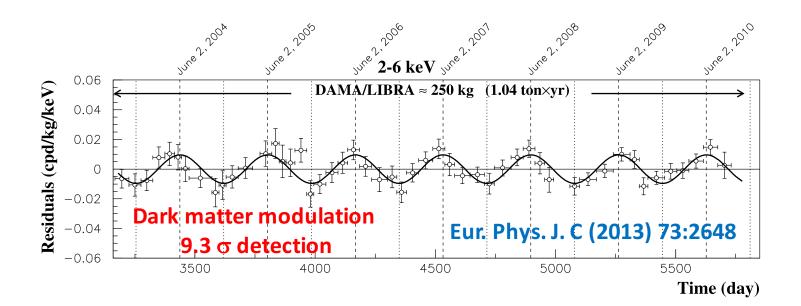
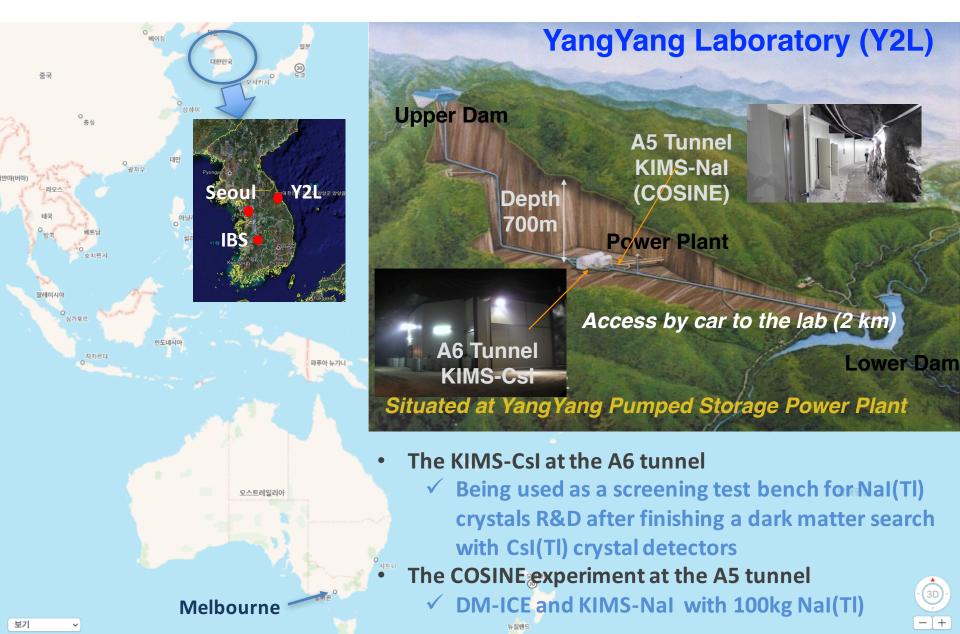


Status of the COSINE - 100 experiment at Yangyang underground laboratory


Nam Young KIM Center for Underground Physics, IBS, Daejeon, Korea On behalf of the COSINE collaboration SUSY2016, 4th – 8th July, 2016, The University of Melbourne

Contents

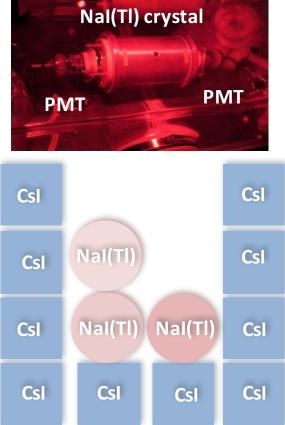

- Motivation of the COSINE experiment
- Background reduction Effort
- COSINE-100 : DM-ICE + KIMS-Nal (100 kg)
- Expected Sensitivity
- Conclusion

Motivation of the COSINE experiment

- Direct comparison to confirm or rule out the DAMA/LIBRA claims using the same type of NaI(TI) crystals
- Achieve lower background level and lower energy threshold then the DAMA with the same NaI(TI) crystal detectors
 - background level < 1 counts/keV/kg/day(dru)</pre>
 - Energy threshold < 2 keV</p>

