Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

In collaboration with

Eung Jin Chun and Sanjoy Biswas

arXiv:1604.02821

July 4, 2016

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

onstraints

roton decay

ggsino Decays

Branching ratio

Di-Higgs@LH

Product

Signal

Васкgro

cut-flow

Exclusion

PLAN

- Introduction
 - ⇒ R-Parity Violating SUSY
 - ⇒ Neutrino Mass
- Constraints.
 - ⇒ Indirect Constraints
 - ⇒ Direct Constraints
- ullet Decays and Branching ratio of $\tilde{\chi}^0 \to \nu h$.
- Signal & Backgrounds.
- Conclusions.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

Constraints

roton decay

iggsino Decays

Branching ratios

Di-Higgs@LHC

Production

Signal

Background -

LUTS

cut-flow

- Provides a candidate for dark matter if R-parity conserved,
- Otherwise provides a mechanism of generating tiny neutrino masses,
- Allowing lepton number violation, the R-parity conserving W_0 and violating W_1 parts are following;

$$W_{0} = \mu H_{1}H_{2} + h_{ij}^{e}L_{i}H_{2}E_{j}^{c} + h_{ij}^{d}Q_{i}H_{2}D_{j}^{c} + h_{ij}^{u}Q_{i}H_{1}U_{j}^{c}$$

$$W_{1} = \epsilon_{i}\mu L_{i}H_{1} + \frac{1}{2}\lambda_{ijk}L_{i}L_{j}E_{k}^{c} + \lambda'_{ijk}L_{i}Q_{j}D_{k}^{c}.$$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

onstraints

roton decay

Higgsino Decays

i-Higgs@LHC

Productio

Signal

ackgroui

uts

Exclusion

Neutrino Mass

- Here we focus on Bilinear term of the superpotential,
- Under BRpV, Neutralinos-neutrino sector forms a 7×7 mass matrix.

MSSM neutralino (chargino) mass matrix		R_p terms	
	R_p terms	neutrino (charged lepton) mass matrix	_

• After seesaw diagonalization, \mathcal{M}_{ij}^D is rotated away giving rise to "tree-level" neutrino mass matrix

$$\mathcal{M}_{ij}^{\nu} = -(\mathcal{M}^D \mathcal{M}^{N-1} \mathcal{M}^{D^T})_{ij} = -\frac{M_Z^2}{F_N} \xi_i \xi_j c_\beta^2$$

• This mechanism provides mass to ν_3 while other two masses are generated radiatively at one-loop

Di-Higgs signatures from R-parity violating SUSY

Pankai Sharma

The University of **Adelaide**

Neutrino Mass

Proton Decay

- RpV induces decay of protons into pions and leptons,
- Requires both L and B number violation,
- Can be avoided by switching off either of them,
- Or impose Baryon parity instead of R-parity on superpotential,
- If both L and B are present, the bounds are on product of L and B couplings

[E.J. Chun, J. S. Lee]

Coupling	Constraint
λ″112	6× 10 ⁻¹⁹ x
λ″113	$3 \times 10^{-15} w$
λ″123	$7 \times 10^{-15} w$
λ"212	$2 \times 10^{-13} y$
λ″312	$3 \times 10^{-14} z$
λ"213	$1 \times 10^{-10} x'$
λ"223	$5 \times 10^{-10} x'$
λ"313	$2 \times 10^{-11} x'$
λ"323	$1 \times 10^{-10} x'$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

ntroduction

Neutrino Mass

onstraints

Proton decay

. . . .

Branching ratios

i-Higgs@LHC

roduction

Signal

ackgroun

uts

cut-flow

LHC Bounds

arxiv:1405.5086

- · The LHC bounds can be evaded due to the almost degenerate chargino and neutralino mass
- · The bounds also get weaker due the suppression of the direct leptonic decay mode of the neutralino

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of **Adelaide**

LHC Rounds

R-parity violating Higgsino decays

- The LSP, $\tilde{\chi}_1^0$, is not stable,
- We consider the decay of LSP for the following decay processes:

$$\tilde{\chi}_1^0 \to Z \nu_\ell, \qquad \tilde{\chi}_1^0 \to l W, \qquad \tilde{\chi}_1^0 \to h \nu_\ell$$

