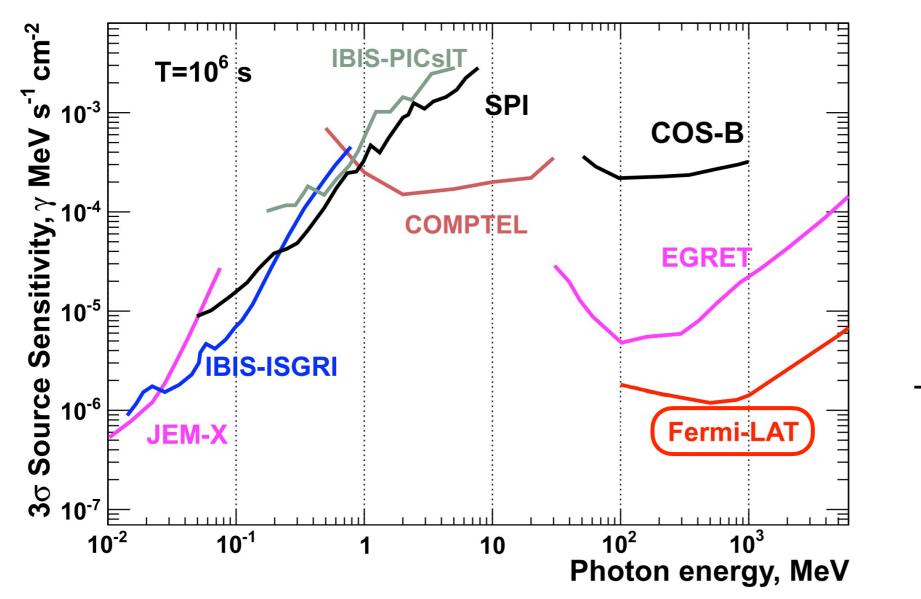
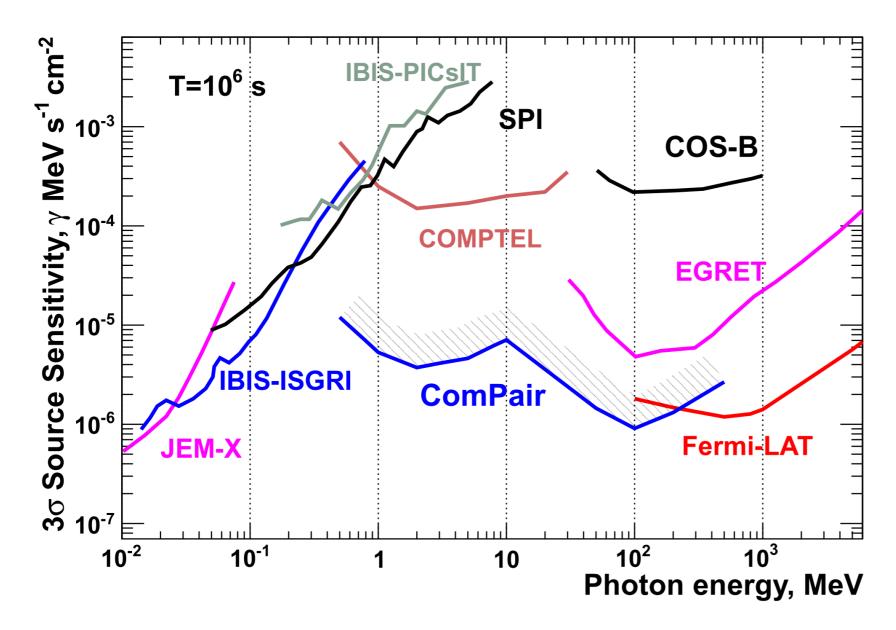
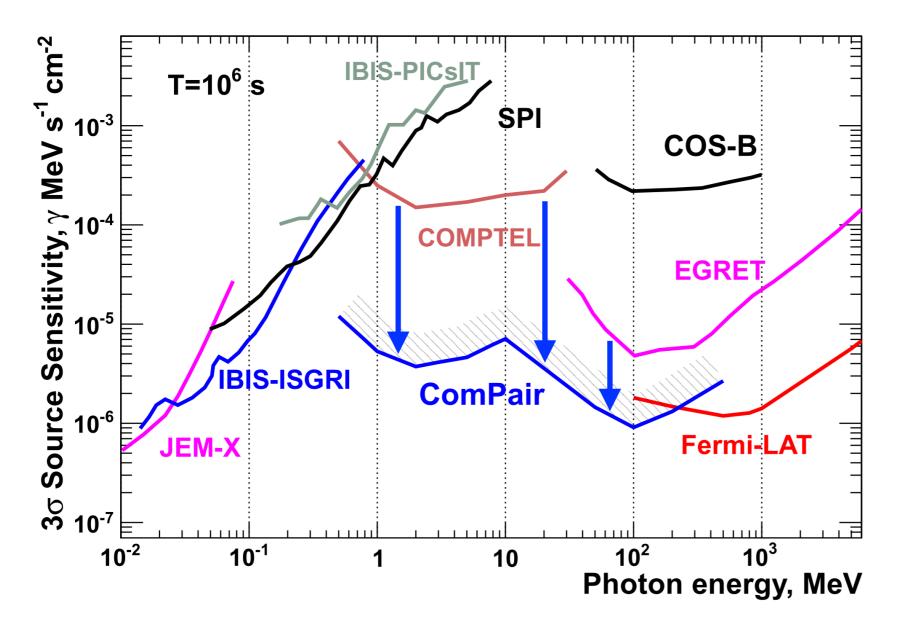

