SUSY 2016; MELBOURNE

SEARCHES FOR BSM PHYSICS IN FINAL STATES WITH LEPTONS AND JETS AT CMS

On behalf of the CMS collaboration

OUTLINE

- Searches for first and second generation leptoquarks at 8TeV
 - eejj and μμjj final states
 - evjj and μvjj final states
- Second generation leptoquark production at 13 TeV
 - µµjj final state
- Search for heavy right-handed (W,neutrinos) and 3rd generation leptoquarks using τ_h
- Summary

LEPTOQUARKS AND LEPTONS

final states with leptons (e, μ) are clean final; significantly reduce mutijet QCD production

In case of a resonance decaying to $\ell+q$; invariant mass resolution will benefit from extremely good resolution of leptons at CMS

LEPTOQUARKS AT THE LHC

leptoquarks are pair produced at the LHC

leptoquark decay

 $LQ \rightarrow \ell q \text{ or } LQ \rightarrow \nu q$

three different experimental signatures

MET+jets

ℓℓjj fully reconstructed final state

EVENT SELECTION AND BKG ESTIMATION

l l J J

- Opposite sign μ (e); $p_T > 50$ GeV && $|\eta| < 2.1$ ($p_T > 45$ GeV && $|\eta| < 2.5$)
- Leading (subleading) jet is required to have $p_T > 125$ (45) GeV; $|\eta| < 2.4$
- Baseline $M_{\ell\ell} > 50$ GeV; $S_T > 300$ GeV

for each LQ mass, select cuts that maximize $s/\sqrt{(s+b)}$

EXO-16-007

EVENT SELECTION AND BKG ESTIMATION

lνJJ

- Exactly one μ (e); $p_T > 45$ GeV && $|\eta| < 2.1$ ($p_T > 45$ GeV && $|\eta| < 2.5$)
- Leading (subleading) jet is required to have $p_T > 125$ (45) GeV; $|\eta| < 2.4$
- MET > 50 GeV; M_T > 50 GeV; $\Delta \phi$ (MET, j1) > 0.5; $\Delta \phi$ (MET, ℓ) > 0.8;
- S_T > 300 GeV

for each LQ mass, select cuts that maximize $s/\sqrt{(s+b)}$

PhysRevD.93.032004

muon channels

PhysRevD.93.032004

electron channels

no excess of events

broad excess of events

$M_{LQ} = 650$ GeV electron channel

bkg like broad excess of events?

LEPTOQUARK LIMITS

PhysRevD.93.032004

first generation

800

1000

1200

$\beta=1$

second generation

excluded below ~1TeV

M_{LO} [GeV]

600

excluded below ~1.07 TeV

400

450

500

550

600

650

 1089.1 ± 7.3

 603.1 ± 4.0

 350.6 ± 2.3

 206.2 ± 1.4

 126.72 ± 0.83

13 TEV RESULTS AND LIMITS

EXO-16-007

 14.84 ± 2.58

 5.78 ± 1.49

 4.41 ± 1.33

 1.91 ± 0.78

 1.353 ± 0.677

 3.99 ± 0.58

 2.14 ± 0.42

 $0.91^{\,+0.30}_{\,-0.27}$ $0.51^{\,+0.22}_{\,-0.18}$

 $0.31_{\,-0.18}^{\,-0.18}$ $0.33_{\,-0.17}^{\,+0.21}$

exclude leptoquarks up to 1165 GeV

no excess observed

 17.55 ± 0.45

 10.43 ± 0.34

 6.86 ± 0.27

 5.0 ± 0.24

 3.2 ± 0.18

exceeded Run1 sensitivity

Cristián Peña, Caltech

 $36.4 \pm 2.7 \pm 1.8$

 $\begin{array}{c} 18.4 \pm 1.6 \pm 1.4 \\ 12.17 \, ^{+1.39}_{-1.38} \pm 0.93 \end{array}$

 $7.43 \pm 0.84 \pm 0.70$

 $4.88^{\,+0.73}_{\,-0.72}\pm0.44$

Search for heavy neutrinos and third generation LQ using τ_h

Cristián Peña, Caltech

HEAVY NEUTRINOS AND THIRD GENERATION LC USING $au_{_{h}}$

EXO-16-016

Left-right symmetry extension of the SM

Additional SU(2)_R \longrightarrow W_R[±], Z' and 3 heavy neutrinos N_ℓ(e, μ , τ)

first and second generation has been searched for in the eejj and µµjj

One unexplored possible final state is

$$W_R \rightarrow \tau + N_{\tau} \rightarrow \tau + \tau q q'$$

third generation LQ can produce similar final state: ττbb

HEAVY NEUTRINOS AND THIRD GENERATION LQ USING $au_{_L}$

• Two τ lepton; $p_T > 70$ GeV and $|\eta| < 2.1$; $\Delta R(\tau_1, \tau_2) > 0.4$

EXO-16-016

- Hadronically decaying taus only (τ_h)
- Two jets with $p_T > 50$ GeV and $|\eta| < 2.4$; $\Delta R(\tau_i, j) > 0.4$
- MET > 50 GeV; $M_{\tau\tau}$ > 100 GeV (reduce Z background)

A,B,C → control regions
D → signal region

Isolation transfers factor

$$N_{\text{QCD}}^{D} = N_{\text{QCD}}^{C} \cdot (N_{\text{QCD}}^{B} / N_{\text{QCD}}^{A})$$

BACKGROUND PREDICTION

 $N_{\text{QCD}}^{D} = N_{\text{QCD}}^{C} \cdot (N_{\text{QCD}}^{B} / N_{\text{QCD}}^{A})$

 $N_{j} < 2$ cross-check bkg estimation in control region

method works on partial mass variable (m) and S_T

EXO-16-016

exclude W_R up to

~2.4 TeV

observation consistent with estimations

Limits on W_R

observation consistent with estimations

Limits on LQ

exclude LQ up to ~750 GeV

SUMMARY

- Presented first and second generation leptoquarks results
 - electron and muon channels in 8TeV (1TeV exclusion)
 - muon channel update with 13 TeV data (better exclusion limits; 1.1 TeV)
- Presented search for heavy right-handed W_R and heavy neutrinos using hadronically decaying au
 - no excess is observed, results are interpreted as limits on W_R mass (2.4 TeV limit)
 - alternative third generation leptoquark interpretation. (760 GeV limit)

BACKUPS

Cristián Peña, Caltech

BACKGROUND PREDICTION

cross-check isolation extrapolation in $N_j >= 2$

isolation extrapolation works on partial mass variable (m) and S_T

$$m(\tau_{h,1},\tau_{h,2},j,j,E_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{(E_{\tau_1} + E_{\tau_2} + E_{j_1} + E_{j_2} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - (\overrightarrow{p_{\tau_1}} + \overrightarrow{p_{\tau_2}} + \overrightarrow{p_{j_1}} + \overrightarrow{p_{j_2}} + \overrightarrow{E_{\mathrm{T}}})^2}.$$

Expected to be large for the heavy W_R case

Cristián Peña, Caltech