- We assume $\mu < M_1, M_2$ leading to the Higgsino LSP,
 - \Rightarrow The lightest states $\tilde{\chi}_{1,2}^0$ and $\tilde{\chi}_{1}^{\pm}$ are Higgsino-like;
 - \Rightarrow With $M_1 < M_2$, $\tilde{\chi}_3^0$ is bino-like while $\tilde{\chi}_2^{\pm}$ and $\tilde{\chi}_4^0$ are wino-like;
 - \Rightarrow For $M_2 < M_1$, $\tilde{\chi}_4^0$ is bino-like while $\tilde{\chi}_2^{\pm}$ and $\tilde{\chi}_3^0$ are wino-like.
- We fix $M_1=1.0$ TeV, $\tan\beta=10$ and vary both μ and M_2 ,
- Masses of inos are determined from M_1 , M_2 and μ .

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Higgsino Decays

Branching ratios of $\tilde{\chi}_0$ decays

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduc

Neutrino Mass

onstraints

oton decay

ggsino Decays

Branching ratios

....

Di-Higgs@LH

Signal

Background

cut-flow

xclusion

Branching ratios of $\tilde{\chi}_0 \to \nu h$ decays in $\mu - M_2$ plane

- Spectrum and decay rates are obtained by using SARAH and SPheno,
- Decays $ilde{\chi}_0 o
 u h$ is significant in large part of parameter space,
- BR is larger at small $\tan \beta$ and large μ .

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

1400011110 111000

roton decay

ggsino Decavs

Branching ratios

i-Higgs@LHC

Production

Signal

Background

uts ut-flow

xclusion

Di-Higgs Signal at the LHC

- $\textbf{ 0} \ \ \text{Neutralino pair production:} \ \ pp \to \tilde{\chi}_1^0 \tilde{\chi}_i^0,$
- ② Chargino pair production : $pp \to \tilde{\chi}_1^+ \tilde{\chi}_1^-$,
- **3** Associated neutralino and chargino production : $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_i^0$,

- ullet The RpV decays of $ilde{\chi}_1^\pm$ $(\ell h,
 u W, \ell Z)$ are suppressed due to tiny RpV couplings.
- $\tilde{\chi}_1^\pm$ mainly decays via RPC couplings i.e., $\tilde{\chi}_1^\pm \to \tilde{\chi}_1^0 W^{\pm *}$ almost 90% of time \Rightarrow Ends up with a pair of LSP's decaying to $\tilde{\chi}_1^0 \to \nu h$ via RpV interactions.
- ullet Leads to di-Higgs $+\normals$ final state.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introducti

Neutrino Mass

onstraints

Proton decay LHC Bounds

. . . . D.

Branching ratio

Di-Higgs@LHC

Production

Signal

Backgrou

Cuts

Exclusion

Di-Higgs decays

Channel	BR(%)
bbbb	36
bbWW	24.7
bb au au	7.3
WWWW	4.3
$bb\gamma\gamma$	0.27
$bbZZ(\to e^+e^-\mu^+\mu^-)$	0.015
$\gamma\gamma\gamma\gamma$	0.00052

Table: Branching ratios for different di-Higgs channels.

- ullet Among all channels, we consider $\gamma\gamma bar{b}$ decays of di-Higgs in this work,
- Thus the final signal at LHC is $\gamma \gamma b \bar{b} E_T + X$.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Signal

Cuts

Exclusion

Conclusions

Lonclusions

QCD background processes for the $\gamma\gamma b\bar{b}$ channel are

- \bullet $b\bar{b}\gamma\gamma$,
- $b\bar{b}h(\to \gamma\gamma)$,
- $t\bar{t}h(\to\gamma\gamma)$,
- $\gamma \gamma h(\rightarrow b\bar{b})$

Multijet QCD backgrounds resulting from jets faking either as b-jets or photons

- $jj\gamma\gamma$ with two fake b jets;
- $b\bar{b}j\gamma$ with j faking photon;
- ullet $bar{b}jj$ with two fake photons;
- $\bullet \ jjj\gamma$ with two fake b jets and one fake photon;
- ullet jjjj with two fake b-jets and two photons;
- $jjh(\to\gamma\gamma)$ with either two fake b jets or two fake photons;
- $j\gamma h(\to \gamma\gamma)$ with one fake photon.

