search for # fermionic top partners at CMS GEFÖRDERT VOM SUSY2016 2016 / 07 / 03-08 Heiner Tholen for the CMS Collaboration ## vector-like quarks - quarks! colored, charged, spin 1/2 - vector-like: same coupling to lh and rh currents => mass terms without gauge inv. violation - not constrained through Higgs discovery (unlike chiral 4th-gen quarks) - simplest colored extra-fermions allowed by data - common in SM-extensions: - e.g. little Higgs, composite Higgs, warped/extra dimensions - solve the Hierarchy problem - stabilize the Higgs mass #### Singlets $$\mathbf{1}_{2/3} = T$$ $$\mathbf{1}_{-1/3} = B$$ #### **Doublets** $$\frac{\mathbf{2}_{1/6}}{B} = \begin{pmatrix} T \\ B \end{pmatrix}$$ $$\mathbf{2}_{7/6} = \begin{pmatrix} X \\ T \end{pmatrix}$$ $$\mathbf{2}_{-5/6} = \begin{pmatrix} B \\ Y \end{pmatrix}$$ #### **Triplets** $$\mathbf{3}_{2/3} = \begin{pmatrix} A \\ T \\ B \end{pmatrix}$$ $$\mathbf{3}_{-1/3} = \begin{pmatrix} I \\ B \\ V \end{pmatrix}$$ #### Notation: #### Isospin_{Hypercharge} $$\mathbf{3}_{-1/3} = \begin{pmatrix} T \\ B \\ V \end{pmatrix} \qquad \begin{array}{c} T \to +2/3 \\ B \to -1/3 \\ X \to +5/3 \\ Y \to -4/3 \end{array}$$ ## vector-like quarks (VLQ) - quarks! colored, charged, spin 1/2 - vector-like: same coupling to lh and rh currents - => mass terms without gauge inv. violation - not constrained through Higgs discovery (unlike chiral 4th-gen quarks) - simplest colored extra-fermions allowed by data - common in SM-extensions: - e.g. little Higgs, composite Higgs, warped/extra dimensions - solve the Hierarchy problem - stabilize the Higgs mass - heavy vector like quarks (> 700 GeV) - => heavily boosted decay products - jet tagging - V (W, Z, H) tags: - CA8 or AK8 jets, $p_T > 200 \text{ GeV}$ - e.g. 50 < groomed mass < 150 GeV - H tag: use b tags on soft drop subjets - N subjettiness: T_2/T_1 - t tags: - CAI5 or AK8 jets, p_T > 200 GeV - e.g. 110 < groomed mass < 210 GeV - one soft drop subjets b tagged - N subjettiness: T_3 / T_2 - lepton isolation - p_T dependent lepton isolation (scales iso cone with pt) $$R = \frac{10}{\min(\max(p_{\rm T}, 50), 200)}$$ #### analysis techniques jet grooming: pruning / soft drop ### overview of CMS analyses - pair production - searches for $B_{1/3}$, $X_{5/3}$, $T_{2/3}$ - 8 TeV and 13 TeV - single production - new at 13 TeV - preferred in little/composite Higgs - searches for T_{2/3} to tH #### overview of CMS analyses [Phys. Rev. D 93 (2016) 112009] (8 TeV) [Phys. Rev. Lett. 112 (2014) 171801] (8 TeV) [CMS-PAS-B2G-15-006] (13 TeV) - pair production - searches for $B_{1/3}$, $X_{5/3}$, $T_{2/3}$ - 8 TeV and 13 TeV [CMS-PAS-B2G-16-002] (13 TeV) - single production - new at 13 TeV - preferred in little/composite Higgs - searches for T_{2/3} to tH [CMS-PAS-B2G-15-008] [Phys. Rev. D 93 (2016) 012003] (8 TeV) [CMS-PAS-B2G-16-005] ## pair production ## B pair production (8 TeV)[Phys. Rev. D 93 (2016) 112009] BB production (8 TeV) - combination of 8 TeV results - B decay modes: tW, bZ, bH - final states with >2, 2, 1 lepton; all-had; #### tagging - lepton+jets: - V tag (W, Z, H) - S_T: scalar sum of pt of all jets and the main lepton - all-hadronic: - focus on B => bH decay - tighter H tag incl. $\tau_2 / \tau_1 < 0.5$ - H_T: scalar sum of pt of all jets ### BB production (8 TeV) [Phys. Rev. D 93 (2016) 112009] bayesian 95% CL limits still most stringent results to date [CMS-PAS-B2G-15-006] pair production (13 TeV) - two channels - same sign