Indirect detection of sub-GeV dark matter

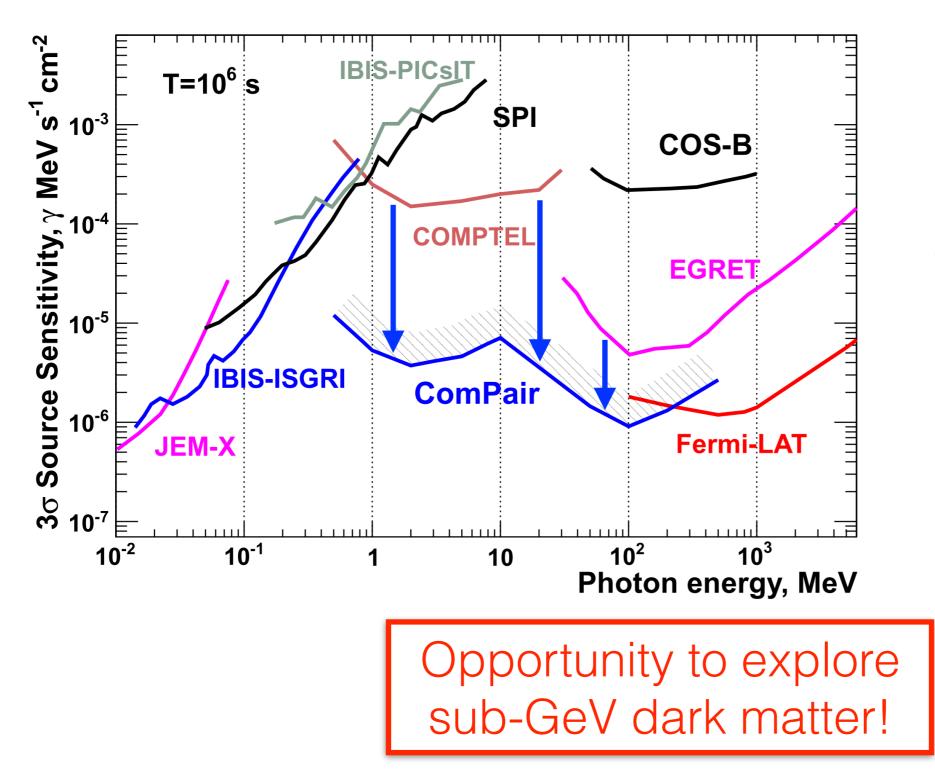


In progress with F. D'Eramo, L. Morrison and S. Profumo





Thorough probe of WIMP DM



100× sensitivity increase

100× sensitivity increase

• Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$

- Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$
- Quantity of interest: Φ^{PP} , where $\frac{d\phi_{\gamma}}{dE_{\gamma}} \sim \Phi^{PP} \times \frac{J}{m_{\gamma}^2}$

- Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$
- Quantity of interest: Φ^{PP} , where $\frac{d\phi_{\gamma}}{dE_{\gamma}} \sim \Phi^{PP} \times \frac{J}{m_{\gamma}^2}$

$$\Phi^{\rm PP} \sim \sum_{F} \langle \sigma_{\chi \bar{\chi} \to F} v \rangle \frac{dN_{\gamma}^{F}}{dE_{\gamma}}$$

- Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$
- Quantity of interest: Φ^{PP} , where $\frac{d\phi_{\gamma}}{dE_{\gamma}} \sim \Phi^{PP} \times \frac{J}{m_{\gamma}^2}$

$$\Phi^{\rm PP} \sim \sum_{F} \langle \sigma_{\chi \bar{\chi} \to F} v \rangle \frac{dN_{\gamma}^{F}}{dE_{\gamma}}$$

• Two steps in computing Φ^{PP} :

- Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$
- Quantity of interest: Φ^{PP} , where $\frac{d\phi_{\gamma}}{dE_{\gamma}} \sim \Phi^{PP} \times \frac{J}{m_{\gamma}^2}$

$$\Phi^{\rm PP} \sim \sum_{F} \langle \sigma_{\chi \bar{\chi} \to F} v \rangle \frac{dN_{\gamma}^{F}}{dE_{\gamma}}$$

- Two steps in computing $\Phi^{\rm PP}$:
 - 1. Match onto pion-level interaction using chiral perturbation theory (chiPT)

- Models with **DM-quark interactions**, $m_{\pi} < m_{DM} < m_{K}$
- Quantity of interest: Φ^{PP} , where $\frac{d\phi_{\gamma}}{dE_{\gamma}} \sim \Phi^{PP} \times \frac{J}{m_{\gamma}^2}$

$$\Phi^{\rm PP} \sim \sum_{F} \langle \sigma_{\chi \bar{\chi} \to F} v \rangle \frac{dN_{\gamma}^{F}}{dE_{\gamma}}$$

- Two steps in computing $\Phi^{\rm PP}$:
 - 1. Match onto pion-level interaction using chiral perturbation theory (chiPT)
 - 2. Integrate $\left\langle \frac{d\sigma_{\chi\bar{\chi}\to F}}{d\Pi} v \right\rangle \frac{dN_{\gamma}^{F}}{dE_{\gamma}}$ over phase space

• Two simplified models defined at quark level

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Vector:

$$\mathcal{L}_V \supset -g_{\chi} \bar{\chi} \gamma_{\mu} \chi V^{\mu} - g_V \sum_{i=1}^6 \bar{q}_i \gamma_{\mu} q_i V^{\mu} - \frac{\varepsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_\chi \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Vector:

$$\mathcal{L}_V \supset -g_{\chi} \bar{\chi} \gamma_{\mu} \chi V^{\mu} - g_V \sum_{i=1}^6 \bar{q}_i \gamma_{\mu} q_i V^{\mu} - \frac{\varepsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

Universal coupling

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Vector:

$$\mathcal{L}_V \supset -g_{\chi} \bar{\chi} \gamma_{\mu} \chi V^{\mu} - g_V \sum_{i=1}^6 \bar{q}_i \gamma_{\mu} q_i V^{\mu} - \frac{\varepsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

Kinetic mixing

- Two simplified models defined at quark level
 - Higgs portal:

