

Run: 280673 Event: 1273922482 2015-09-29 15:32:53 CEST

New Physics Searches using Jet Based Resonances with the ATLAS detector

Meghan Frate

University of California, Irvine

Why dijets?

- Collide quarks
- Jets have highest production rate
- New physics preferentially decays to jets
- High momentum transfer
- Can search for wide variety of signals
 - Quantum Black Holes (QBH)
 - Excited quark (q*/b*)
 - Additional gauge bosons (W')
 - Dark matter mediator (Z')

ATLAS Detector Run Conditions & Sensitivity

Model	95% CL Exclusion limit		
	Run 1 Observed	Observed 13 TeV	Expected 13 TeV
Quantum black holes, ADD (BLACKMAX generator)	$5.6 { m TeV}$	$8.1 { m TeV}$	8.1 TeV
Quantum black holes, ADD (QBH generator)	$5.7 { m TeV}$	$8.3 { m TeV}$	8.3 TeV
Quantum black holes, RS (QBH generator)	_	$5.3 { m TeV}$	$5.1 { m TeV}$
Excited quark	4.1 TeV	5.2 TeV	4.9 TeV
W'	2.5 TeV	$2.6 { m TeV}$	$2.6 { m TeV}$

Background: Dijet Analyses

- Forms a smoothly falling m_{ii} distribution
- Look for new physics that would produce a resonance

Dijet analyses

- High mass dijets
- High mass di-b-jets
- Low mass dijets (TLA)
- Dijet+ISR
- Low mass di-b-jets

High Mass Dijet Selection & Background

Selections:

- □ m_{jj} > 1.1 TeV
- Leading jet pT > 440 GeV
- subleading jet pT > 50 GeV
- $|y^*| = |y_1 y_2| / 2 < 0.6$
- Background: 3 parameter

$$f(z) = p_1 (1-z)^{p_2} z^{p_3 + p_4 (\ln x) + p_5 (\ln x)^2}$$

$$z = m_{jj} / \sqrt{s}$$

Background uncertainties:

- Choice of fit function
- Fit function parameters

High Mass Dijet Results

- Top: data with fit function
- Middle: significance of data - fit
- Bottom: relative difference between MC and data

High Mass Di-B-Jet Results

Low Mass Searches

- Traditional limited by high jet triggers
- □ Three searches:
 - Trigger-object Level Analysis (TLA)
 - Events partially saved
 - Dedicated jet calibration
 - □ Leading jet pT > 185 GeV
 - □ Subleading jet pT > 85 GeV
 - Dijet+ISR
 - \square Light resonance boosted by γ
 - \square $\gamma > 130$ GeV, jets > 25 GeV
 - Low mass di-b-jet
 - Trigger on a 2 b-jet event
 - Leading jet pT > 230 GeV
 - Subleading jet pT > 90 GeV

Low Mass Results: TLA & Dijet+ISR

Low Mass: Di-B-Jet

Z': Dark Matter Mediator

Leptophobic Z': combined limits with high mass dijet, low mass dijet, & dijet+ISR

Generic Gaussian Signal Shapes

Low and high mass di-b-jet searches

Conclusion

- No signs of new physics
- Set combined and individual limits on Z'
 Individual limits on q*, b*, QBH, W' models
- Set individual limits on Gaussian signal shape
- Papers:
 - High mass dijet: Physics Letters B 754 (2016) 302-322
 - High mass di-b-jet: Physics Letters B 759 (2016) 229-246
 - Low mass dijet: ATLAS-CONF-2016-030
 - Low mass di-b-jet: ATLAS-CONF-2016-031
 - Dijet+ISR: ATLAS-CONF-2016-029
- Currently collected data
- Expect ~10 fb⁻¹ Run II data out by ICHEP
- □ Expect ~25 fb⁻¹ full 2016

Backup

High Mass Dijet Limits

Model	95% CL Exclusion limit		
	Run 1 Observed	Observed 13 TeV	Expected 13 TeV
Quantum black holes, ADD (BLACKMAX generator)	$5.6 { m TeV}$	8.1 TeV	8.1 TeV
Quantum black holes, ADD (QBH generator)	$5.7 { m TeV}$	$8.3 { m TeV}$	$8.3 { m TeV}$
Quantum black holes, RS (QBH generator)	_	$5.3 { m ~TeV}$	$5.1 { m TeV}$
Excited quark	4.1 TeV	5.2 TeV	4.9 TeV
W'	$2.5 { m TeV}$	$2.6 { m TeV}$	2.6 TeV
$\frac{1}{2} = \frac{10}{10} = \frac{10}{4} = \frac{10}{10} = \frac{10}{1$	QBH (BM) = OBH (QBH) = OBH (QBH) = OBH (RS) = OBH (Deserved 95% CL upper limit Expected 95% CL upper limit 8% and 95% bands	

High Mass Dijet Limits

Z' limits from scan of g_q and $M_{Z'}$ (M_{DM} = 10 GeV, g_{DM} = 0.1)

Limits on generic Gaussian of various widths

High Mass Di-b-jet Limits

Low Mass Dijet Limits

Low Mass Di-b-jet Limits

Dijet + ISR Limits

Trigger jet calibration

High Mass Limitations: Di-b-jet

Limited in high mass range due to low btagging efficiencies

Low mass b tagger efficiency

