From E_8 -inspired SUSY trinification to a L-R symmetric theory

A. P. Morais^{1,2}

M. O. P. Sampaio¹ J. Wessen² J. E. Camargo-Molina² A. Ordell² R. Pasechnik²

¹Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

> ²Theoretical High Energy Physics (THEP) Lund University, Lund, Sweden

> > July 4, 2016

SUSY 2016 — The University of Melbourne

Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Conclusions and outlook

Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Conclusions and outlook

Main features (Glashow, Georgi and De Rujula 1984),

- ullet LR gauge interactions and well motivated by E_6
- $SU(3)_L \times SU(3)_R \times SU(3)_C$ with $\mathfrak{Z}_3 \to$ gauge unification

Main features (Glashow, Georgi and De Rujula 1984)

- LR gauge interactions and well motivated by E₆
- $SU(3)_L \times SU(3)_R \times SU(3)_C$ with $\mathfrak{Z}_3 \to$ gauge unification
- All matter can be elegantly arranged in bi-fundamental representations for each generation

$$\mathbf{27}^{i} = \left(\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}\right)^{i} \otimes \left(\mathbf{1}, \mathbf{3}, \overline{\mathbf{3}}\right)^{i} \otimes \left(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3}\right)^{i} \equiv L \otimes \mathcal{Q}_{R} \otimes \mathcal{Q}_{L}$$

- The model can accomodate any quark and lepton masses and mixing angles (Sayre et al. 2006)
- Naturally light neutrinos via radiative seesaw with split-SUSY (Cauet et al. 2011)

Main features (Glashow, Georgi and De Rujula 1984)

- LR gauge interactions and well motivated by E₆
- $SU(3)_L \times SU(3)_R \times SU(3)_C$ with $\mathfrak{Z}_3 \to$ gauge unification
- All matter can be elegantly arranged in bi-fundamental representations for each generation

$$27^{i} = \left(3, \overline{3}, 1\right)^{i} \otimes \left(1, 3, \overline{3}\right)^{i} \otimes \left(\overline{3}, 1, 3\right)^{i} \equiv L \otimes Q_{R} \otimes Q_{L}$$

- The model can accomodate any quark and lepton masses and mixing angles (Sayre et al. 2006)
- Naturally light neutrinos via radiative seesaw with split-SUSY (Cauet et al. 2011)
- ullet Gauge symmetry preserves baryon number o Stable proton. (Achiman and Stech, 1978) (Glashow and Kang 1984)
- Well motivated as low energy versions of $E_8 \times E_8$ heterotic string theory (Gross et al. 1985), E_6 orbifold (Braam et al. 2010) or N=8 supergravity (Cremmer et al. 1979).

Issues of standard trinification

- GUT scale lepton masses through the $L \cdot L \cdot L$ operator
 - Higher dimensional operators or large Higgs representations (Cauet et al. 2011)
 - Unnatural tunning among theory parameters

Issues of standard trinification

- ullet GUT scale lepton masses through the $L \cdot L \cdot L$ operator
 - Higher dimensional operators or large Higgs representations (Cauet et al. 2011)
 - Unnatural tunning among theory parameters
- Considerable amount of particles and many couplings involved
 - Realistic calculations cumbersome
- Unmotivated Hierarchy between the trinification and the EW breaking scales (common to most GUTs)

Issues of standard trinification

- GUT scale lepton masses through the L · L · L operator
 - Higher dimensional operators or large Higgs representations (Cauet et al. 2011)
 - Unnatural tunning among theory parameters
- Considerable amount of particles and many couplings involved
 - Realistic calculations cumbersome
- Unmotivated Hierarchy between the trinification and the EW breaking scales (common to most GUTs)

Trinification-based models were left as the least developed GUT scenarios

Our proposal

Novel solution including

- igoplus A new $SU(3)_F$ flavour global symmetry **inspired** by E_8
- Unification of the Higgs and lepton sectors via a common chiral supermultiplet

Our aim: Fix the lepton masses problem and show that the vacuum is stable

Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Conclusions and outlook

The Model

$SU(3)_F \times E_6$ is a maximal subgroup of E_8

• Branching rules for the fundamental representation of E_8 (Slansky)

$$248 = (8,1) \oplus (1,78) \oplus (3,27) \oplus (\overline{3},\overline{27})$$

Branching rules for the adjoint representation of E₆ down to trinification

78 = (**8**, **1**, **1**)
$$\oplus$$
 (**1**, **8**, **1**) \oplus (**1**, **1**, **8**) \oplus (**3**, **3**, $\overline{\textbf{3}}$) \oplus ($\overline{\textbf{3}}$, $\overline{\textbf{3}}$, **3**)

- (i) Tri-triplets do not couple to standard matter at tree-level
- (ii) For proof of concept we consider $(3, \overline{27})$ -plet heavy (for now)
- (iii) For simplicity SU(3)_F is global in our study (for now!)