$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$$

- Vector:

$$\mathcal{L}_V \supset -g_{\chi} \bar{\chi} \gamma_{\mu} \chi V^{\mu} - g_V \sum_{i=1}^6 \bar{q}_i \gamma_{\mu} q_i V^{\mu} - \frac{\varepsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

• Dark matter, χ: Dirac fermion, SM singlet

• Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix}\pi^{0} & \sqrt{2}\pi^{+}\\\sqrt{2}\pi^{-} & -\pi^{0}\end{pmatrix}\right]$

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix} \pi^0 & \sqrt{2}\pi^+\\ \sqrt{2}\pi^- & -\pi^0 \end{pmatrix}\right]$
- Leading kinetic term:

$$\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$$

 $\mathcal{L}^{(2)}$

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix} \pi^0 & \sqrt{2}\pi^+\\ \sqrt{2}\pi^- & -\pi^0 \end{pmatrix}\right]$
- Leading kinetic term:
- Treat quark masses as spurions:

$$= \frac{f_{\pi}^2}{4} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$$

S: $+ \frac{f_{\pi}^2 B}{2} \operatorname{tr}[M U^{\dagger} + U M]$

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix}\pi^{0} & \sqrt{2}\pi^{+}\\\sqrt{2}\pi^{-} & -\pi^{0}\end{pmatrix}\right]$
- Leading kinetic term: $\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{\Lambda} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$
- Treat quark masses as spurions: $+\frac{f_{\pi}^2 B}{2} \operatorname{tr}[MU^{\dagger} + UM]$
- Odd parity Wess-Zumino-Witten term: \mathcal{L}_{WZW}

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix}\pi^{0} & \sqrt{2}\pi^{+}\\\sqrt{2}\pi^{-} & -\pi^{0}\end{pmatrix}\right]$
- Leading kinetic term: $\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{\Lambda} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$
- Treat quark masses as spurions: $+\frac{f_{\pi}^2 B}{2} \operatorname{tr}[MU^{\dagger} + UM]$
- Odd parity Wess-Zumino-Witten term: \mathcal{L}_{WZW}
- Coupling to external fields

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix}\pi^{0} & \sqrt{2}\pi^{+}\\\sqrt{2}\pi^{-} & -\pi^{0}\end{pmatrix}\right]$
- Leading kinetic term: $\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$
- Treat quark masses as spurions: $+\frac{f_{\pi}^2 B}{2} \operatorname{tr}[MU^{\dagger} + UM]$
- Odd parity Wess-Zumino-Witten term: \mathcal{L}_{WZW}
- Coupling to external fields
 - Vector-like: $\partial_{\mu} \rightarrow D_{\mu}$

- Building block: $U = \exp\left[\frac{i}{f_{\pi}}\begin{pmatrix}\pi^{0} & \sqrt{2}\pi^{+}\\\sqrt{2}\pi^{-} & -\pi^{0}\end{pmatrix}\right]$
- Leading kinetic term: $\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U]$
- Treat quark masses as spurions: $+\frac{f_{\pi}^2 B}{2} \operatorname{tr}[MU^{\dagger} + UM]$
- Odd parity Wess-Zumino-Witten term: \mathcal{L}_{WZW}
- Coupling to external fields
 - Vector-like: $\partial_{\mu} \rightarrow D_{\mu}$
 - Scalar-like: as with mass terms, treat as spurions

1. Matching: Higgs portal

EW scale: $\mathcal{L}_S \supset -g_\chi \bar{\chi} \chi S - g_S \sum_{i=1}^6 \frac{m_i}{v} \bar{q}_i q_i S$

1. Matching: Higgs portal

DM scale: $\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$

1. Matching: Higgs portal
DM scale:
$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$

1. Matching: Higgs portal DM scale: $\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$
- Subtlety: term from integrating out heavy quarks

1. Matching: Higgs portal
DM scale:
$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$
- Subtlety: term from integrating out heavy quarks
 - Solution: rewrite term using trace anomaly

$$g^2 G^2 \sim \partial_\mu D^\mu - \sum_{i=u,d} m_i \bar{q}_i q_i$$

1. Matching: Higgs portal
DM scale:
$$\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$
- Subtlety: term from integrating out heavy quarks
 - Solution: rewrite term using trace anomaly

$$g^2 G^2 \sim \partial_\mu D^\mu - \sum_{i=u,d} m_i \bar{q}_i q_i$$

Can match onto chiPT expression

1. Matching: Higgs portal DM scale: $\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$ -
- Subtlety: term from integrating out heavy quarks
 - Solution: rewrite term using trace anomaly

$$g^2 G^2 \sim \partial_\mu D^\mu - \sum_{i=u,d} m_i \bar{q}_i q_i$$
 ______Spurion

1. Matching: Higgs portal DM scale: $\mathcal{L}_S \supset -g_{\chi} \bar{\chi} \chi S - g_S \sum_{i=u,d} \frac{m_i}{v} \bar{q}_i q_i S + \frac{g_s^2}{\Lambda} SG^2$

- Easy to match light quark terms onto $\mathcal{L}^{(2)}$
- Subtlety: term from integrating out heavy quarks
 - Solution: rewrite term using trace anomaly

$$g^2 G^2 \sim \partial_\mu D^\mu - \sum_{i=u,d} m_i \bar{q}_i q_i$$

• Describes $\bar{\chi}\chi \to \pi^0\pi^0, \pi^+\pi^-, 4\pi^0, \dots$

EW scale:
$$\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=1}^6 \bar{q}_i \gamma_\mu q_i V^\mu - \frac{\varepsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

DM scale: $\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$

DM scale: $\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$

• Isospin breaking term: contributes to $\mathcal{L}^{(2)}$

DM scale: $\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$

- Isospin breaking term: contributes to $\mathcal{L}^{(2)}$
 - Gives scalar QED term describing $\bar{\chi}\chi \to \pi^+\pi^-$