Cut1: Acceptance cuts

ϵ_{γ}	ϵ_b	$P_{c \to b}$	$P_{\tau \to b}$	$P_{j \to b}$	$P_{j \to \gamma}$
90%	70%	1/8	1/26	1/440	1/1000

- Accept events with two photons, 2 b-jets and missing energy,
- $\ \ \, \ \ \,$ Photons must have transverse momentum $p_T^\gamma>10$ GeV and rapidity $|\eta^\ell|<2.5,$
- **3** All b-jets must have following p_T and η requirements:

$$p_T^b > 20 \text{ GeV}, |\eta^b| < 2.5$$

All pairs of jets, photons and photon plus jets should be well separated with each other by:

$$\Delta R_{jj,jb,bb,\gamma j,\gamma b,\gamma \gamma} \geq 0.4$$
 where $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduct

Neutrino Mass

onstraints

Proton decay LHC Bounds

liggsino Decays

Branching ratios

Di-Higgs@LH

Signal

ackgrou

Cuts

cut-flow

Cut2: p_T distribution of photons

• To get rid of soft photons coming from the decay of mesons or radiations, we further put the following p_T cuts on the two photons:

$$p_T^{\gamma_1} > 30 \text{GeV}$$
 and $p_T^{\gamma_2} > 20 \text{GeV}$.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduc

Neutrino Mass

Lonstraints

Proton decay

HC Bounds

iggsino Decays

Branching ratio

DI-Higgs@LHC

Production Signal

gnal

ute

Cuts

cut-flow Exclusion

Cut3: Invariant mass distribution of $\gamma\gamma$ and $b\bar{b}$ pair

- Look for diphoton invariant mass distribution,
- The mass resolution is very high in this mode,
- ullet Backgrounds containing Higgs also peaks at m_H

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

Constraints

Proton decay .HC Bounds

iggsino Decays

ranching ratios

i-Higgs@LHC

Productior Signal

gnal

Cuts

cut-flow

Cut3: Invariant mass distribution of $\gamma\gamma$ and $b\bar{b}$ pair

- Study $b\bar{b}$ pair invariant mass distribution,
- The mass resolution is poor in this mode,
- Needs a large window at around m_H

- Look for diphoton invariant mass distribution,
- The mass resolution is very high in this mode,
- ullet Backgrounds containing Higgs also peaks at m_H

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

ntroduction

Neutrino Mass

Constraints

Proton decay
HC Bounds

Higgsino Decays

i-Higgs@LHC

Production Signal

Signal Backgroun

Cuts

Exclusion

Cut3: Invariant mass distribution of $\gamma\gamma$ and $b\bar{b}$ pair

- Study $b\bar{b}$ pair invariant mass distribution,
- The mass resolution is poor in this mode,
- ullet Needs a large window at around m_H

- Look for diphoton invariant mass distribution,
- The mass resolution is very high in this mode,
- ullet Backgrounds containing Higgs also peaks at m_H

CUT3 : $|M_{\gamma\gamma} - M_h| < 2.5 \text{ GeV}, \quad |M_{b\bar{b}} - M_h| < 15 \text{ GeV}$

 $|M_{bar{b}} - M_h| < 15 \text{ GeV}$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

ntroduction

Neutrino Mass

onstraints

Proton decay
HC Bounds

Higgsino Decays

i-Higgs@LHC

Production

Signal

Backgrou

Cuts

Exclusion

Cut4: Missing transverse energy distribution

- \bullet Look for ${\not \! E}_T$ distribution,
- We impose following cut:

 $\not\!\! E_{\rm T} > 100 \; {\rm GeV}, \label{eq:etaT}$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

onstraints

Proton decay LHC Bounds

iggsino Decays

ranching ratios

-Higgs@LHC

Productior Signal

gnal ackgrour

Cuts

cut-flow Exclusion

Cut4: Missing transverse energy distribution

- We also study for E_T distribution for various χ^+ masses,
- Peaks shift to higher values for large χ⁺ masses,

- ullet Look for ${E_{
 m T}}$ distribution,
- The ₱_T distribution for signal peaks at large value,
- We impose following cut:

$$E_{\mathrm{T}} > 100~\mathrm{GeV},$$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Proton decay

Higgsino Decays

Branching ratios

i-Higgs@LHC

Signal

Cuts

cut-flow

Exclusion

Cut5: ΔR separation of $\gamma\gamma$ and $b\bar{b}$ pair

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduc

Neutrino Mass

Constraints

roton decay

ggsino Decays

ranching ratios

i-Higgs@LHC

Production Signal

Cuts

cut-flow

Cut5: ΔR separation of $\gamma\gamma$ and $b\bar{b}$ pair

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduc

Neutrino Mass

Constraints

Proton decay

LHC Bounds

iggsino Decays

i-Higgs@LHC

Productio Signal

Cuts

cut-flow

Cut5: ΔR separation of $\gamma\gamma$ and $b\bar{b}$ pair

• We impose following cut on the ΔR :

 $\Delta R_{b\bar{b}} < 2.0,$ $\Delta R_{\gamma\gamma} < 2.0.$

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduct

Neutrino Mass

onstraints

roton decay

HC Bounds

liggsino Decays

i-Higgs@LHC

Production

Signal

Cuts

cut-flow Exclusion

Cut-flow of the signal and backgrounds

μ (GeV)	Cut 1 (fb)	Cut 2 (fb)	Cut 3 (fb)	Cut 4 (fb)	Cut 5 (fb)
300	9.6×10^{-2}	9.0×10^{-2}	5.3×10^{-2}	3.8×10^{-2}	1.9×10^{-2}
400	3.5×10^{-2}	3.3×10^{-2}	2.0×10^{-2}	1.6×10^{-2}	1.1×10^{-2}
500	1.5×10 ⁻²	1.4×10^{-2}	8.5×10^{-3}	7.6×10^{-3}	5.9×10^{-3}
600	7.1×10^{-3}	6.6×10^{-3}	4.0×10^{-3}	3.7×10^{-3}	3.2×10^{-3}

Table: Effects of the cut flow on the signal events.

	Cut 1 (fb)	Cut 2 (fb)	Cut 3 (fb)	Cut 4 (fb)	Cut 5 (fb)
$b\bar{b}\gamma\gamma$	4.3×10 ¹	1.3×10^{1}	4.5×10^{-2}	2.1×10^{-4}	1.0×10^{-4}
$Hbar{b}$	9.5×10^{-3}	9.0×10^{-3}	1.5×10^{-3}	1.0×10^{-6}	4.8×10^{-7}
Hjj	2.9×10^{-5}	2.8×10^{-5}	5.5×10^{-6}	1.1×10^{-8}	1.0×10^{-8}
$t \bar t \gamma \gamma$	1.2×10^{0}	6.1×10^{-1}	2.2×10^{-3}	2.5×10^{-4}	4.7×10^{-5}
t ar t H	1.1×10^{-1}	1.0×10^{-1}	2.0×10^{-2}	1.9×10^{-3}	5.0×10^{-4}
$bar{b}jj$	4.2×10 ¹	$3.5{\times}10^1$	1.5×10^{-1}	1.6×10^{-3}	4.0×10^{-4}
$jj\gamma\gamma$	9.3×10^{-2}	2.6×10^{-2}	8.9×10^{-5}	_	_
jjjj	1.8×10^{-2}	1.5×10^{-2}	5.6×10^{-5}	_	-
Σ (bckg.)					1.1×10^{-3}

Table: Effects of the cut flow on the background events.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

ntroduction

leutrino Mass

onstraints

roton decay

ggsino Decays

ranching ratios

i-niggs@LnC

ignal

ackgrour

cut-flow

Exclusion

Reach in parameter space

μ (GeV)	Sig. (1 ab^{-1})	Sig. (2 ab^{-1})	Sig. (3 ab^{-1})
300	10.3	14.6	17.2
400	6.6	9.3	11.3
500	4.1	5.7	7.1
600	2.4	4.2	5.7

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

ntroduction

roton decay

Higgsino Decays

i_Higgs@I HC

Production

ignal Background

uts ut-flow

Exclusion

C---I....

Figure : $\mu = 300$ GeV, $\mathcal{L} = 1ab^{-1}$ (left) and 500 GeV, $\mathcal{L} = 3ab^{-1}$ (right).

Conclusions

- The LHC has discovered a 125 GeV Higgs-like resonance,
- Measurement of its properties are in good agreement with the SM,
- Di-Higgs cross section is next important measurement in this step,
- Di-Higgs can also be used as a tool to study new physics with enhanced cross section/event kinematics,
- Resonant $b\gamma\gamma E_{\rm T}$ can be a clean signature to probe BSM physics like RpV SUSY.

Di-Higgs signatures from R-parity violating SUSY

Pankaj Sharma

The University of Adelaide

Introduction

Neutrino Mass

onstraints

Proton decay

HC Bounds

liggsino Decays

sranching ratios

Di-Higgs@LHC

Productio

Signal

ackgroun

ut-flow

Exclusion