The Model

$SU(3)_F \times E_6$ is a maximal subgroup of E_8

Branching rules for the fundamental representation of E₈ (Slansky)

$$248 = (8,1) \oplus (1,78) \oplus (3,27) \oplus (\overline{3},\overline{27})$$

Branching rules for the adjoint representation of E₆ down to trinification

$$78 = (8, 1, 1) \oplus (1, 8, 1) \oplus (1, 1, 8) \oplus (3, 3, \overline{3}) \oplus (\overline{3}, \overline{3}, 3)$$

- (i) Tri-triplets do not couple to standard matter at tree-level
- (ii) For proof of concept we consider $(\overline{3}, \overline{27})$ -plet heavy (for now!)
- (iii) For simplicity SU(3)_F is global in our study (for now!)

$$[SU(3)_L \times SU(3)_R \times SU(3)_C] \times \mathcal{Z}_3 \times SU(3)_F$$
 ,

 \bullet \mathfrak{Z}_3 is a permutation symmetry that guarantees gauge coupling unification

Chiral Supermultiplet Fields					
Superfield		SU(3) _C	SU(3) _L	$SU(3)_R$	SU(3) _F
Lepton	$(L^i)^l_r$	1	3^{l}	$\bar{3}_r$	3^{i}
Right-Quark	$(Q_R^i)^r_{x}$	$\bar{3}_{x}$	1	3 ^r	3^i
Left-Quark	$\left(Q_L^i ight)^x{}_l$	3 ^x	$ar{f 3}_l$	1	3^{i}
Colour-adjoint	Δ^a_C	8 ^a	1	1	1
Left-adjoint	Δ_L^a	1	8^{a}	1	1
Right-adjoint	Δ_R^a	1	1	8 ^a	1
Flavour-adjoint	Δ_F^a	1	1	1	8 ^a

Gauge Supermultiplet Fields					
Superfield		SU(3) _C	SU(3) _L	$SU(3)_R$	SU(3) _F
Gluon	$G_C^{\mu a}$, λ_C^a	8 ^a	1	1	1
Left-Gluon	$G_L^{\mu a}$, λ_L^a	1	8^{a}	1	1
Right-Gluon	$G_R^{\mu a}$, λ_R^a	1	1	8 ^a	1

Fundamental tri-triplets:

$$\left(L^{i}\right)^{l}{}_{r} = \left(\begin{array}{ccc}H_{11} & H_{12} & \nu_{L}\\H_{21} & H_{22} & e_{L}\\\nu_{R} & e_{R} & \Phi\end{array}\right)^{i}, \\ \left(Q_{R}^{i}\right)^{r}{}_{x} = \left(\begin{array}{ccc}u_{R}^{\bar{1}} & u_{R}^{\bar{2}} & u_{R}^{\bar{3}}\\d_{R}^{\bar{1}} & d_{R}^{\bar{2}} & d_{R}^{\bar{3}}\\D_{R}^{\bar{1}} & D_{R}^{\bar{2}} & D_{R}^{\bar{3}}\end{array}\right)^{i}, \\ \left(Q_{L}^{i}\right)^{x}{}_{l} = \left(\begin{array}{ccc}u_{L}^{1} & d_{L}^{1} & D_{L}^{1}\\u_{L}^{2} & d_{L}^{2} & D_{L}^{2}\\u_{L}^{3} & d_{L}^{3} & D_{L}^{3}\end{array}\right)^{i}$$

\mathfrak{Z}_3 cyclic permutations:

$$L\stackrel{\mathcal{Z}_3}{ o}Q_{
m L}$$
, $Q_{
m L}\stackrel{\mathcal{Z}_3}{ o}Q_{
m R}$, $Q_{
m R}\stackrel{\mathcal{Z}_3}{ o}L$.