di-leptons - lepton + jets - first vector-like quark result at 13 TeV - techniques / event selection - p_T dependent lepton isolation - Z-boson veto - scalar sum of pt of jets and leptons (H_T^{lep}) > 900 GeV #### backgrounds: (ss di-lep) hadrons, conversions, etc. (using tight-loose ratios) prompt same sign leptons (from MC) electron charge mis-ID (#opp. sign * fake-rate) | Channel | PSS MC | NonPrompt | ChargeMisID | Total Background | 800 GeV X _{5/3} | Observed | |---------------|-----------------|-----------------|-----------------|------------------|--------------------------|----------| | Di-electron | 2.41 ± 0.29 | 2.16 ± 1.91 | 1.90 ± 0.60 | 6.47 ± 2.02 | 4.38 | 7 | | Electron-Muon | 2.98 ± 0.36 | 5.20 ± 3.21 | 0.54 ± 0.18 | 8.72 ± 3.24 | 9.14 | 3 | | Di-muon | 0.70 ± 0.12 | 2.09 ± 1.69 | 0.00 ± 0.00 | 2.80 ± 1.70 | 3.55 | 1 1 | | All | 6.09 ± 0.67 | 9.45 ± 5.49 | 2.44 ± 0.76 | 17.98 ± 5.58 | 17.06 | 11 | [CMS-PAS-B2G-15-006] pair production (13 TeV) - two channels - same sign di-leptons - lepton + jets - first vector-like quark result at 13 TeV - techniques / event selection - p_T dependent lepton isolation - Z-boson veto - scalar sum of pt of jets and leptons $(H_T^{lep}) > 900 \text{ GeV}$ [CMS-PAS-B2G-16-002] pair production (13 TeV) - lepton + jets - b tag categories: $0, 1, 2, \geq 3$ - W tag categories: $0, \ge 1$ - techniques / event selection - p_T dependent lepton isolation - W tag (incl. $\tau_2 / \tau_1 < 0.6$) => excluding $T_{2/3}$ up to 750 GeV (Run I: up to 690 GeV) ## single T production #### single T production #### searches - single vector-like T quark, charge 2/3e - exclusive decay to tH - bW / tZ coupling is needed in production - 2.3fb⁻¹ at 13 TeV (data taken in 2015) #### techniques - H / t jet tagging - jet grooming with soft drop / pruning #### tagging - large multijet background=> tight tagger working points - H tag (incl. $\tau_2 / \tau_1 < 0.6$) - t tag (incl. $\tau_3 / \tau_2 < 0.54$) #### coupling exclusion $$c_{L(R)}^{qV} = \sqrt{\frac{\sigma^{obs.}}{\sigma^{theo.}}}$$ #### [CMS-PAS-B2G-16-005] all hadronic #### technique - H tag (Ak8 jets, $p_T > 200 \text{ GeV}$): - 90 < soft drop mass < 160 GeV - both soft drop subjets b tagged - t from lepton, E_T^{miss}, jets: - lepton $p_T > 50 \text{ GeV}$ - lepton iso relative to closest jet - event hypothesis: - many (t, H) combinations possible $$\chi^2 = \left(\frac{\Delta M_{\rm H}}{\sigma_{M_{\rm H}}}\right)^2 + \left(\frac{\Delta M_{\rm t}}{\sigma_{M_{\rm t}}}\right)^2 + \left(\frac{\Delta (dR({\rm H},t))}{\sigma_{dR({\rm H},t)}}\right)^2$$ bkg. shape from signal depleted region N subjet b tags | | • | | 500 | |-------|----|--------------------|------------------| | رعصار | | L | 2 | | waluj | 0 | sideband
region | | | | >= | | signal
region | #### [CMS-PAS-B2G-15-008] leptonic top decay #### technique - H tag (Ak8 jets, $p_T > 200 \text{ GeV}$): - 90 < soft drop mass < 160 GeV - both soft drop subjets b tagged - t from lepton, E_T^{miss}, jets: - lepton $p_T > 50 \text{ GeV}$ - lepton iso relative to closest jet - event hypothesis: - many (t, H) combinations possible $$\chi^2 = \left(\frac{\Delta M_{\rm H}}{\sigma_{M_{\rm H}}}\right)^2 + \left(\frac{\Delta M_{\rm t}}{\sigma_{M_{\rm t}}}\right)^2 + \left(\frac{\Delta (dR({\rm H},t))}{\sigma_{dR({\rm H},t)}}\right)^2$$ - bkg. shape from signal depleted region - coupling exclusion $$c_{L(R)}^{qV} = \sqrt{\frac{\sigma^{obs.}}{\sigma^{theo.