DM scale: $\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$

- Isospin breaking term: contributes to $\mathcal{L}^{(2)}$
 - Gives scalar QED term describing $\bar{\chi}\chi \to \pi^+\pi^-$
 - Leading order in the EFT, but suppressed by ε

DM scale:
$$\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$$

- Isospin breaking term: contributes to $\mathcal{L}^{(2)}$
 - Gives scalar QED term describing $\bar{\chi}\chi \to \pi^+\pi^-$
 - Leading order in the EFT, but suppressed by ε
- Isospin symmetric term: contributes to \mathcal{L}_{WZW}

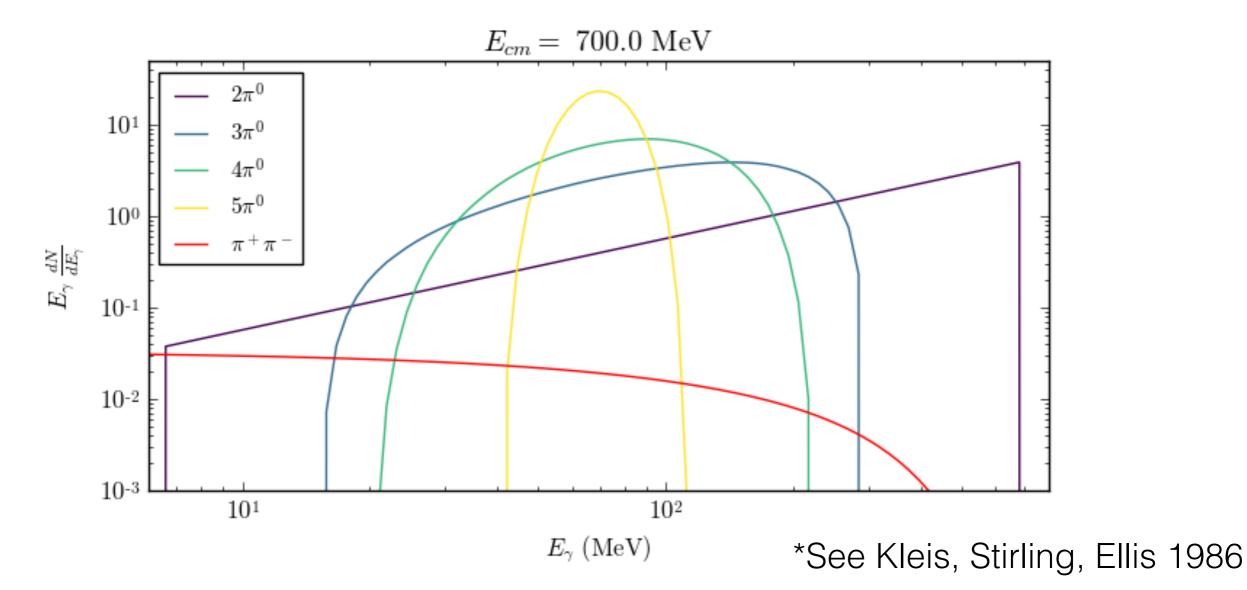
DM scale:
$$\mathcal{L}_V \supset -g_\chi \bar{\chi} \gamma_\mu \chi V^\mu - g_V \sum_{i=u,d} \bar{q}_i \gamma_\mu q_i V^\mu - \varepsilon e \sum_{i=u,d} Q_i \bar{q}_i \gamma_\mu q_i V^\mu$$

- Isospin breaking term: contributes to $\mathcal{L}^{(2)}$
 - Gives scalar QED term describing $\bar{\chi}\chi \to \pi^+\pi^-$
 - Leading order in the EFT, but suppressed by ε
- Isospin symmetric term: contributes to \mathcal{L}_{WZW}

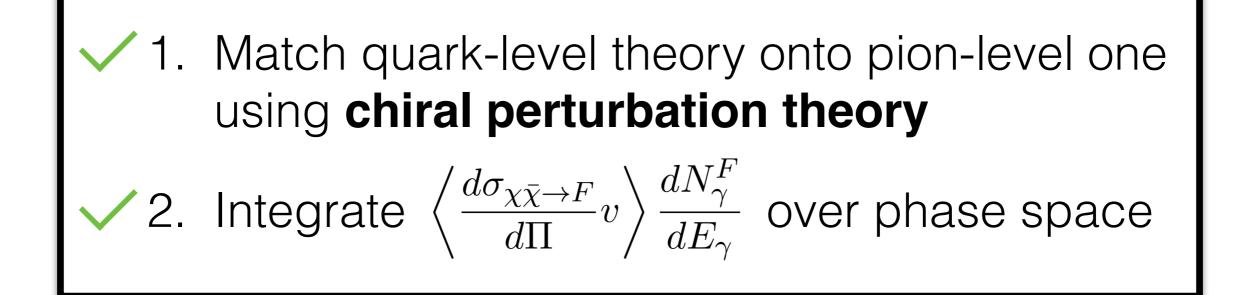
- Describes
$$\bar{\chi}\chi \to \pi^+\pi^-\pi^0$$

1. Match quark-level theory onto pion-level one using chiral perturbation theory 2. Integrate \$\langle \frac{d\sigma_{\chi\chi} \rangle v}{d\Pi} \rangle \frac{dN_{\gamma}^F}{dE_{\gamma}}\$ over phase space

