Non-Universal MSSM and Effective Flavour Theories

Oscar Vives

SUSY 2016 Melbourne, 4-9/07/2016

D. Das, M.L. López-Ibáñez, M.J. Perez and O.V., arXiv:1607.xxxx

Standard Model

All Observed *Flavour Changing Neutral Currents* can be accomodated in Yukawa couplings:

$$\mathcal{L}_{Y} = H \ \bar{Q}_{i} \ Y^{d}_{ij} \ d_{j} + H^{*} \ \bar{Q}_{i} \ Y^{u}_{ij} \ u_{j}$$

Only masses and CKM mixings, $V_{\rm CKM}$, observable...

But... \Rightarrow a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

Standard Model

All Observed *Flavour Changing Neutral Currents* can be accomodated in Yukawa couplings:

$$\mathcal{L}_{Y} = H \ \bar{Q}_{i} \ Y^{d}_{ij} \ d_{j} + H^{*} \ \bar{Q}_{i} \ Y^{u}_{ij} \ u_{j}$$

Only masses and CKM mixings, $V_{\rm CKM}$, observable...

But... \Rightarrow a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

New flavour observables needed !!

Standard Model

All Observed *Flavour Changing Neutral Currents* can be accomodated in Yukawa couplings:

$$\mathcal{L}_Y = H \ \bar{Q}_i \ Y^d_{ij} \ d_j \ + \ H^* \ \bar{Q}_i \ Y^u_{ij} \ u_j$$

Only masses and CKM mixings, $V_{\rm CKM}$, observable...

But... \Rightarrow a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

New flavour observables needed !!

New Physics

New flavour structures generically present \Rightarrow measure of new observables provides new information on flavour origin...

SUSY Flavour (and CP) problems

Soft masses fixed by $m_{3/2}$. $O(m_{3/2})$ elements in soft matrices. \Rightarrow Severe FCNC problem !!!

CP broken, we can expect all complex paramaters have O(1)phases. \Rightarrow Too large EDMs !!! SUSY Flavour (and CP) problems

Soft masses fixed by $m_{3/2}$. $O(m_{3/2})$ elements in soft matrices. \Rightarrow Severe FCNC problem !!!

CP broken, we can expect all complex paramaters have O(1)phases. \Rightarrow Too large EDMs !!!

(SM Flavour and CP)

Fermion masses fixed by M_W . If O(1) elements in Yukawa matrices and O(1) phases

Impossible reproduce masses, mixings and CP observables !!!

Flavour symmetries in SUSY

- Very different elements in Yukawa matrices: $y_t \simeq 1, \; y_u \simeq 10^{-5}$
- Expect couplings in a "fundamental" theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements.

Flavour symmetries in SUSY

- Very different elements in Yukawa matrices: $y_t \simeq 1, y_u \simeq 10^{-5}$
- Expect couplings in a "fundamental" theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements. Example: U(1)_{fl}

• Flavour symmetry explains masses and mixings in Yukawas.

• Yukawa couplings forbidden by symmetry, generated only after Spontaneous Symmetry Breaking. • Unbroken symmetry applies both to fermion and sfermions.

• Diagonal soft masses allowed by symmetry.

• Nonuniversality in soft terms proportional to symm. breaking.

• Flavour symmetry explains masses and mixings in Yukawas.

• Yukawa couplings forbidden by symmetry, generated only after Spontaneous Symmetry Breaking. • Unbroken symmetry applies both to fermion and sfermions.

• Diagonal soft masses allowed by symmetry.

• Nonuniversality in soft terms proportional to symm. breaking.

We can <u>relate</u> the structure in <u>Yukawa matrices</u> to the nonuniversality in <u>Soft Breaking masses</u> !!!

• Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

• Yukawa couplings in W_{eff} after integration of heavy states.

 \bullet Yukawa couplings in $W_{\rm eff}$ after integration of heavy states.

 \bullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

 \bullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

 \bullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

 \bullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

• Similar with corrections to kinetic terms and soft masses.

• Similar with corrections to kinetic terms and soft masses.

