

search for

fermionic top partners at CMS

GEFÖRDERT VOM

SUSY2016 2016 / 07 / 03-08

Heiner Tholen for the CMS Collaboration

vector-like quarks

- quarks! colored, charged, spin 1/2
- vector-like: same coupling to lh and rh currents => mass terms without gauge inv. violation
- not constrained through Higgs discovery (unlike chiral 4th-gen quarks)
- simplest colored extra-fermions allowed by data
- common in SM-extensions:
 - e.g. little Higgs, composite Higgs, warped/extra dimensions
 - solve the Hierarchy problem
 - stabilize the Higgs mass

Singlets

$$\mathbf{1}_{2/3} = T$$

$$\mathbf{1}_{-1/3} = B$$

Doublets

$$\frac{\mathbf{2}_{1/6}}{B} = \begin{pmatrix} T \\ B \end{pmatrix}$$

$$\mathbf{2}_{7/6} = \begin{pmatrix} X \\ T \end{pmatrix}$$

$$\mathbf{2}_{-5/6} = \begin{pmatrix} B \\ Y \end{pmatrix}$$

Triplets

$$\mathbf{3}_{2/3} = \begin{pmatrix} A \\ T \\ B \end{pmatrix}$$

$$\mathbf{3}_{-1/3} = \begin{pmatrix} I \\ B \\ V \end{pmatrix}$$

Notation:

Isospin_{Hypercharge}

$$\mathbf{3}_{-1/3} = \begin{pmatrix} T \\ B \\ V \end{pmatrix} \qquad \begin{array}{c} T \to +2/3 \\ B \to -1/3 \\ X \to +5/3 \\ Y \to -4/3 \end{array}$$

vector-like quarks

(VLQ)

- quarks! colored, charged, spin 1/2
- vector-like: same coupling to lh and rh currents
 - => mass terms without gauge inv. violation
- not constrained through Higgs discovery (unlike chiral 4th-gen quarks)
- simplest colored extra-fermions allowed by data
- common in SM-extensions:
 - e.g. little Higgs, composite Higgs, warped/extra dimensions
 - solve the Hierarchy problem
 - stabilize the Higgs mass

- heavy vector like quarks (> 700 GeV)
 - => heavily boosted decay products
- jet tagging
 - V (W, Z, H) tags:
 - CA8 or AK8 jets, $p_T > 200 \text{ GeV}$
 - e.g. 50 < groomed mass < 150 GeV
 - H tag: use b tags on soft drop subjets
 - N subjettiness: T_2/T_1
 - t tags:
 - CAI5 or AK8 jets, p_T > 200 GeV
 - e.g. 110 < groomed mass < 210 GeV
 - one soft drop subjets b tagged
 - N subjettiness: T_3 / T_2
- lepton isolation
 - p_T dependent lepton isolation (scales iso cone with pt)

$$R = \frac{10}{\min(\max(p_{\rm T}, 50), 200)}$$

analysis techniques

jet grooming: pruning / soft drop

overview of CMS analyses

- pair production
 - searches for $B_{1/3}$, $X_{5/3}$, $T_{2/3}$
 - 8 TeV and 13 TeV
- single production
 - new at 13 TeV
 - preferred in little/composite Higgs
 - searches for T_{2/3} to tH

overview of CMS analyses

[Phys. Rev. D 93 (2016) 112009] (8 TeV)

[Phys. Rev. Lett. 112 (2014) 171801] (8 TeV)

[CMS-PAS-B2G-15-006] (13 TeV)

- pair production
 - searches for $B_{1/3}$, $X_{5/3}$, $T_{2/3}$
 - 8 TeV and 13 TeV

[CMS-PAS-B2G-16-002] (13 TeV)

- single production
 - new at 13 TeV
 - preferred in little/composite Higgs
 - searches for T_{2/3} to tH

[CMS-PAS-B2G-15-008]

[Phys. Rev. D 93 (2016) 012003] (8 TeV)

[CMS-PAS-B2G-16-005]

pair production

B pair production (8 TeV)[Phys. Rev. D 93 (2016) 112009] BB production (8 TeV)

- combination of 8 TeV results
- B decay modes: tW, bZ, bH
- final states with >2, 2, 1 lepton; all-had;

tagging

- lepton+jets:
 - V tag (W, Z, H)
 - S_T: scalar sum of pt of all jets and the main lepton
- all-hadronic:
 - focus on B => bH decay
 - tighter H tag incl. $\tau_2 / \tau_1 < 0.5$
 - H_T: scalar sum of pt of all jets

BB production (8 TeV)

[Phys. Rev. D 93 (2016) 112009]

bayesian 95% CL limits

still most stringent results to date

[CMS-PAS-B2G-15-006] pair production (13 TeV)

- two channels
 - same sign di-leptons
 - lepton + jets
- first vector-like quark result at 13 TeV
- techniques / event selection
 - p_T dependent lepton isolation
 - Z-boson veto
 - scalar sum of pt of jets and leptons (H_T^{lep}) > 900 GeV

backgrounds:

(ss di-lep) hadrons, conversions, etc. (using tight-loose ratios)

prompt same sign leptons (from MC)

electron charge mis-ID (#opp. sign * fake-rate)

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X _{5/3}	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1 1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

[CMS-PAS-B2G-15-006] pair production (13 TeV)

- two channels
 - same sign di-leptons
 - lepton + jets
- first vector-like quark result at 13 TeV
- techniques / event selection
 - p_T dependent lepton isolation
 - Z-boson veto
 - scalar sum of pt of jets and leptons $(H_T^{lep}) > 900 \text{ GeV}$

[CMS-PAS-B2G-16-002] pair production (13 TeV)

- lepton + jets
- b tag categories: $0, 1, 2, \geq 3$
- W tag categories: $0, \ge 1$
- techniques / event selection
 - p_T dependent lepton isolation
 - W tag (incl. $\tau_2 / \tau_1 < 0.6$)

=> excluding $T_{2/3}$ up to 750 GeV (Run I: up to 690 GeV)

single T production

single T production

searches

- single vector-like T quark, charge 2/3e
- exclusive decay to tH
- bW / tZ coupling is needed in production
- 2.3fb⁻¹ at 13 TeV (data taken in 2015)

techniques

- H / t jet tagging
- jet grooming with soft drop / pruning

tagging

- large multijet background=> tight tagger working points
- H tag (incl. $\tau_2 / \tau_1 < 0.6$)
- t tag (incl. $\tau_3 / \tau_2 < 0.54$)

coupling exclusion

$$c_{L(R)}^{qV} = \sqrt{\frac{\sigma^{obs.}}{\sigma^{theo.}}}$$

[CMS-PAS-B2G-16-005] all hadronic

technique

- H tag (Ak8 jets, $p_T > 200 \text{ GeV}$):
 - 90 < soft drop mass < 160 GeV
 - both soft drop subjets b tagged
- t from lepton, E_T^{miss}, jets:
 - lepton $p_T > 50 \text{ GeV}$
 - lepton iso relative to closest jet
- event hypothesis:
 - many (t, H) combinations possible

$$\chi^2 = \left(\frac{\Delta M_{\rm H}}{\sigma_{M_{\rm H}}}\right)^2 + \left(\frac{\Delta M_{\rm t}}{\sigma_{M_{\rm t}}}\right)^2 + \left(\frac{\Delta (dR({\rm H},t))}{\sigma_{dR({\rm H},t)}}\right)^2$$

bkg. shape from signal depleted region

N subjet b tags

	•		500
رعصار		L	2
waluj	0	sideband region	
	>=		signal region

[CMS-PAS-B2G-15-008] leptonic top decay

technique

- H tag (Ak8 jets, $p_T > 200 \text{ GeV}$):
 - 90 < soft drop mass < 160 GeV
 - both soft drop subjets b tagged
- t from lepton, E_T^{miss}, jets:
 - lepton $p_T > 50 \text{ GeV}$
 - lepton iso relative to closest jet
- event hypothesis:
 - many (t, H) combinations possible

$$\chi^2 = \left(\frac{\Delta M_{\rm H}}{\sigma_{M_{\rm H}}}\right)^2 + \left(\frac{\Delta M_{\rm t}}{\sigma_{M_{\rm t}}}\right)^2 + \left(\frac{\Delta (dR({\rm H},t))}{\sigma_{dR({\rm H},t)}}\right)^2$$

- bkg. shape from signal depleted region
- coupling exclusion

$$c_{L(R)}^{qV} = \sqrt{\frac{\sigma^{obs.}}{\sigma^{theo.}}}$$

[CMS-PAS-B2G-15-008] leptonic top decay

summary

summary

- vector-like quarks are a useful search tool, comprising many BSM models
- I3 TeV begin to superseed the 8 TeV results already
- first single production results are public
- many results are coming in the near future and the full 2016 dataset will have an even larger discovery reach
 stay tuned!

backup

channels / backgrounds

backgrounds

- lepton+jets:
 - 77% top quark pair estimated from control regions, e.g. inverting the lepton isolation
 - other backgrounds from MC
- same sign leptons:
 - as illustrated for $X_{5/3}$ $X_{5/3}$ analysis
- opposite sign leptons:
 - Z+jets
 - top quark pair / di-boson
 - estimated with ABCD method
 - b tag discriminator
 - N_{jets}
- multileptons:
 - Z+jets and WW+jets from control regions
 - low E_T^{miss} and low H_T
 - all other from simulation
- all hadronic:
 - QCD multijet production from control region
 - "anti-H-tagged"
 - pruned mass < 80 GeV</p>

	Number of leptons	Discriminating variable	Best decay mode
${\text{Lepton} + \text{jets}}$	1	$S_{ m T}$	tW
Same-sign dilepton	2	$S_{ m T}$	tW
Opposite-sign dilepton	2	$M(\mathscr{C}\mathscr{C}b)$	bZ
Multilepton	≥3	$S_{ m T}$	tW, bZ
All-hadronic	0	$H_{ m T}$	bH

systematic uncertainties

TABLE VII. Nuisance parameters applied to the statistical combination. They are listed separately for each individual channel, and the \checkmark symbol is used if they are applied to that given channel. If a nuisance parameter is taken as correlated between channels, the \checkmark symbol is shown. In some cases, several systematic uncertainties are combined into a single nuisance parameter (for example, in the case of combined lepton categories); in such instances, the • symbol is used to denote the presence of a systematic uncertainty combined with others in a distinct nuisance parameter. The \sim symbol has been used to denote systematic uncertainties that have negligible effects on the analysis results. The "Combined systematic uncertainty" entry represents a contribution composed of other sources listed in the table, applied as a single nuisance parameter during limit extraction.

	Lepton + jets	OS dilepton	SS dilepton	Multilepton	All hadronic
Jet energy scale					
Jet energy resolution	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	~	$\overline{\checkmark}$
V-tag SF	$\overline{\checkmark}$				$\overline{\checkmark}$
$t\bar{t}$ matching scale	\checkmark				•
$t\bar{t}$ renormalization/factorization scales	\checkmark				•
b-tagging SF	\checkmark	•		\checkmark	•
Light-jet-tagging SF		•			•
Integrated luminosity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lepton reconstruction	\checkmark	\checkmark	\checkmark	•	
$t\bar{t}$ cross section	\checkmark			\checkmark	
QCD normalization	\checkmark				
Trigger efficiency	\checkmark	\checkmark	\checkmark	•	\checkmark
Pileup uncertainty	~	\checkmark	\checkmark	~	\checkmark
Background component from data		\checkmark	\checkmark	•	
PDF uncertainty	~	~	\checkmark	•	\checkmark
$E_{\rm T}$ resolution				\checkmark	
Initial-state radiation				\checkmark	
Combined systematic uncertainty	✓		✓	✓	✓

backgrounds

relaxed charge consistency

- electron charge from standard track, GSF track, track-tocalorimeter position
- for p_T>100 GeV, the third criterion is dropped in order to keep a high selection efficiency

backgrounds

- NonPrompt:
 - prompt rates $p_{mu} = 0.940 \pm 0.001$; $p_e = 0.873 \pm 0.001$
 - fake rates $f_{mu} = 0.298 \pm 0.003$; $f_e = 0.371 \pm 0.002$
 - more on tight-loose method:[10.1007 / JHEP06 (2011) 077]
- ChargeMisID:
 - apply full selection, but with opposite sign leptons
 - weight events by mis-id probability (as function of eta)
 - binned in pT<100 GeV and pT>100 GeV

	hadrons, con	versions, etc.	
prompt same sign leptons (from MC)			electron charge mis-ID (#opp. sign * fake-rate)

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X _{5/3}	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

systematic uncertainties

- systematic uncertainties
 - two channels
 - same sign di-leptons
 - lepton + jets
 - 30% additional on charge mis-ID
 - 50% additional for fake leptons

Source	Value	Application
Electron ID	1%	per electron
Electron ISO	1%	per electron
Electron Trigger	3%	per event
Muon ID	1%	per muon
Muon ISO	1%	per muon
Muon Trigger	3%	per event
Electron-Muon Trigger	3%	per event

Background Process	JES	Theory
ttW	4%	20%
ttZ	3%	12%
ttH	8%	14%
WZ	5%	12%
ZZ	4%	12%
W+W+	4%	50%
WWZ	4%	50%
WZZ	6%	50%
ZZZ	6%	50%
tttt	6%	50%

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X _{5/3}	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

systematic uncertainties

- systematic uncertainties
 - two channels
 - same sign di-leptons
 - lepton + jets