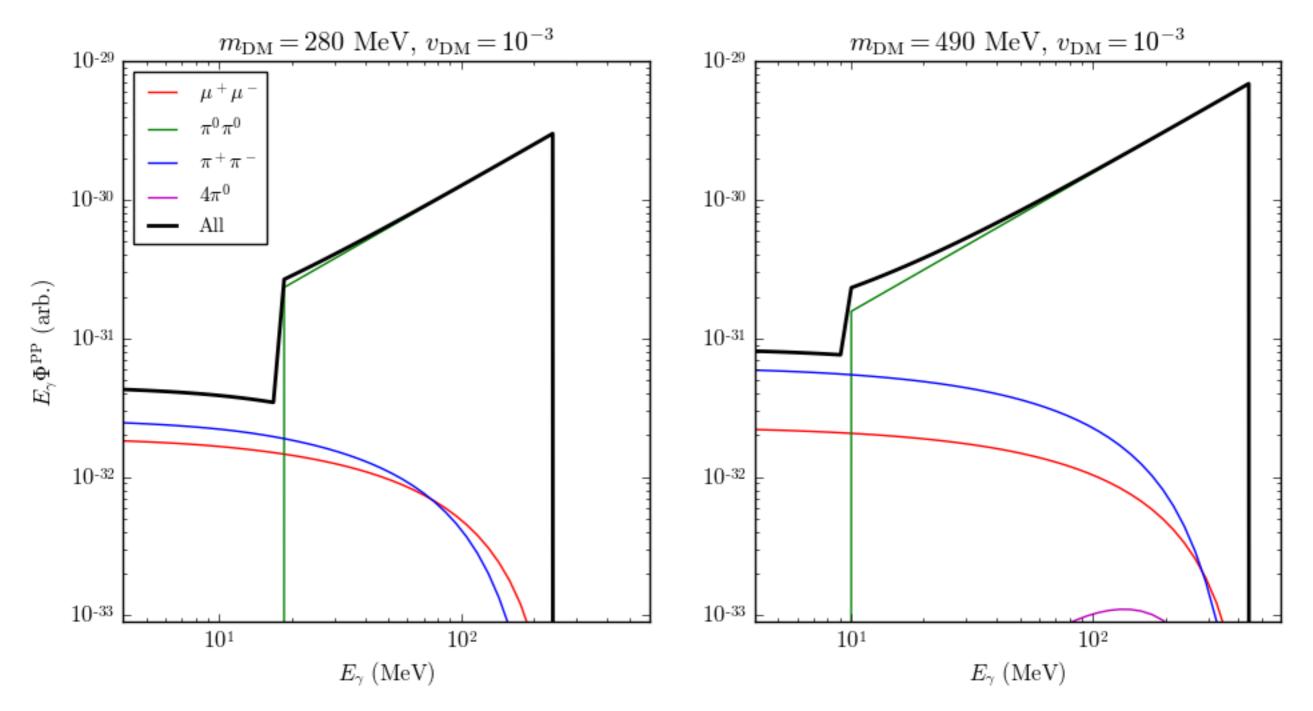
2. From $\left\langle \frac{d\sigma_{\chi\bar{\chi}\to F}}{d\Pi}v \right\rangle$ to Φ^{PP}