• Similar with corrections to kinetic terms and soft masses.

$$\left(\left(m_{\tilde{\psi}}^2 \right)_{ij} = n \ m_0^2 \times \left(\frac{\theta_i \theta_j^{\dagger}}{M^2} \right) \right)$$

10/16

Abelian Flavour symmetry

• "Simple" Abelian model with charges

$$\begin{array}{lll} Q_1 \sim {\bf 3}, & Q_2 \sim {\bf 2}, & Q_3 \sim {\bf 0}, & d_1^c \sim {\bf 1}, & d_2^c \sim {\bf 0}, & d_3^c \sim {\bf 0}, \\ u_1^c \sim {\bf 3}, & u_2^c \sim {\bf 2}, & u_3^c \sim {\bf 0}, & \phi_1 \sim -{\bf 1} & \text{with} & \frac{\langle \phi_1 \rangle}{M} = \lambda_c \end{array}$$

• Yukawa couplings proportional to: $Y_{ij} = (\langle \phi_1 \rangle / M)^{(q_1^i + q_1^i)}$ $M^d = \langle H_1 \rangle \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{pmatrix}, \quad M^u = \langle H_2 \rangle \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}.$

Abelian Flavour symmetry

• "Simple" Abelian model with charges

$$\begin{array}{lll} Q_1 \sim {\bf 3}, & Q_2 \sim {\bf 2}, & Q_3 \sim {\bf 0}, & d_1^c \sim {\bf 1}, & d_2^c \sim {\bf 0}, & d_3^c \sim {\bf 0}, \\ u_1^c \sim {\bf 3}, & u_2^c \sim {\bf 2}, & u_3^c \sim {\bf 0}, & \phi_1 \sim -{\bf 1} & \text{with} & \frac{\langle \phi_1 \rangle}{M} = \lambda_c \end{array}$$

- Yukawa couplings proportional to: $Y_{ij} = (\langle \phi_1 \rangle / M)^{(q_1^i + q_1^i)}$ $M^d = \langle H_1 \rangle \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{pmatrix}, \quad M^u = \langle H_2 \rangle \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}.$
- Trilinear couplings::

$$Y_d^A = \begin{pmatrix} 9\lambda^4 & 7\lambda^3 & 7\lambda^3 \\ 7\lambda^3 & 5\lambda^2 & 5\lambda^2 \\ 3\lambda & 1 & 1 \end{pmatrix}, \quad Y_u^A = \begin{pmatrix} 13\lambda^6 & 11\lambda^5 & 7\lambda^3 \\ 11\lambda^5 & 9\lambda^4 & 5\lambda^2 \\ 7\lambda^3 & 5\lambda^2 & 1 \end{pmatrix}$$

Abelian Flavour symmetry

• "Simple" Abelian model with charges

$$\begin{array}{lll} Q_1 \sim {\bf 3}, & Q_2 \sim {\bf 2}, & Q_3 \sim {\bf 0}, & d_1^c \sim {\bf 1}, & d_2^c \sim {\bf 0}, & d_3^c \sim {\bf 0}, \\ u_1^c \sim {\bf 3}, & u_2^c \sim {\bf 2}, & u_3^c \sim {\bf 0}, & \phi_1 \sim -{\bf 1} & \text{with} & \frac{\langle \phi_1 \rangle}{M} = \lambda_c \end{array}$$

- Yukawa couplings proportional to: $Y_{ij} = (\langle \phi_1 \rangle / M)^{(q_1^i + q_1^i)}$ $M^d = \langle H_1 \rangle \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{pmatrix}, \quad M^u = \langle H_2 \rangle \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}.$
- Trilinear couplings::

$$Y_d^A = \begin{pmatrix} 9\lambda^4 & 7\lambda^3 & 7\lambda^3 \\ 7\lambda^3 & 5\lambda^2 & 5\lambda^2 \\ 3\lambda & 1 & 1 \end{pmatrix}, \quad Y_u^A = \begin{pmatrix} 13\lambda^6 & 11\lambda^5 & 7\lambda^3 \\ 11\lambda^5 & 9\lambda^4 & 5\lambda^2 \\ 7\lambda^3 & 5\lambda^2 & 1 \end{pmatrix}$$

In <u>SCKM</u> basis trilinear couplings not diagonalized, preserve the structure of <u>Yukawas</u> in <u>flavour basis</u>!!!