Direct Dark Matter search in Korea

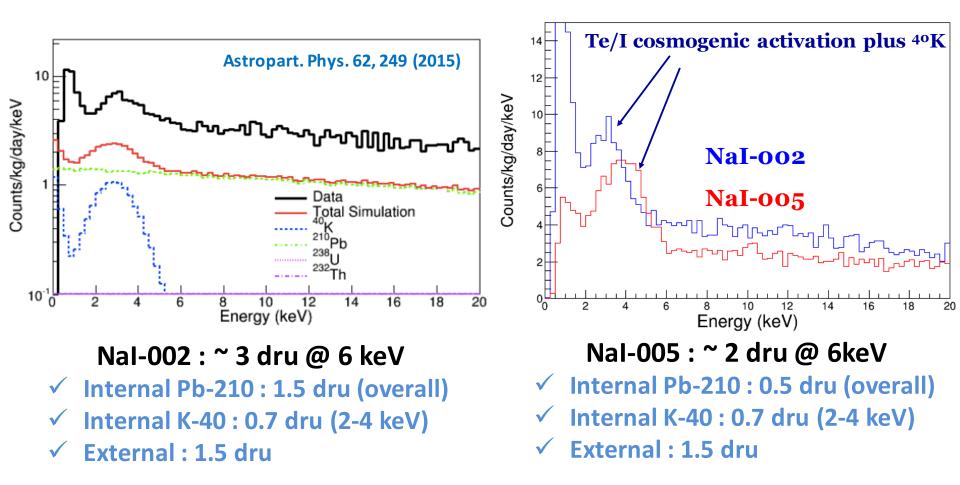
Background reduction Effort


Measurements of internal-radioisotope contaminations in Nal(TI) crystals

✓ U, Th, K, Pb-210, and Cosmogenic isotopes

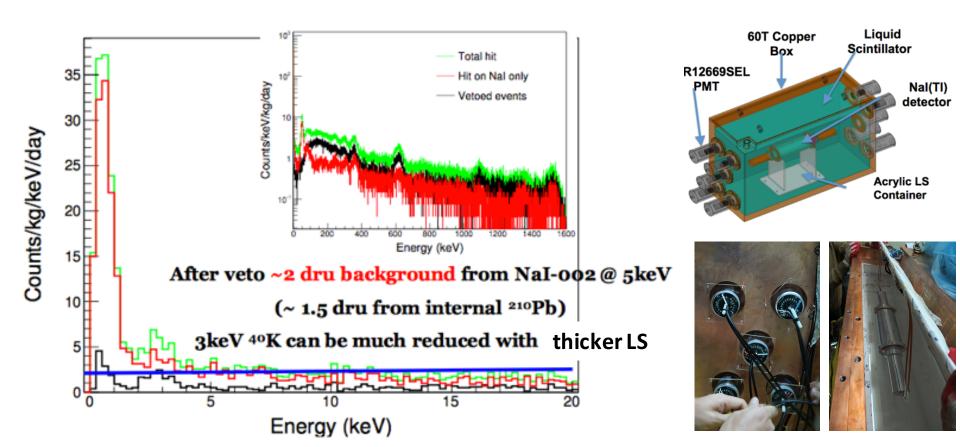
✓ Screening measurement in the CsI (TI) crystals array