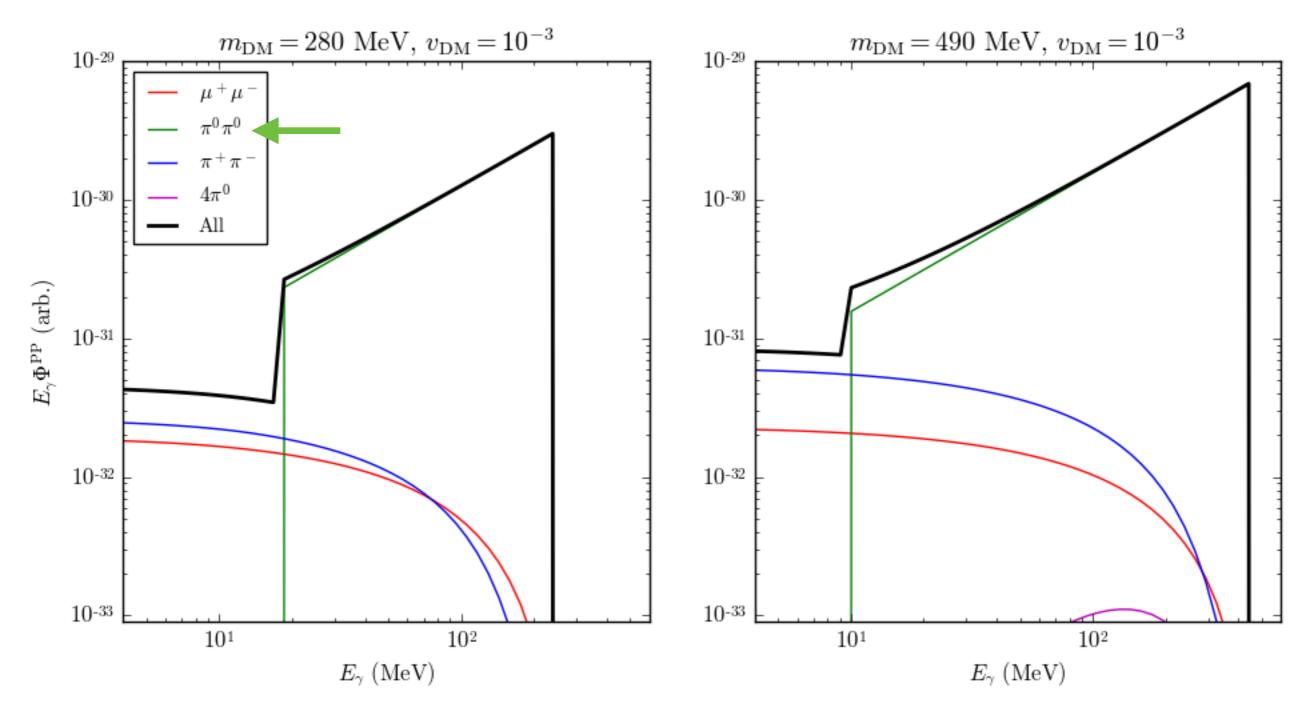

*See Kleis, Stirling, Ellis 1986

2. From
$$\left\langle \frac{d\sigma_{\chi\bar{\chi}\to F}}{d\Pi}v \right\rangle$$
 to Φ^{PP}

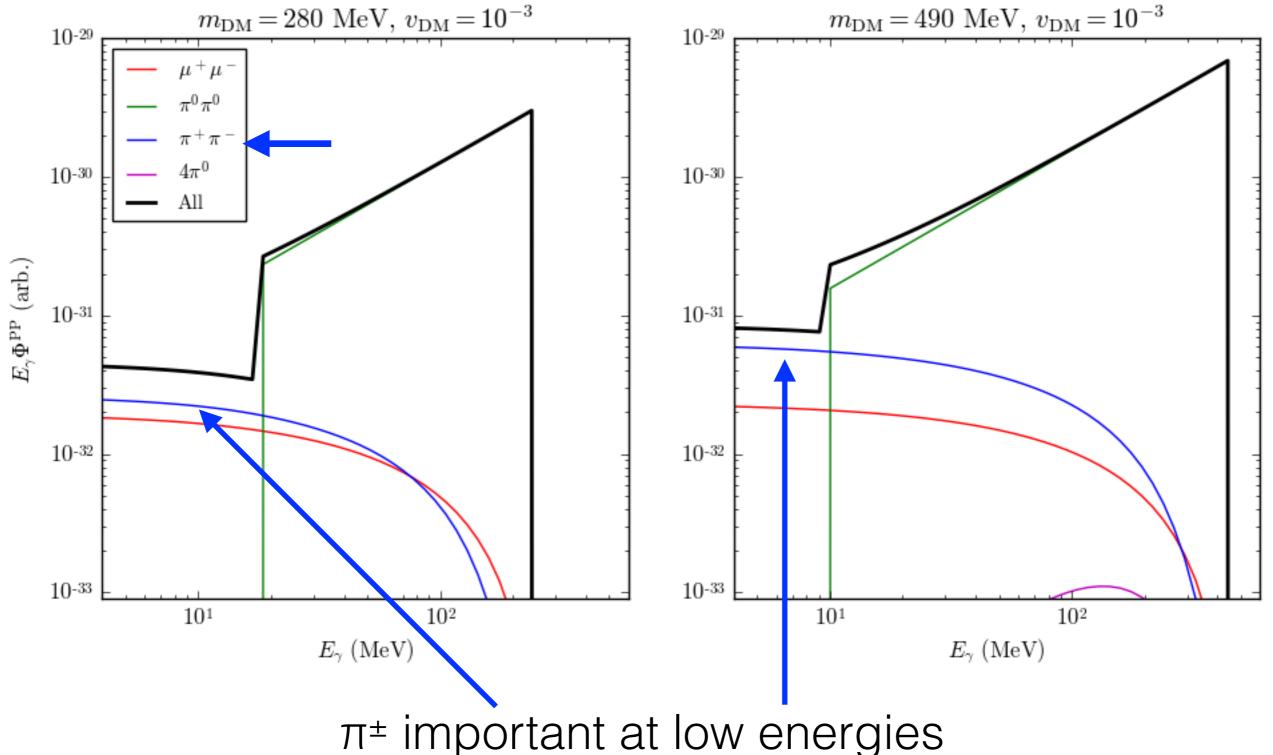

• Final states contain arbitrary numbers of π^0 s, π^{\pm} s

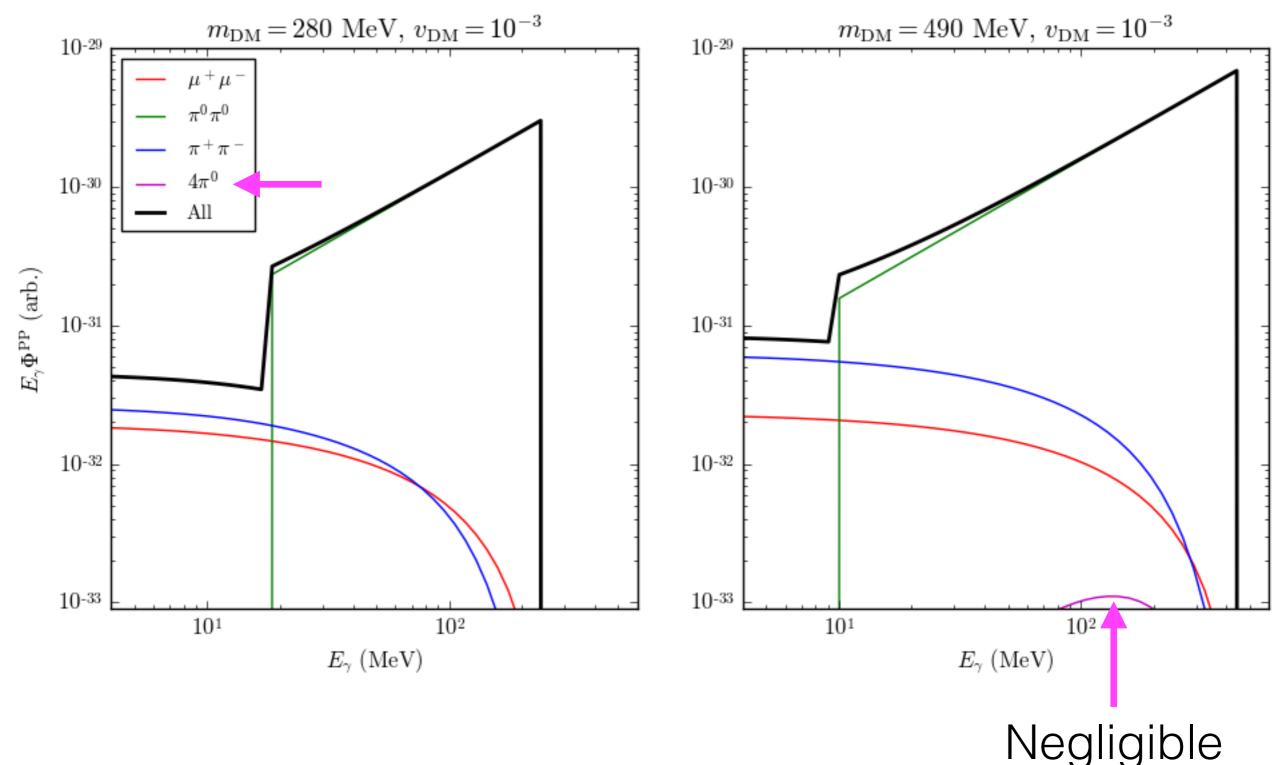
2. From
$$\left\langle \frac{d\sigma_{\chi\bar{\chi}\to F}}{d\Pi}v \right\rangle$$
 to Φ^{PP}