}}}$$ #### [CMS-PAS-B2G-15-008] leptonic top decay ## summary #### summary - vector-like quarks are a useful search tool, comprising many BSM models - I3 TeV begin to superseed the 8 TeV results already - first single production results are public - many results are coming in the near future and the full 2016 dataset will have an even larger discovery reach stay tuned! ## backup channels / backgrounds #### backgrounds - lepton+jets: - 77% top quark pair estimated from control regions, e.g. inverting the lepton isolation - other backgrounds from MC - same sign leptons: - as illustrated for $X_{5/3}$ $X_{5/3}$ analysis - opposite sign leptons: - Z+jets - top quark pair / di-boson - estimated with ABCD method - b tag discriminator - N_{jets} - multileptons: - Z+jets and WW+jets from control regions - low E_T^{miss} and low H_T - all other from simulation - all hadronic: - QCD multijet production from control region - "anti-H-tagged" - pruned mass < 80 GeV</p> | | Number of leptons | Discriminating variable | Best decay
mode | |---------------------------------|-------------------|------------------------------|--------------------| | ${\text{Lepton} + \text{jets}}$ | 1 | $S_{ m T}$ | tW | | Same-sign dilepton | 2 | $S_{ m T}$ | tW | | Opposite-sign dilepton | 2 | $M(\mathscr{C}\mathscr{C}b)$ | bZ | | Multilepton | ≥3 | $S_{ m T}$ | tW, bZ | | All-hadronic | 0 | $H_{ m T}$ | bH | #### systematic uncertainties TABLE VII. Nuisance parameters applied to the statistical combination. They are listed separately for each individual channel, and the \checkmark symbol is used if they are applied to that given channel. If a nuisance parameter is taken as correlated between channels, the \checkmark symbol is shown. In some cases, several systematic uncertainties are combined into a single nuisance parameter (for example, in the case of combined lepton categories); in such instances, the • symbol is used to denote the presence of a systematic uncertainty combined with others in a distinct nuisance parameter. The \sim symbol has been used to denote systematic uncertainties that have negligible effects on the analysis results. The "Combined systematic uncertainty" entry represents a contribution composed of other sources listed in the table, applied as a single nuisance parameter during limit extraction. | | Lepton + jets | OS dilepton | SS dilepton | Multilepton | All hadronic | |---|-------------------------|-------------------------|-------------------------|--------------|-------------------------| | Jet energy scale | | | | | | | Jet energy resolution | $\overline{\checkmark}$ | $\overline{\checkmark}$ | $\overline{\checkmark}$ | ~ | $\overline{\checkmark}$ | | V-tag SF | $\overline{\checkmark}$ | | | | $\overline{\checkmark}$ | | $t\bar{t}$ matching scale | \checkmark | | | | • | | $t\bar{t}$ renormalization/factorization scales | \checkmark | | | | • | | b-tagging SF | \checkmark | • | | \checkmark | • | | Light-jet-tagging SF | | • | | | • | | Integrated luminosity | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | | Lepton reconstruction | \checkmark | \checkmark | \checkmark | • | | | $t\bar{t}$ cross section | \checkmark | | | \checkmark | | | QCD normalization | \checkmark | | | | | | Trigger efficiency | \checkmark | \checkmark | \checkmark | • | \checkmark | | Pileup uncertainty | ~ | \checkmark | \checkmark | ~ | \checkmark | | Background component from data | | \checkmark | \checkmark | • | | | PDF uncertainty | ~ | ~ | \checkmark | • | \checkmark | | $E_{\rm T}$ resolution | | | | \checkmark | | | Initial-state radiation | | | | \checkmark | | | Combined systematic uncertainty | ✓ | | ✓ | ✓ | ✓ | backgrounds #### relaxed charge consistency - electron charge from standard track, GSF track, track-tocalorimeter position - for p_T>100 GeV, the third criterion is dropped in order to keep a high selection efficiency #### backgrounds - NonPrompt: - prompt rates $p_{mu} = 0.940 \pm 0.001$; $p_e = 0.873 \pm 0.001$ - fake rates $f_{mu} = 0.298 \pm 0.003$; $f_e = 0.371 \pm 0.002$ - more on tight-loose method:[10.1007 / JHEP06 (2011) 077] - ChargeMisID: - apply full selection, but with opposite sign leptons - weight events by mis-id probability (as function of eta) - binned in pT<100 GeV and pT>100 GeV | | hadrons, con | versions, etc. | | |------------------------------------|--------------|----------------|---| | prompt same sign leptons (from MC) | | | electron charge mis-ID (#opp. sign * fake-rate) | | Channel | PSS MC | NonPrompt | ChargeMisID | Total Background | 800 GeV X _{5/3} | Observed | |---------------|-----------------|-----------------|-----------------|------------------|--------------------------|----------| | Di-electron | 2.41 ± 0.29 | 2.16 ± 1.91 | 1.90 ± 0.60 | 6.47 ± 2.02 | 4.38 | 7 | | Electron-Muon | 2.98 ± 0.36 | 5.20 ± 3.21 | 0.54 ± 0.18 | 8.72 ± 3.24 | 9.14 | 3 | | Di-muon | 0.70 ± 0.12 | 2.09 ± 1.69 | 0.00 ± 0.00 | 2.80 ± 1.70 | 3.55 | 1 | | All | 6.09 ± 0.67 | 9.45 ± 5.49 | 2.44 ± 0.76 | 17.98 ± 5.58 | 17.06 | 11 | systematic uncertainties - systematic uncertainties - two channels - same sign di-leptons - lepton + jets - 30% additional on charge mis-ID - 50% additional for fake leptons | Source | Value | Application | |-----------------------|-------|--------------| | Electron ID | 1% | per electron | | Electron ISO | 1% | per electron | | Electron Trigger | 3% | per event | | Muon ID | 1% | per muon | | Muon ISO | 1% | per muon | | Muon Trigger | 3% | per event | | Electron-Muon Trigger | 3% | per event | | Background Process | JES | Theory | |--------------------|-----|--------| | ttW | 4% | 20% | | ttZ | 3% | 12% | | ttH | 8% | 14% | | WZ | 5% | 12% | | ZZ | 4% | 12% | | W+W+ | 4% | 50% | | WWZ | 4% | 50% | | WZZ | 6% | 50% | | ZZZ | 6% | 50% | | tttt | 6% | 50% | | Channel | PSS MC | NonPrompt | ChargeMisID | Total Background | 800 GeV X _{5/3} | Observed | |---------------|-----------------|-----------------|-----------------|------------------|--------------------------|----------| | Di-electron | 2.41 ± 0.29 | 2.16 ± 1.91 | 1.90 ± 0.60 | 6.47 ± 2.02 | 4.38 | 7 | | Electron-Muon | 2.98 ± 0.36 | 5.20 ± 3.21 | 0.54 ± 0.18 | 8.72 ± 3.24 | 9.14 | 3 | | Di-muon | 0.70 ± 0.12 | 2.09 ± 1.69 | 0.00 ± 0.00 | 2.80 ± 1.70 | 3.55 | 1 | | All | 6.09 ± 0.67 | 9.45 ± 5.49 | 2.44 ± 0.76 | 17.98 ± 5.58 | 17.06 | 11 | systematic uncertainties - systematic uncertainties - two channels - same sign di-leptons - lepton + jets | Source | Uncertainty | Signal | Background | |--|-------------------------------|--------|-----------------| | Normalization only | | | | | Luminosity | 4.6% | Yes | All | | Trigger Efficiency | 3% | Yes | All | | Lepton efficiencies | 1% | Yes | All | | "Top bkg": tt, Single top, tt+W/Z cross-sections | 5.5% | No | | | "EWK bkg": W+jets, Diboson cross sections | 5% | No | | | "Top bkg" modeling, based on the CR | 11-19% | No | | | "EWK bkg" modeling, based on the CR | 24% | No | | | QCD multijet