• To understand the internal backgrounds and to learn how they can be reduced

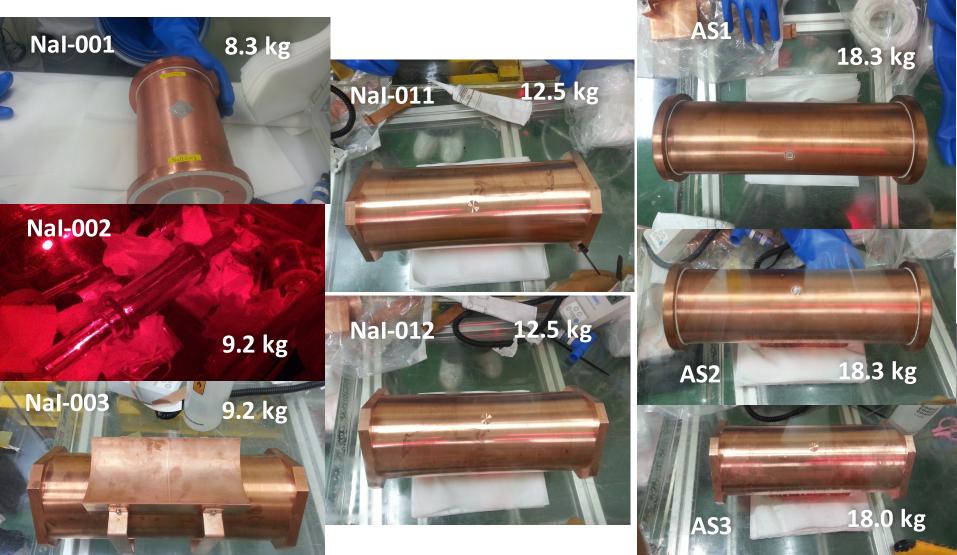


Internal background

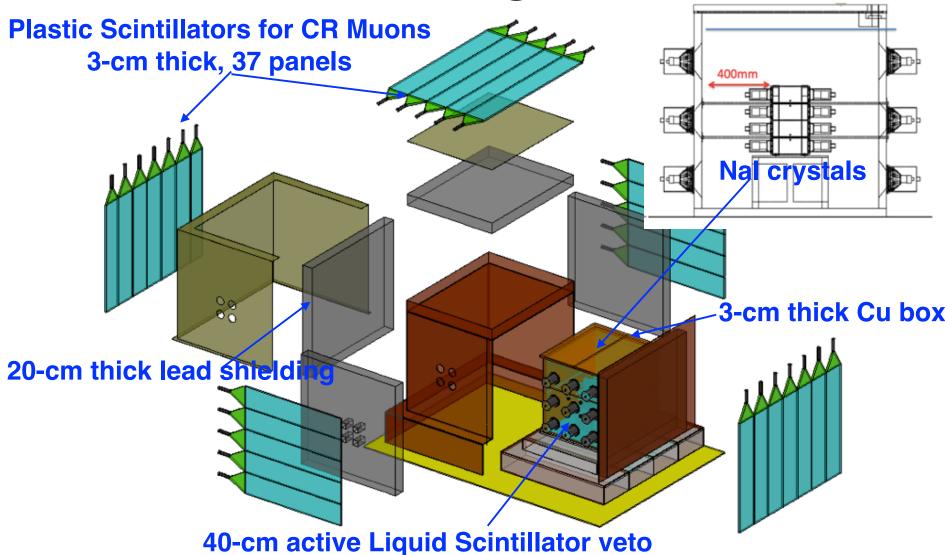
Nal-005 reduced to ~1.0 dru by reduction of Pb-210


✓ To understand and reduce Pb-210 contamination R&D

K-40 can be reduced by using 10 ppb Nal powder as raw material


LS Veto Prototype

- Active Background Rejection
 - Backgrounds from crystal and surrounding components
 - External Backgrounds
- Multiple hit events are vetoed with 25% veto efficiency at 6-20 keV



COSINE 100 : DM-ICE + KIMS-Nal

- Total of 8 crystals (~ 100 kg) have been ready for the phase-I run.
- It can give some ideas on the DAMA signal

New Shielding Structure

New Shielding Structure

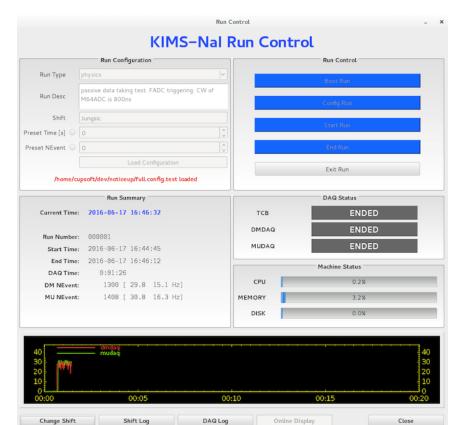
40-cm Active Liquid Scintillator veto

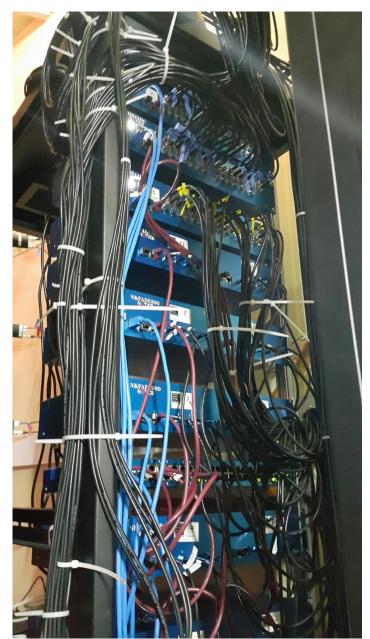
Plastic Scintillators

Tube for Calibration source

Production of Liquid Scintillator (LS)