$$\begin{split} W &= \sum_{A=L,R,C} \left(\lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left(\lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left(\underline{Q}_L^i \right)^x {}_l \left(\underline{Q}_R^j \right)^r {}_x \left(\underline{L}^k \right)^l {}_r \,, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[\left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and $k \rightarrow$ flavour indices
- \bullet x, l and $r \rightarrow$ colour, left-chirality and right-chirality respectively
- a, b and $c \rightarrow$ adjoint indices.
- One single Yukawa coupling for standard matter, λ_{27}

$$\begin{split} W &= \sum_{A=L,R,C} \left(\lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left(\lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left(\underline{Q}_L^i \right)^x {}_l \left(\underline{Q}_R^j \right)^r {}_x \left(\underline{L}^k \right)^l {}_r \,, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[\left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and $k \rightarrow$ flavour indices
- \bullet x, l and $r \rightarrow$ colour, left-chirality and right-chirality respectively
- a, b and $c \rightarrow$ adjoint indices.
- One single Yukawa coupling for standard matter, λ₂₇
- In a minimal E_6 -inspired model with flavour $SU(3)_F$ the superpotential would be just the last term

$$\begin{split} W &= \sum_{A=L,R,C} \left(\lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left(\lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_F^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left(Q_L^i \right)^x {}_l \left(Q_R^j \right)^r {}_x \left(L^k \right)^l {}_r, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[\left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and $k \rightarrow$ flavour indices
- \bullet x, l and $r \rightarrow$ colour, left-chirality and right-chirality respectively
- a, b and $c \rightarrow$ adjoint indices.
- One single Yukawa coupling for standard matter, λ₂₇
- In a minimal E_6 -inspired model with flavour $SU(3)_F$ the superpotential would be just the last term
 - Why then E₈?
 - Minimal SUSY trinification with SU(3)_F and Higgs-lepton unification does not have a stable vacuum → SU(3)_C and SU(2)_L fully broken at GUT scale

$$\begin{split} W &= \sum_{A=L,R,C} \left(\lambda_{78} d_{abc} \Delta_A^a \Delta_A^b \Delta_A^c + \mu_{78} \delta_{ab} \Delta_A^a \Delta_A^b \right) + \left(\lambda_1 d_{abc} \Delta_F^a \Delta_F^b \Delta_C^c + \mu_1 \delta_{ab} \Delta_F^a \Delta_F^b \right) \\ &+ \lambda_{27} \varepsilon_{ijk} \left(\underline{Q}_L^i \right)^x {}_l \left(\underline{Q}_R^j \right)^r {}_x \left(\underline{L}^k \right)^l {}_r \,, \quad \text{with} \quad d_{abc} = 2 \text{Tr} \left[\left\{ T_a, T_b \right\} T_c \right] \end{split}$$

- i, j and $k \rightarrow$ flavour indices
- \bullet x, l and $r \rightarrow$ colour, left-chirality and right-chirality respectively
- a, b and $c \rightarrow$ adjoint indices.
- One single Yukawa coupling for standard matter, λ₂₇
- In a minimal E₆-inspired model with flavour SU(3)_F the superpotential would be just the last term
 - Why then E_8 ?
 - Minimal SUSY trinification with $SU(3)_F$ and Higgs-lepton unification does not have a stable vacuum $\rightarrow SU(3)_C$ and $SU(2)_L$ fully broken at GUT scale
- *E*₈-inspired trinification is the minimal SUSY working model!

Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Conclusions and outlook

Symmetry breaking

Scalar potential

$$V = V_{\mathcal{F}} + V_{\mathcal{D}} + V_{\text{soft}}$$
 (F – terms from the superpotential)

Symmetry breaking

Scalar potential

$$V = V_{\mathcal{F}} + V_{\mathcal{D}} + V_{\text{soft}}$$
 (F – terms from the superpotential)

(1) D-terms

$$\begin{split} V_{\mathcal{D}} &= -\frac{1}{2} g_{U}^{2} \left\{ \sum_{c} \left(\tilde{\Delta}_{L}^{a*} f_{abc} \tilde{\Delta}_{L}^{b} \right) \left(\tilde{\Delta}_{L}^{d*} f_{dec} \tilde{\Delta}_{L}^{e} \right) \right. \\ &\left. - \mathrm{i} \left(\tilde{\Delta}_{L}^{a*} f_{abc} \tilde{\Delta}_{L}^{b} \right) \left[\left(\tilde{L}_{i}^{*} \right)^{r_{1}} l_{1} \left(T^{c} \right)^{l_{1}} l_{2} \left(\tilde{L}^{i} \right)^{l_{2}} r_{1} - \left(\tilde{Q}_{L}^{i} \right)^{x_{1}} l_{3} \left(T^{c} \right)^{l_{3}} l_{2} \left(\tilde{Q}_{Li}^{*} \right)^{l_{2}} x_{1} \right] \right\} \\ &\left. + \frac{1}{2} g_{U}^{2} \left[T^{a} \right]^{l_{1}} l_{2} \left[T_{a} \right]^{l_{3}} l_{4} \left[\left(\tilde{L}_{i}^{*} \right)^{r_{1}} l_{1} \left(\tilde{L}^{i} \right)^{l_{2}} r_{1} \left(\tilde{L}_{j}^{*} \right)^{r_{2}} l_{3} \left(\tilde{L}^{i} \right)^{l_{4}} r_{2} \right. \\ &\left. + \left(\tilde{Q}_{L}^{i} \right)^{x_{1}} l_{1} \left(\tilde{Q}_{Li}^{*} \right)^{l_{2}} x_{1} \left(\tilde{Q}_{L}^{i} \right)^{x_{2}} l_{3} \left(\tilde{Q}_{Lj}^{*} \right)^{l_{4}} x_{2} \right. \\ &\left. - 2 \left(\tilde{L}_{i}^{*} \right)^{r_{1}} l_{1} \left(\tilde{L}^{i} \right)^{l_{2}} r_{1} \left(\tilde{Q}_{L}^{j} \right)^{x_{2}} l_{3} \left(\tilde{Q}_{Lj}^{*} \right)^{l_{4}} x_{2} \right] \right. \\ &\left. + \left(\mathcal{Z}_{3} \right. \text{permutations} \right) \end{split}$$

- D-term interactions between adjoint and fundamental scalars

(2) Soft SUSY-breaking terms

$$\begin{split} V_{\text{soft}}^{\text{gauge}} &= m_{27}^2 \left[\left(\tilde{L}^i \right)^l{}_r \left(\tilde{L}^*_i \right)^r{}_l \right] + \delta_{ab} \left[b_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b + m_{78}^2 \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b + c.c \right] \\ &+ d_{abc} \left[A_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b \tilde{\Delta}_L^c + C_{78} \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b \tilde{\Delta}_L^c + c.c. \right] \\ &+ A_G \left[\tilde{\Delta}_L^a \left(T_a \right)_{l_1}^{l_2} \left(\tilde{L}^*_i \right)^r{}_{l_1} \left(\tilde{L}^i \right)^{l_2}{}_r + c.c. \right] \\ &+ A_{27} \left[\varepsilon_{ijk} \left(\tilde{Q}_L^i \right)^x{}_l \left(\tilde{Q}_R^j \right)^r{}_x \left(\tilde{L}^k \right)^l{}_r + c.c. \right] + \mathcal{Z}_3 \text{ permutations} \end{split}$$

$$\begin{split} V_{\text{soft}}^{\text{global}} &= \delta_{ab} \left[b_1^2 \tilde{\Delta}_F^a \tilde{\Delta}_F^b + m_1^2 \tilde{\Delta}_F^{*a} \tilde{\Delta}_F^b + c.c \right] + A_1 d_{abc} \left[\tilde{\Delta}_F^a \tilde{\Delta}_F^b \tilde{\Delta}_F^c + c.c. \right] \\ &+ A_F \left[\tilde{\Delta}_F^a \left(T_a \right)_j^i \left(\tilde{L}_i^* \right)^r {}_l \left(\tilde{L}^l \right)^l {}_r + c.c. \right] + \mathcal{Z}_3 \text{ permutations} \end{split}$$

(2) Soft SUSY-breaking terms

$$\begin{split} V_{\text{soft}}^{\text{gauge}} &= m_{27}^2 \left[\left(\tilde{L}^i \right)^l{}_r \left(\tilde{L}^*_i \right)^r{}_l \right] + \delta_{ab} \left[b_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b + m_{78}^2 \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b + c.c \right] \\ &+ d_{abc} \left[A_{78} \tilde{\Delta}_L^a \tilde{\Delta}_L^b \tilde{\Delta}_L^c + C_{78} \tilde{\Delta}_L^{*a} \tilde{\Delta}_L^b \tilde{\Delta}_L^c + c.c. \right] \\ &+ A_G \left[\tilde{\Delta}_L^a \left(T_a \right)_{l_1}^{l_2} \left(\tilde{L}^*_i \right)^r{}_{l_1} \left(\tilde{L}^i \right)^{l_2}{}_r + c.c. \right] \\ &+ A_{27} \left[\varepsilon_{ijk} \left(\tilde{Q}_L^i \right)^x{}_l \left(\tilde{Q}_R^i \right)^r{}_x \left(\tilde{L}^k \right)^l{}_r + c.c. \right] + \mathcal{Z}_3 \text{ permutations} \end{split}$$

$$\begin{split} V_{\text{soft}}^{\text{global}} &= \delta_{ab} \left[b_{1}^{2} \tilde{\Delta}_{F}^{a} \tilde{\Delta}_{F}^{b} + m_{1}^{2} \tilde{\Delta}_{F}^{*a} \tilde{\Delta}_{F}^{b} + c.c \right] + A_{1} d_{abc} \left[\tilde{\Delta}_{F}^{a} \tilde{\Delta}_{F}^{b} \tilde{\Delta}_{C}^{c} + c.c. \right] \\ &+ A_{F} \left[\tilde{\Delta}_{F}^{a} \left(T_{a} \right)_{j}^{i} \left(\tilde{L}_{i}^{*} \right)^{r} {}_{l} \left(\tilde{L}_{j}^{i} \right)^{l} {}_{r} + c.c. \right] + \mathcal{Z}_{3} \text{ permutations} \end{split}$$

- Only fundamental VEVs ⇒ Unstable vacuum
- Need adjoint VEVs to have a stable minimum

Vacuum choice:

• Assign vevs to $\tilde{\Delta}_L^a$, $\tilde{\Delta}_R^a$ (gauge breaking) and $\tilde{\Delta}_F^a$ (flavour breaking):

Vacuum choice:

- Assign vevs to $\tilde{\Delta}_L^a$, $\tilde{\Delta}_R^a$ (gauge breaking) and $\tilde{\Delta}_F^a$ (flavour breaking):
- Eight component of SU(3) generators T⁸

$$T_{\mathrm{L,R,F}}^{8} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & -2 \end{pmatrix},$$

• Choosing $\langle \tilde{\Delta}_{L,R}^8 \rangle = v$ and $\langle \tilde{\Delta}_F^8 \rangle = v_F$ we break trinification to a rank-6 LR effective model:

$$\begin{split} &[SU(3)_C \times SU(3)_L \times SU(3)_R] \times \mathcal{Z}_3 \times SU(3)_F \longrightarrow \\ &SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_L \times U(1)_R \times SU(2)_F \times U(1)_F \end{split}$$

Vacuum choice:

- Assign vevs to $\tilde{\Delta}_L^a$, $\tilde{\Delta}_R^a$ (gauge breaking) and $\tilde{\Delta}_F^a$ (flavour breaking):
- Eight component of SU(3) generators T^8

$$T_{\mathrm{L,R,F}}^{8} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & -2 \end{pmatrix},$$

• Choosing $\langle \tilde{\Delta}_{L,R}^8 \rangle = \nu$ and $\langle \tilde{\Delta}_F^8 \rangle = \nu_F$ we break trinification to a rank-6 LR effective model:

$$\begin{split} &[SU(3)_{\textbf{C}} \times SU(3)_{\textbf{L}} \times SU(3)_{\textbf{R}}] \times \mathfrak{Z}_{3} \times \textcolor{black}{SU(3)_{\textbf{F}}} \longrightarrow \\ &SU(3)_{\textbf{C}} \times SU(2)_{\textbf{L}} \times SU(2)_{\textbf{R}} \times U(1)_{\textbf{L}} \times U(1)_{\textbf{R}} \times \textcolor{black}{SU(2)_{\textbf{F}}} \times U(1)_{\textbf{F}} \end{split}$$

Minimization:

- Positive mass spectrum for the full scalar sector→STABLE MINIMUM
- 2 8 gauge goldstones in the adjoint sector

$$\left|D^{\mu}\left\langle \tilde{\Delta}_{L,R}^{b}
ight
angle
ight|^{2}=rac{3}{4}g_{U}^{2}v^{2}\sum_{a=4}^{7}\eta_{\mu
u}G_{L,R}^{\mu a}G_{L,R}^{
u a}\,,$$

 4 flavour goldstones (absorbed by flavour gauge bosons or decouple according to Burgess [hep-ph/9812468])

Fermion masses

Scalar-fermion terms

$$\mathcal{L}^{\textit{fermion}} = \mathcal{L}^{\textit{fermion}}_{\mathcal{F}} + \mathcal{L}^{\textit{fermion}}_{\mathcal{D}} + \mathcal{L}^{\textit{fermion}}_{\textit{soft}} \qquad (F-terms \ from \ the \ superpotential)$$

No F-term interactions mixing adjoint and fundamental sectors

Fermion masses

Scalar-fermion terms

$$\mathcal{L}^{\textit{fermion}} = \mathcal{L}^{\textit{fermion}}_{\mathcal{F}} + \mathcal{L}^{\textit{fermion}}_{\mathcal{D}} + \mathcal{L}^{\textit{fermion}}_{\textit{soft}} \qquad (F-\textit{terms from the superpotential})$$