- Soft mass coupling $\phi_i^{\dagger} \phi_i$ invariant under all symmetries \Rightarrow flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ij}^2 = m_0^2 \; (\langle \phi_1 \rangle / M)^{|q_1^i q_1^i|}$

- Soft mass coupling φ[†]_iφ_i invariant under all symmetries
 ⇒ flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ij}^2 = m_0^2 \; (\langle \phi_1 \rangle / M)^{|q_1^i q_1^i|}$

$$M_{\tilde{Q}}^2 \sim M_{\tilde{U}_R}^2 \sim M_{\tilde{D}_R}^2 \sim m_0^2 \left(egin{array}{ccc} 1 & 6\,\lambda^3 & 6\,\lambda^3 \ 6\,\lambda^3 & 1 & \lambda^2 \ 6\,\lambda^3 & \lambda^2 & 1 \end{array}
ight)$$

- Soft mass coupling φ[†]_iφ_i invariant under all symmetries
 ⇒ flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ij}^2 = m_0^2 (\langle \phi_1 \rangle / M)^{|q_1^i q_1^i|}$

$$M_{\tilde{Q}}^2 \sim M_{\tilde{U}_R}^2 \sim M_{\tilde{D}_R}^2 \sim m_0^2 \left(egin{array}{ccc} 1 & 6\,\lambda^3 & 6\,\lambda^3 \ 6\,\lambda^3 & 1 & \lambda^2 \ 6\,\lambda^3 & \lambda^2 & 1 \end{array}
ight)$$

• After canonical normalization:

$$M^2_{ ilde{Q}} \sim M^2_{ ilde{U}_R} \sim M^2_{ ilde{D}_R} \sim m^2_0 \left(egin{array}{ccc} 1 & 4\,\lambda^3 & 4\,\lambda^3 \ 4\,\lambda^3 & 1 & rac{3}{2}\lambda^4 \ 4\,\lambda^3 & rac{3}{2}\lambda^4 & 1 \end{array}
ight)$$

(Flavour Observables)

• $K - \overline{K}$ and $B - \overline{B}$ mixing most sensitive observables

Flavour Observables

• $K - \overline{K}$ and $B - \overline{B}$ mixing most sensitive observables

Red area excuded by $K - \overline{K}$, gray rectangle LHC direct searches, black lines average squark masses.

Conclusions

• Flavour symmetries solve the CP and flavour problems both in New Physics (SUSY) and in the SM.

• New flavour structures will provide valuable information on the origin of flavour

- In SUSY, non-universality always present in soft-breaking terms.
- Flavour structures of soft masses and trilinears remember structures in flavour basis.

• Large reach of flavour observables in realistic flavour models, beyond LHC.

• Sizeable contribution in Kaon and B sector naturally expected.

Backup 1

Mediator Superpotential

$$\begin{split} \mathcal{W} \supset g \sum_{q_i} \left(\psi_{q_i} \bar{\chi}_{-q_i+1} \phi + \chi_{q_i} \bar{\chi}_{-q_i+1} \phi + \chi_{q_i-1} \bar{\chi}_{-q_i} \bar{\phi} + \bar{\chi}_{-q_i} \psi^c_{r,q_i} H \right) \\ &+ M \sum_{q_i} \chi_{q_i} \bar{\chi}_{-q_i} + M \phi \bar{\phi} + \dots \end{split}$$

Backup 1

Mediator Superpotential

$$\begin{split} \mathcal{W} \supset g \sum_{q_i} \left(\psi_{q_i} \bar{\chi}_{-q_i+1} \phi + \chi_{q_i} \bar{\chi}_{-q_i+1} \phi + \chi_{q_i-1} \bar{\chi}_{-q_i} \bar{\phi} + \bar{\chi}_{-q_i} \psi^c_{r,q_i} H \right) \\ &+ M \sum_{q_i} \chi_{q_i} \bar{\chi}_{-q_i} + M \phi \bar{\phi} + \dots \end{split}$$

Diagrams in components

Backup 2

 $\Delta q = 1 \, \operatorname{mixing}$