LAB-based LS


- Linear alkylbenzene (LAB), PPO (3 g/L) and bis-MSB (30 mg/L)
- ✓ Total 3200 liter was produced and ready to be filled
- Purification of the LS by water extraction and nitrogen gas purging
- ✓ After an PSD analysis, U-238 < 7 ppt, Th-232 < 4 ppt are measured to be contaminated in the LS



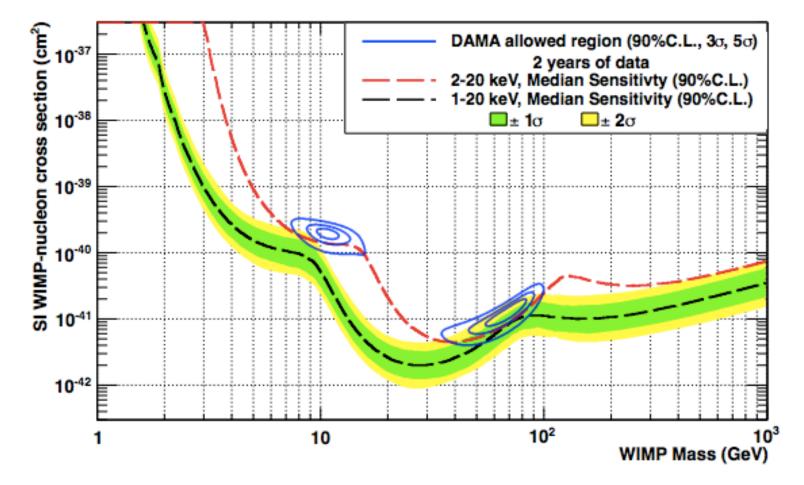
DAQ System

Electronics

- ✓ 500 MHz FADC : Nal(Tl) and Neutron detector
- ✓ M64ADC : Muon veto and LS veto detector
- ✓ Trigger control box
- Run Control Panel

COSINE-100

✓ We installed total 8 of selected KIMS-NaI and DM-ICE crystals.


✓ Total amount of mass is about 106 kg.

✓ A dry run has started before filling the LS.

Crystals Nickname		Powder	Mass
Nal-001	C1	Sample B	8.3 kg
Nal-002	C2	Sample C	9.2 kg
Nal-007	C3	WimpScint 2	9.2 kg
AS-3	C4	WimpScint 2	18.0 kg
AS-1	C5	Sample C	18.3 kg
Nal-011	C6	WimpScint 3	12.5 kg
Nal-012	C7	WimpScint 3	12.5 kg
AS-2	C8	Sample C 18.3 kg	

Expected Sensitivity

- COSINE-100 at Yangyang, with 1 keV and 2 keV energy thresholds.
- Assumed flat background with 2 dru for several crystals and 4 dru for other crystals.
- Assumed 2 years of data taking.

Conclusion

- COSINE is poised to confirm or to rule out the DAMA's modulation result.
- Various R&D programs have identified background reductions for ultra-pure crystal production.
- Construction of the main detector has been completed except liquid scintillator filling.
- A dry run for the COSINE phase 1 (~ 100 kg) has started for several weeks before filling the LS.

G. Adhikari,¹ P. Adhikari,¹ S. Choi,² C. Ha,³ I.S. Hahn,⁴ E.J. Jeon,³ H.W. Joo,² W.G. Kang,³ H.J. Kim,⁵ H.O. Kim,³
K.W. Kim,² N.Y. Kim,³ S.K. Kim,² Y.D. Kim,^{3,1} Y.H. Kim,^{3,6} H.S. Lee,³ J.H. Lee,³ M.H. Lee,³ D.S. Leonard,³
J. Li,³ S.Y. Oh,¹ S.L. Olsen,³ H.K. Park,³ H.S. Park,⁶ J.S. Park,³ K.S. Park,³ J.H. So,³ and Y.S. Yoon³

¹Department of Physics, Sejong University, Seoul 05006, Korea

²Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

³Center for Underground Physics, Institute for Basic Science, Daejeon 34047, Korea

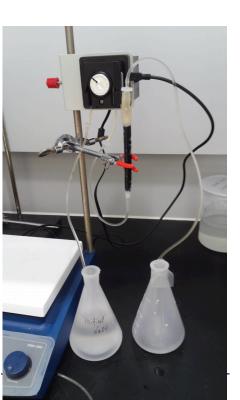
⁴Department of Science Education, Ewha Womans University, Seoul 03760, Korea

⁵Department of Physics, Kyungpook National University, Daegu 41566, Korea

⁶Korea Research Institute of Standards and Science, Daejeon 34113, Korea

E. Barbosa de Souza,¹ J. Cherwinka,² A. Cole,^{3,4} A. C. Ezeribe,³ D. Grant,⁵ F. Halzen,⁶ K. M. Heeger,¹ L. Hsu,⁷ A. J. F. Hubbard,^{1,6,*} J. H. Jo,¹ A. Karle,⁶ M. Kauer,^{1,6} V. A. Kudryavtsev,³ K. E. Lim,¹ C. Macdonald,³ R. H. Maruyama,^{1,†} F. Mouton,³ S. M. Paling,⁴ W. Pettus,^{1,6} Z. P. Pierpoint,^{1,6,‡} B. N. Reilly,^{1,6,§} M. Robinson,³ F. R. Rogers,¹ P. Sandstrom,⁶ A. Scarff,³ N. J. C. Spooner,³ S. Telfer,³ and L. Yang⁸ William G. Thompson¹ (The DM-Ice Collaboration)

 ¹Department of Physics, Yale University, New Haven, Connecticut 06520, USA
 ²Physical Sciences Laboratory, University of Wisconsin-Madison, Stoughton, Wisconsin 53589, USA
 ³Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom
 ⁴STFC Boulby Underground Science Facility, Boulby Mine, Cleveland TS13 4UZ, United Kingdom
 ⁵Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
 ⁶Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
 ⁷Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
 ⁸Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA


Thank you

Backup

Background Reduction

- To understand and reduce Pb-210 contamination
- Alpha counter
 - ✓ Po-210 in Nal powder
- Well-type HPGe detector
 - ✓ Pb-210 in Nal powder

- Purification of Nal powder with ionexchange resin
 - ✓ ~ 300 reduction of Pb with dirty Nal powder
 - ✓ ~ 10 reduction of Pb with normal NaI powder
 - ✓ Will grow crystals with and without resin purification

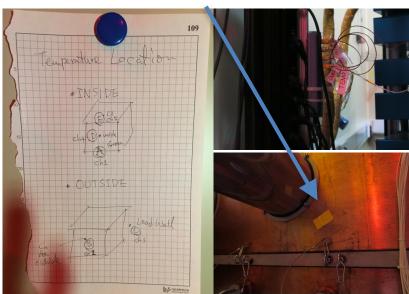
Evaluation of Nal(TI) crystals at KIMS-CsI

- Astropart. Phys. 62, 249 (2015)
- EJPC, 76, 185 (2016)

Crystal	Mass	^{nat} K (⁴⁰ K)	²³⁸ U	²³² Th	α Rate	Light Yield	Arrival
(unit)	(kg)	(ppb)	(ppt)	(ppt)	(mBq/kg)	(p.e./keV)	(year-month)
NaI-001	8.3	40.4 ± 2.9	< 0.02	< 3.2	3.29 ± 0.01	15.6 ± 1.4	2013.9
NaI-002	9.2	48.1 ± 2.3	< 0.12	0.5 ± 0.3	1.77 ± 0.01	15.5 ± 1.4	2014.1
NaI-003	3.4	25.3 ± 3.6	< 0.14	0.5 ± 0.1	2.43 ± 0.01	13.3 ± 1.3	2014.8
NaI-004	3.4	> 116.7	_	_	_	3.9 ± 0.4	2014.8
NaI-005	9.2	40.1 ± 4.2	< 0.04	0.2 ± 0.1	0.48 ± 0.01	12.1 ± 1.1	2014.11
NaI-006	11.4	> 127.1	< 0.05	8.9 ± 0.1	1.53 ± 0.01	4.4 ± 0.4	2014.12
NaI-007	9.2	45.3 ± 6.6	< 0.04	0.2 ± 0.1	0.68 ± 0.01	14.4 ± 1.4	2015.9
NaI-008	1.8	< 15	_		30.3 ± 1.1	7.2 ± 0.8	2015.12
NaI-009	3.3	639 ± 51	_	_	7.2 ± 0.9	6.1 ± 1.1	2015.12
NaI-010	1.3	20.5 ± 11.7	_	_	0.6 ± 0.1	20.9 ± 1.1	2015.12
NaI-011	12.5	~ 25	-	_	1.06 ± 0.02	16.8 ± 1.2	2016.2