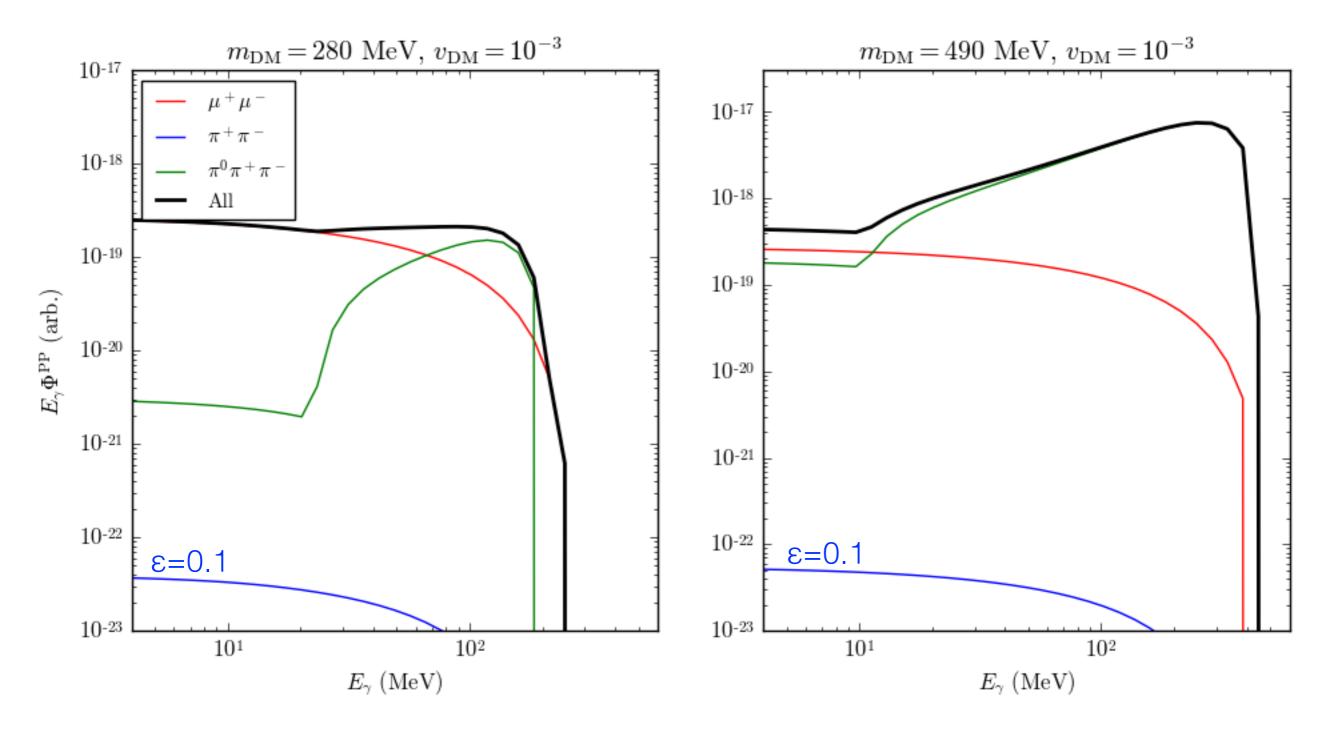

- Final states contain arbitrary numbers of π^0 s, π^{\pm} s
 - Generate *n*-body phase space using RAMBO*:



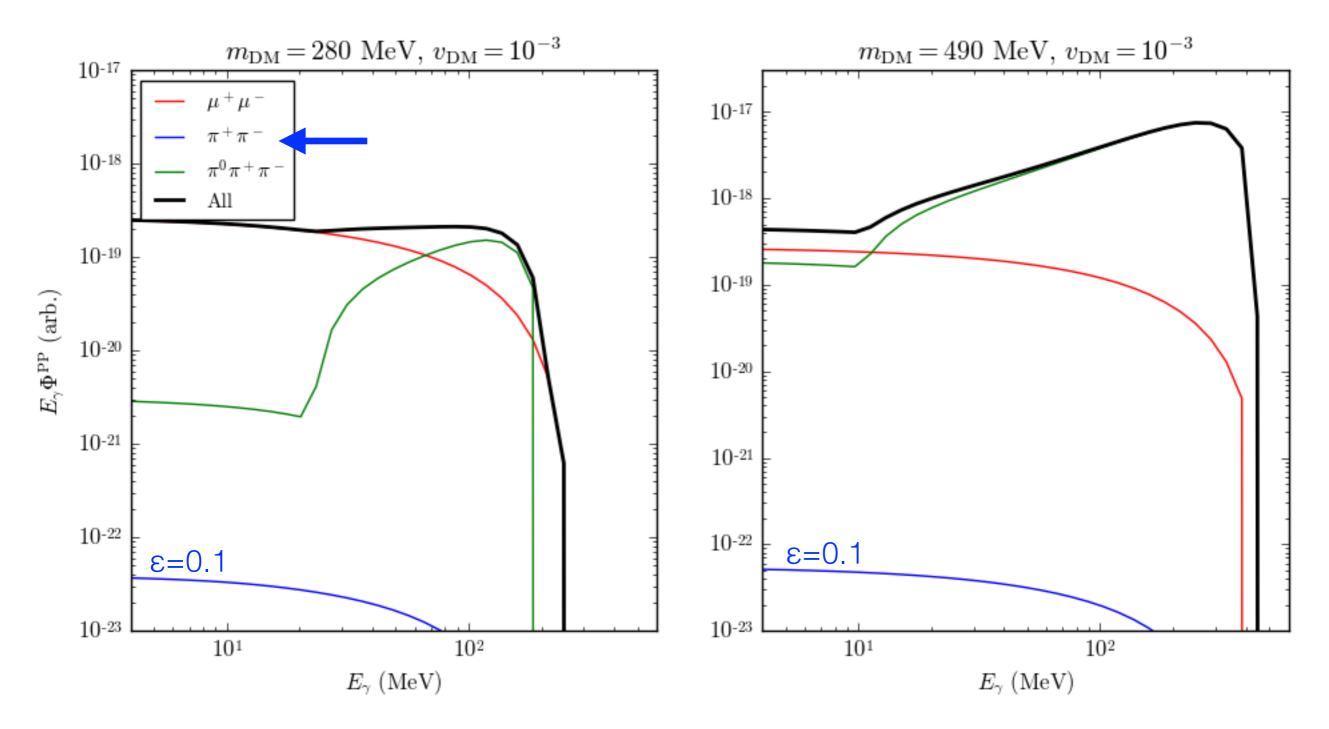
✓ 1. Match quark-level theory onto pion-level one using chiral perturbation theory ✓ 2. Integrate \$\langle \frac{d\sigma_{\chi\bar{\chi} \rightarrow F}}{d\Pi}v \rangle \frac{dN_{\gamma}^F}{dE_{\gamma}}\$ over phase space



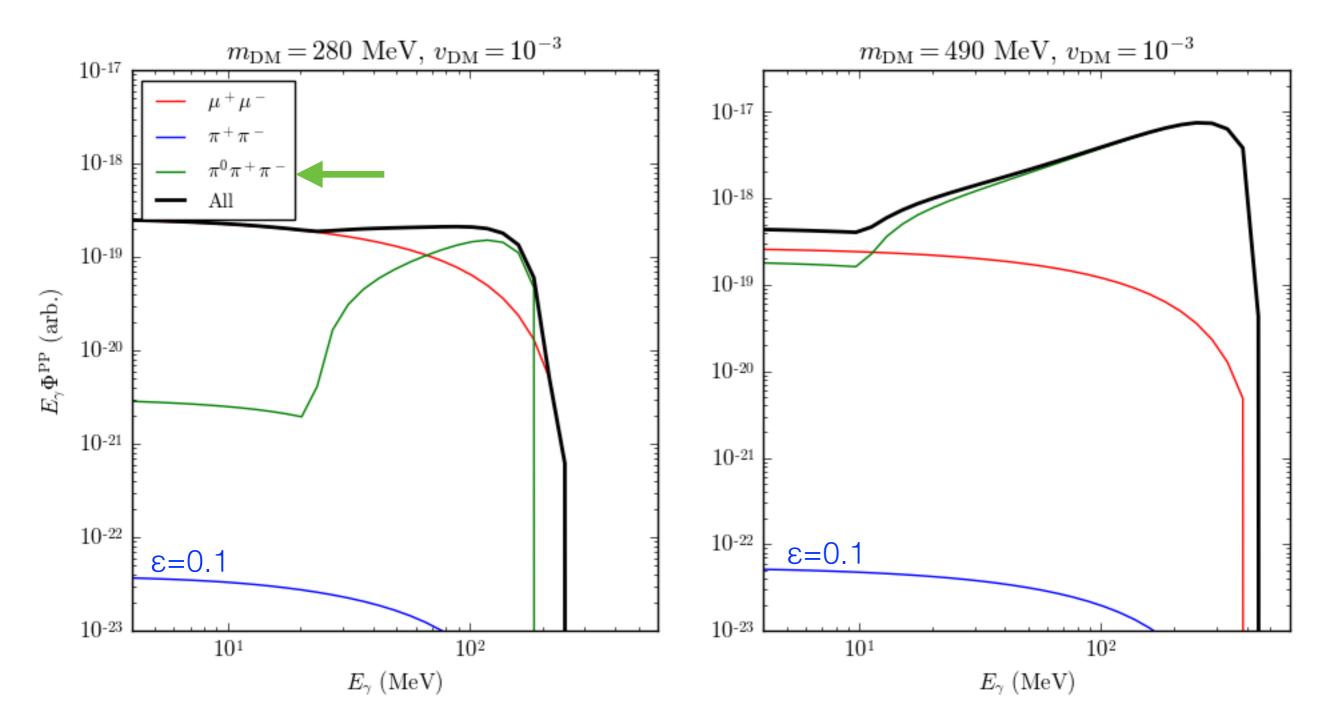

$$\Phi^{\mathrm{PP}}$$
 results



π^0 contribution dominates



Vector mediator



Vector mediator

Leading order in EFT, but subdominant here!

Vector mediator

Important due to cross section, π^0 spectrum

• ComPair provides chance to probe sub-GeV DM

- ComPair provides chance to probe sub-GeV DM
- ChiPT: consistent framework for predicting these models' γ ray signatures

- ComPair provides chance to probe sub-GeV DM
- ChiPT: consistent framework for predicting these models' γ ray signatures
 - Required to correctly compare final states

- ComPair provides chance to probe sub-GeV DM
- ChiPT: consistent framework for predicting these models' γ ray signatures
 - Required to correctly compare final states
- More mediators and final states to come!

Thanks!