cross-sections | 50% | No | | | Shape and Normalization | | | | | Jet Energy Scale | $\pm \sigma(p_T, \eta)$ | Yes | All | | Jet Energy Resolution | $\pm\sigma$ | Yes | All | | b tagging | $\pm\sigma$ | Yes | All | | W tagging: mass resolution | $\pm\sigma$ | Yes | All | | W tagging: mass scale | $\pm\sigma$ | Yes | All | | W tagging: τ_2/τ_1 | $\pm\sigma$ | Yes | All | | Top $p_{\rm T}$ | Δ (weighted,nominal) | No | t t | | Pileup | $\sigma_{ m minbias} \pm 5\%$ | Yes | All | | Parton Shower Scale | $\pm\sigma$ | No | tī, single top | | Shape only | | | | | PDF | $\pm \sigma$ | Yes | All | | Renormalization Scale | $\pm\sigma$ | Yes | All | | Factorization Scale | $\pm\sigma$ | Yes | All | ## $T_{2/3}$ pair production systematic uncertainties #### systematic uncertainties | Source | Uncertainty | Signal | Background | |----------------------------|------------------------------------|------------------|---------------------------------------| | Normalization only | | | | | Luminosity | 2.7% | Yes | All | | Trigger Efficiency | 5% | Yes | All | | Lepton efficiencies | 1% | Yes | All | | TOP background modeling | 1-14% | No | TOP group | | EWK background modeling | 2-23% | No | EWK group | | Shape and Normalization | | | | | Jet Energy Scale | $\pm \sigma(p_T, \eta)$ | Yes $(0 - 5\%)$ | All (0 – 20%) | | Jet Energy Resolution | $\pm\sigma$ | Yes $(0 - 3\%)$ | All $(0 - 40\%)$ | | b tagging | $\pm\sigma$ | Yes $(0 - 20\%)$ | All $(0 - 40\%)$ | | W tagging: mass resolution | $\pm\sigma$ | Yes $(0 - 2\%)$ | All $(0 - 22\%)$ | | W tagging: mass scale | $\pm\sigma$ | Yes $(0 - 1\%)$ | All $(0 - 3\%)$ | | W tagging: τ_2/τ_1 | $\pm\sigma$ | Yes $(0 - 2\%)$ | All $(0 - 2\%)$ | | Pileup | $\sigma_{ m minbias} \pm 5\%$ | Yes $(0 - 3\%)$ | All $(0 - 8\%)$ | | Jet reweighting | $\pm \sigma(p_T)$ | Yes (7 – 10%) | All (0 – 18%) | | Top $p_{\rm T}$ | Δ (weighted,nominal) | No | t t (17 – 19%) | | PDF | $\pm\sigma$ | No | All (2 – 15%) | | Renorm./Fact. Energy Scale | envelope($\times 2, \times 0.5$) | No | All (17 – 43%) | | Parton Shower Scale | envelope($\times 2, \times 0.5$) | No | t t , single top (0 – 70%) | | Shape only | | | | | PDF | $\pm \sigma$ | Yes | None | | Renorm./Fact. Energy Scale | envelope($\times 2, \times 0.5$) | Yes | None | ### T_{2/3} single production systematic uncertainties #### systematic uncertainties - all hadronic final state (largest uncertainties) - t tagging: - I5% (jet p⊤ 400 550 GeV) - 30% (jet p_T >550 GeV) - statistical uncertainty from ABCD sideband - H tag: - N subjettiness: 12.5% - jet mass correction: 10% - subjet b tags | - | | |----------------------------------|----------------| | Process | Events | | Estimated multijets (using data) | 10.8 ± 5.5 | | Estimated tt+jets (using MC) | 24.3 ± 8.1 | | Estimated W+jets (using MC) | 0.6 ± 0.6 | | Estimated total background | 35.7 ± 5.6 | | Observed events | 30 | #### variables for ABCD method: - 0/1 t tag - 0/I anti-H tag(H tag w/ 0 subjet b tags) #### final state with one lepton | | electron channel | | | muon channel | | | |----------------------|------------------|---------|---------|--------------|---------|---------| | | T(0700) | T(1200) | T(1700) | T(0700) | T(1200) | T(1700) | | forward jet | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | | b tag heavy flav. | 7.8 | 7.6 | 8.7 | 6.0 | 7.5 | 8.5 | | JES | 8.9 | 4.9 | 4.9 | 3.0 | 5.7 | 4.6 | | lepton iso. and trg. | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |