non-vanishing choice of flux, any
not-all-vanishing triple intersections κijk, and any number of
complex structure moduli ui

1See [Marsh, Sousa, JHEP 1603 (2016) 064] for extension to this full subspace
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Results: Analytic spectra at large complex structure, II
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�3 �2 �1 0 1 2 3-� -� -� � � � �

�2 0 2 4 6 8� � � � �

�3 �2 �1 0 1 2 3-� -� -� � � � � �2 0 2 4 6 8� � � � �

1

Blue: Randomly sampled numerical spectra of M and H in explicit
compactification, in units of |W | and m2

3/2 respectively

Black: Random matrix theory expectations

Brown: Analytic spectra, with schematic degeneracies
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Things to note

▶ Spectra remain highly peaked at not-so-large complex
structure in explicit compactifications

▶ Can show F 2 = 4|W |2 ⇒ no supersymmetric points here

▶ No eig’val of M at 2|W | ⇒ no critical points here

▶ Slow-roll parameters take universal large values: ϵ = 4, η|| = 8

▶ Analytic results can also be extended to F-theory:
see [Marsh, Sousa, JHEP 1603 (2016) 064]

▶ Popular continuous flux approximation breaks down quickly at
large complex structure (as a result of the dominance of one
term in the superpotential)

▶ Strong linear correlation between |W | and the supersymmetric
mass at large complex structure
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Summary

▶ Many flux compactifications, and difficult to compute
⇒ Statistical perspective, including RMT

▶ In subspace of moduli space, can attempt to verify RMT

▶ Explicit compactifications: spectra show peaks, not
well-described by RMT

▶ At LCS, can find analytic spectra of Hessian matrix H, and
matrix M that governs the critical point equation - find
highly degenerate eigenvalues - these results are ‘universal’

▶ ⇒ Statistical models not as applicable as one might have
believed (or hoped)

▶ But we can find other generic or universal predictions in some
regions of parameter space, via analytic results
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