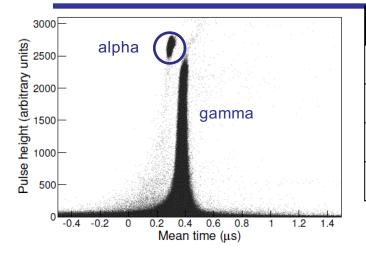
Alpha Spectra Inc. (AS) *Measurement not finished for blank slots Beijing Hamamatsu Inc (BH).

- ✓ AS crystals show high light-yields
- Astrograde powder-made crystals show low K-40 levels, e.g Nal-003, Nal-008.

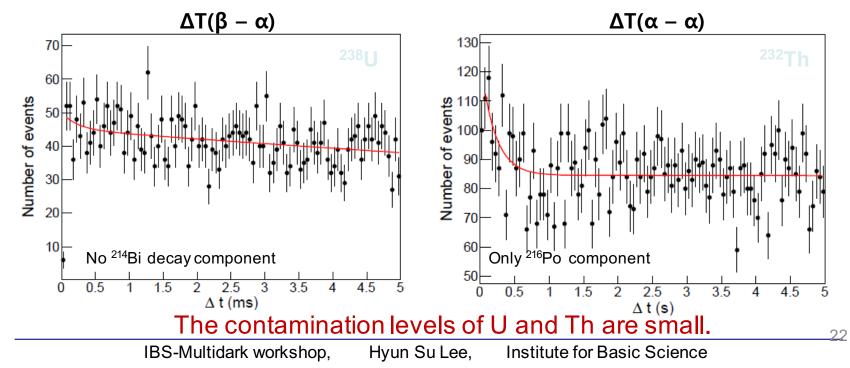

Tube and cap for calibration

Before installation 5" PMT

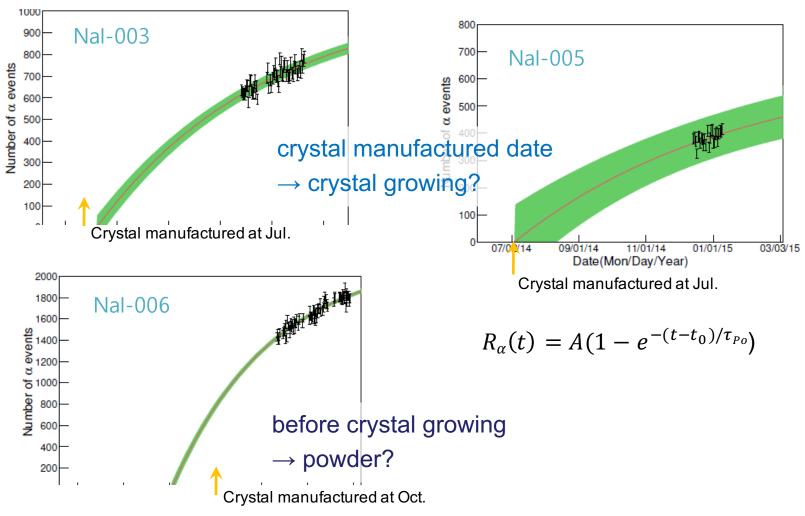
After installation 5" PMT



Temperature sensor



Internal background – ²³⁸U, ²³²Th


Nal-001 (mBq/kg)	Nal-002 (mBq/kg)	
<0.0003	< 0.0015	
< 0.013	0.002±0.001	
3.28±0.01	1.76±0.01	
3.29±0.01	1.77±0.01	
	<0.0003 <0.013 3.28±0.01	

DAMA, ²³⁸U: 0.009-0.13 (mBq/kg) ²³²Th: 0.002-0.03 ²¹⁰Pb: 0.005-0.03

Internal background – ²¹⁰Pb

- Most of alphas are coming from ²¹⁰Pb
- We can estimate crystal manufactured date using alpha rate change.