No F-term interactions mixing adjoint and fundamental sectors

D-terms

$$\begin{split} \mathcal{L}_{\mathcal{D}}^{\text{fermion}} &= -\sqrt{2} g_{U} \left[\left(\tilde{L}_{i}^{*} \right)^{r}_{l_{1}} \left(T^{a} \right)^{l_{1}}_{l_{2}} \left(L^{i} \right)^{l_{2}}_{r} \tilde{\lambda}_{L}^{a} + \left(\tilde{L}_{i}^{*} \right)^{r_{1}}_{l} \left(T^{a} \right)^{r_{2}}_{r_{1}} \left(L^{i} \right)^{l}_{r_{2}} \tilde{\lambda}_{R}^{a} \right. \\ & \left. - \mathrm{i} f_{abc} \tilde{\Delta}_{L}^{*b} \tilde{\Delta}_{L}^{c} \tilde{\lambda}_{L}^{a} \right] + \left(\mathcal{Z}_{3} \text{ permutations} \right). \end{split}$$

Soft SUSY-breaking terms

$$\mathcal{L}_{\rm soft}^{\rm fermion} = -\frac{1}{2} \textit{M}_0 \delta_{ab} \tilde{\lambda}_L^a \tilde{\lambda}_L^b - \textit{M}_0^\prime \delta_{ab} \tilde{\lambda}_L^a \Delta_L^b + \textit{h.c.} + (\mathcal{Z}_3 \text{ permutations}) \, ,$$

• The model naturally contains Dirac gaugino mass terms

# of Weyl spinors	(mass) ²	Fermionic components
$81(=27\times3)$	0	$L^{(1,2,3)}$, $Q_L^{(1,2,3)}$, $Q_R^{(1,2,3)}$
1	$\frac{1}{6}\left(v_F^2\lambda_1^2 - 2\sqrt{6}v_F\lambda_1\mu_1 + 6\mu_1^2\right)$	Δ_F^8
3	$\frac{1}{6} \left(v_F^2 \lambda_1^2 - 2\sqrt{6} v_F \lambda_1 \mu_1 + 6 \mu_1^2 \right) \\ \frac{1}{6} \left(v_F^2 \lambda_1^2 + 2\sqrt{6} v_F \lambda_1 \mu_1 + 6 \mu_1^2 \right)$	$\Delta_F^{1,2,3}$
4	$\frac{1}{24} \left(v_F^2 \lambda_1^2 - 4 \sqrt{6} v_F \lambda_1 \mu_1 + 24 \mu_1^2 \right)$	$\Delta_F^{4,5,6,7}$
8 gluinos?	$\frac{1}{2}\left(X_{C}^{8}-\sqrt{Y_{C}^{8}+Z_{C}^{8}}\right)$	$\left(ilde{\lambda}^a_C$, $\Delta^a_C ight)\equiv ilde{g}^a$
8	$\frac{1}{2}\left(X_{C}^{8}+\sqrt{Y_{C}^{8}+Z_{C}^{8}}\right)$	$\left(ilde{\lambda}^a_C$, $\Delta^a_C ight)\equiv ilde{g}^a_\perp$
2	$\frac{1}{24}\left(X_{L,R}^{1}-\sqrt{Y_{L,R}^{1}+Z_{L,R}^{1}}\right)$	$\left(ilde{\lambda}_{L,R}^{8}$, $\Delta_{L,R}^{8} ight)\equiv S_{L,R}$
2	$\frac{1}{24}\left(X_{L,R}^{1}+\sqrt{Y_{L,R}^{1}+Z_{L,R}^{1}}\right)$	$\left(ilde{\lambda}_{L,R}^{8}$, $\Delta_{L,R}^{8} ight)\equiv S_{L,R}^{\perp}$
6	$\frac{1}{24}\left(X_{L,R}^{3}-\sqrt{Y_{L,R}^{3}+Z_{L,R}^{3}}\right)$	$\left(ilde{\lambda}_{L,R}^{1,2,3}$, $\Delta_{L,R}^{1,2,3} ight)\equiv T_{L,R}$
6	$\frac{1}{24}\left(X_{L,R}^{3}+\sqrt{Y_{L,R}^{3}+Z_{L,R}^{3}}\right)$	$\left(ilde{\lambda}_{L,R}^{1,2,3}$, $\Delta_{L,R}^{1,2,3} ight)\equiv T_{L,R}^{\perp}$
8	$\left(X_{L,R}^2-\sqrt{Y_{L,R}^2+Z_{L,R}^2}\right)^{-1}$	$\left(\Delta_{L,R}^{4,6}$, $\Delta_{L,R}^{5,7}$, $\widetilde{\lambda}_{L,R}^{4,6}$, $\widetilde{\lambda}_{L,R}^{5,7} ight)\equiv ilde{\mathcal{H}}_{L,R}$
8	$\left(X_{L,R}^2 + \sqrt{Y_{L,R}^2 + Z_{L,R}^2}\right)$	$ \begin{pmatrix} \Delta_{L,R}^{4,6} , \Delta_{L,R}^{5,7} , \tilde{\lambda}_{L,R}^{4,6} , \tilde{\lambda}_{L,R}^{5,7} \end{pmatrix} \equiv \tilde{\mathcal{H}}_{L,R} $ $ \begin{pmatrix} \Delta_{L,6}^{4,6} , \Delta_{L,R}^{5,7} , \tilde{\lambda}_{L,R}^{4,6} , \tilde{\lambda}_{L,R}^{5,7} \end{pmatrix} \equiv \tilde{\mathcal{H}}_{L,R}^{\perp} $

- X, Y and Z are functions of the theory parameters
- $\bullet \ \, \text{Massless SM fermions} {\rightarrow} \ \, \text{due to } SU(3)_F$

- For each parameter point there is at least one stable vacuum solution
- Natural fermion mass hierarchy up to 16 orders of magnitude

Outline

- Motivations and issues
- 2 The Model
- Symmetry breaking
- Conclusions and outlook

ullet Develop a E_8 -inspired GUT trinification model containing a flavour $SU(3)_F$

- > Solved the multi-TeV lepton mass problem
- > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
- > Minimal (well motivated) SUSY version with a stable vacuum
 - Unless Non-SUSY version that works with just fundamental 27-plets!
 see Jonas talk Thursday 15h00

ullet Develop a E_8 -inspired GUT trinification model containing a flavour $SU(3)_F$

- > Solved the multi-TeV lepton mass problem
- > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
- > Minimal (well motivated) SUSY version with a stable vacuum
 - Unless Non-SUSY version that works with just fundamental 27-plets!
 see Jonas talk Thursday 15h00
- Diverse scenarios for effective models can be studied (future work)
 - Integrate out heavy DOF
 - > Fundamental fermions massless and adjoint ones allow large hierarchies
 - Certain scalars need to be lighter than the matching scale in order to consistently break the remaining symmetry

Develop a E₈-inspired GUT trinification model containing a flavour SU(3)_F

- > Solved the multi-TeV lepton mass problem
- > Elegantly unified Higgs with leptons, gauge and Yukawa couplings
- Minimal (well motivated) SUSY version with a stable vacuum
 - Unless Non-SUSY version that works with just fundamental 27-plets!
 see Jonas talk Thursday 15h00

Diverse scenarios for effective models can be studied (future work)

- Integrate out heavy DOF
- > Fundamental fermions massless and adjoint ones allow large hierarchies
- Certain scalars need to be lighter than the matching scale in order to consistently break the remaining symmetry
- A vast landscape for a rich phenomenology

Higgs-slepton and squark masses

# of real d.o.f.'s	$(mass)^2$	Scalar components
8	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(A_G v + 2 A_F v_F \right)$	$ ilde{oldsymbol{v}}_R^{(3)}$, $ ilde{e}_R^{(3)}$, $ ilde{oldsymbol{v}}_L^{(3)}$, $ ilde{e}_L^{(3)}$
2	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(4A_G v + 2A_F v_F \right)$	$ ilde{\Phi}^{(3)}$
8	$m_{27}^2 + \frac{1}{\sqrt{6}} \left(2A_G v - 2A_F v_F \right)$	$H_{11}^{(3)}$, $H_{21}^{(3)}$, $H_{12}^{(3)}$, $H_{22}^{(3)}$
4	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(4A_G v - A_F v_F \right)$	$\tilde{\Phi}^{(1,2)}$
16	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(A_G v - A_F v_F \right)$	$ ilde{oldsymbol{v}}_R^{(1,2)}$, $ ilde{e}_R^{(1,2)}$, $ ilde{oldsymbol{v}}_L^{(1,2)}$, $ ilde{e}_L^{(1,2)}$
16	$m_{27}^2 + \frac{1}{\sqrt{6}} \left(2A_G v + A_F v_F \right)$	$H_{11}^{(1,2)}$, $H_{21}^{(1,2)}$, $H_{12}^{(1,2)}$, $H_{22}^{(1,2)}$
24	$m_{27}^2 + \frac{1}{\sqrt{6}} \left(A_G v - 2 A_F v_F \right)$	$ ilde{u}_L^{(3)}$, $ ilde{d}_L^{(3)}$, $ ilde{u}_R^{(3)}$, $ ilde{d}_R^{(3)}$
12	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(2A_G v + 2A_F v_F \right)$	$ ilde{D}_L^{(3)}$, $ ilde{D}_R^{(3)}$
48	$m_{27}^2 + \frac{1}{\sqrt{6}} \left(A_G v + A_F v_F \right)$	$ ilde{u}_L^{(1,2)}$, $ ilde{d}_L^{(1,2)}$, $ ilde{u}_R^{(1,2)}$, $ ilde{d}_R^{(1,2)}$
24	$m_{27}^2 - \frac{1}{\sqrt{6}} \left(2A_G v + A_F v_F \right)$	$ ilde{D}_L^{(1,2)}$, $ ilde{D}_R^{(1,2)}$