Source	Uncertainty	Signal	Background
Normalization only			
Luminosity	4.6%	Yes	All
Trigger Efficiency	3%	Yes	All
Lepton efficiencies	1%	Yes	All
"Top bkg": tt, Single top, tt+W/Z cross-sections	5.5%	No	
"EWK bkg": W+jets, Diboson cross sections	5%	No	
"Top bkg" modeling, based on the CR	11-19%	No	
"EWK bkg" modeling, based on the CR	24%	No	
QCD multijet cross-sections	50%	No	
Shape and Normalization			
Jet Energy Scale	$\pm \sigma(p_T, \eta)$	Yes	All
Jet Energy Resolution	$\pm\sigma$	Yes	All
b tagging	$\pm\sigma$	Yes	All
W tagging: mass resolution	$\pm\sigma$	Yes	All
W tagging: mass scale	$\pm\sigma$	Yes	All
W tagging: τ_2/τ_1	$\pm\sigma$	Yes	All
Top $p_{\rm T}$	Δ (weighted,nominal)	No	t t
Pileup	$\sigma_{ m minbias} \pm 5\%$	Yes	All
Parton Shower Scale	$\pm\sigma$	No	tī, single top
Shape only			
PDF	$\pm \sigma$	Yes	All
Renormalization Scale	$\pm\sigma$	Yes	All
Factorization Scale	$\pm\sigma$	Yes	All

$T_{2/3}$ pair production

systematic uncertainties

systematic uncertainties

Source	Uncertainty	Signal	Background
Normalization only			
Luminosity	2.7%	Yes	All
Trigger Efficiency	5%	Yes	All
Lepton efficiencies	1%	Yes	All
TOP background modeling	1-14%	No	TOP group
EWK background modeling	2-23%	No	EWK group
Shape and Normalization			
Jet Energy Scale	$\pm \sigma(p_T, \eta)$	Yes $(0 - 5\%)$	All (0 – 20%)
Jet Energy Resolution	$\pm\sigma$	Yes $(0 - 3\%)$	All $(0 - 40\%)$
b tagging	$\pm\sigma$	Yes $(0 - 20\%)$	All $(0 - 40\%)$
W tagging: mass resolution	$\pm\sigma$	Yes $(0 - 2\%)$	All $(0 - 22\%)$
W tagging: mass scale	$\pm\sigma$	Yes $(0 - 1\%)$	All $(0 - 3\%)$
W tagging: τ_2/τ_1	$\pm\sigma$	Yes $(0 - 2\%)$	All $(0 - 2\%)$
Pileup	$\sigma_{ m minbias} \pm 5\%$	Yes $(0 - 3\%)$	All $(0 - 8\%)$
Jet reweighting	$\pm \sigma(p_T)$	Yes (7 – 10%)	All (0 – 18%)
Top $p_{\rm T}$	Δ (weighted,nominal)	No	t t (17 – 19%)
PDF	$\pm\sigma$	No	All (2 – 15%)
Renorm./Fact. Energy Scale	envelope($\times 2, \times 0.5$)	No	All (17 – 43%)
Parton Shower Scale	envelope($\times 2, \times 0.5$)	No	t t , single top (0 – 70%)
Shape only			
PDF	$\pm \sigma$	Yes	None
Renorm./Fact. Energy Scale	envelope($\times 2, \times 0.5$)	Yes	None

T_{2/3} single production

systematic uncertainties

systematic uncertainties

- all hadronic final state (largest uncertainties)
 - t tagging:
 - I5% (jet p⊤ 400 550 GeV)
 - 30% (jet p_T >550 GeV)
 - statistical uncertainty from ABCD sideband
 - H tag:
 - N subjettiness: 12.5%
 - jet mass correction: 10%
 - subjet b tags

-	
Process	Events
Estimated multijets (using data)	10.8 ± 5.5
Estimated tt+jets (using MC)	24.3 ± 8.1
Estimated W+jets (using MC)	0.6 ± 0.6
Estimated total background	35.7 ± 5.6
Observed events	30

variables for ABCD method:

- 0/1 t tag
- 0/I anti-H tag(H tag w/ 0 subjet b tags)

final state with one lepton

	electron channel			muon channel		
	T(0700)	T(1200)	T(1700)	T(0700)	T(1200)	T(1700)
forward jet	15.0	15.0	15.0	15.0	15.0	15.0
b tag heavy flav.	7.8	7.6	8.7	6.0	7.5	8.5
JES	8.9	4.9	4.9	3.0	5.7	4.6
lepton iso. and trg.	5.0	5.0	5.0	5.0	5.0	5.0