$$\left(\begin{array}{c|c|c} H_{11} & H_{12} & \nu_L \\ H_{21} & H_{22} & e_L \\ \hline \nu_R & e_R & \varphi \end{array} \right)^{(1,2|3)}, \left(\begin{array}{c|c|c} u_R^{\bar{1}} & u_R^{\bar{2}} & u_R^{\bar{3}} \\ d_R^{\bar{1}} & d_R^{\bar{2}} & d_R^{\bar{3}} \\ \hline D_R^{\bar{1}} & D_R^{\bar{2}} & D_R^{\bar{3}} \end{array} \right)^{(1,2|3)}, \left(\begin{array}{c|c|c} u_L^1 & d_L^1 & D_L^1 \\ u_L^2 & d_L^2 & D_L^2 \\ u_L^3 & d_L^3 & D_L^3 \end{array} \right)^{(1,2|3)},$$

Adjoint scalar masses

$$\mathbf{8}
ightarrow \mathbf{3}_0 \oplus \mathbf{2}_1 \oplus \mathbf{2}_{-1} \oplus \mathbf{1}_0$$
 ,

# of real d.o.f.'s	(mass) ²	Scalar components
12	0	$Re[ilde{\Delta}^{4,5,6,7}_{L,R,F}]$
3	$\sqrt{\frac{2}{3}} \frac{v_F}{2} (3\lambda_1 \mu_1 + A_1)$	$Re[\tilde{\Delta}_F^{1,2,3}]$
1	$\frac{v_F}{12} \left(2v_F \lambda_1^2 - 3\sqrt{6}\lambda_1 \mu_1 - \sqrt{6}A_1 \right)$	$Re[ilde{\Delta}_F^8]$
1	$-2b_1 + \frac{v_F}{12} \left(\sqrt{6} \lambda_1 \mu_1 + 3\sqrt{6} A_1 \right)$	$\mathit{Im}[ilde{\Delta}_F^8]$
4	$-2b_1 + \frac{v_F}{12} \left(2\sqrt{6}\lambda_1 \mu_1 - v_F \lambda_1^2 + 2\sqrt{6}A_1 \right)$	$Im[ilde{\Delta}_F^{4,5,6,7}]$
3	$-2b_1 + \frac{v_F}{12} \left(5\sqrt{6}\lambda_1 \mu_1 + 2v_F \lambda_1^2 - \sqrt{6}A_1 \right)$	$Im[\tilde{\Delta}_F^{1,2,3}]$
6	$\sqrt{\frac{2}{3}}\frac{v}{2}\left(3\lambda_{78}\mu_{78}+A_{78}+3C_{78}\right)$	$Re[ilde{\Delta}_{L,R}^{1,2,3}]$
8	$\frac{v}{12}\left(-v\lambda_{78}^2+3\sqrt{6}\lambda_{78}\mu_{78}+\sqrt{6}A_{78}+3\sqrt{6}C_{78}\right)$	$Re[\tilde{\Delta}_C^{1,\cdots,8}]$
2	$\frac{v}{12} \left(2v\lambda_{78}^2 - 3\sqrt{6}\lambda_{78}\mu_{78} - \sqrt{6}A_{78} - 3\sqrt{6}C_{78} \right)$	$Re[ilde{\Delta}^8_{L,R}]$
2	$-2b_{78} + \frac{\sqrt{6}}{12}v\left(\lambda_{78}\mu_{78} + 3A_{78} + C_{78}\right)$	$\mathit{Im}[ilde{\Delta}^8_{L,R}]$
8 L-R Higgs?	$-2b_{78} + \frac{3}{4}g_U^2v^2 + \frac{v^2}{12}\lambda_{78}^2 + \frac{\sqrt{6}}{6}v\left(\lambda_{78}\mu_{78} + A_{78} + C_{78}\right)$	$Im[ilde{\Delta}^{4,5,6,7}_{L,R}]$
8	$-2b_{78} + \frac{v^2}{12}\lambda_{78}^2 + \frac{\sqrt{6}}{12}v\left(3\lambda_{78}\mu_{78} + A_{78} + 3C_{78}\right)$	$Im[\tilde{\Delta}_C^{1,\cdots,8}]$
6	$-2b_{78} + \frac{v^2}{6}\lambda_{78}^2 + \frac{\sqrt{6}}{12}v\left(5\lambda_{78}\mu_{78} - A_{78} + 5C_{78}\right)$	$Im[\tilde{\Delta}_{L,R}^{1,2,3}]$