Radiative Left-Right symmetry breaking from flavour enhanced trinification

Jonas Wessén¹

J. E. Camargo-Molina¹ A. P. Morais^{1,2} R. Pasechnik¹

¹Dept. of Astronomy and Theoretical Physics Lund University, Lund, Sweden

²Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

July 7, 2016

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim$ 20 free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- \bullet Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- \bullet Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- \bullet Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

2 / 20

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- $\bullet\,$ Scalars and fermions form bi-triplet gauge representations, which fit into the 27 rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

2 / 20

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- \bullet Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

2 / 20

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

- The Standard Model (SM) is experimentally amazingly succesful, but contains theoretical issues, e.g.:
 - $\bullet~\sim 20$ free parameters is not so elegant!
 - Why 3 families with large mass hierarchies? (e.g. $m_u/m_t \sim 10^{-5},$ $m_e/m_\tau \sim 10^{-4})$
- We postulate a high scale GUT based on the trinification gauge group $[{\rm SU}(3)]^3\times\mathbb{Z}_3,$ which is a maximal subgroup of ${\rm E}_6.$
- Scalars and fermions form bi-triplet gauge representations, which fit into the ${\bf 27}$ rep of ${\rm E}_6.$
- A global family symmetry ${\rm SU}(3)_{\rm F}$ is imposed which can be interpreted as originating from ${\rm E}_8 \to {\rm E}_6 \times {\rm SU}(3)$. This leads to a very constrained model with 12 free parameters!
- Trinification is spontaneously broken at tree-level to a smaller Left-Right symmetric (LR) gauge group.
- Integrating out the heavy fields leads to an effective LR model. Upon RG running down towards the electro-weak scale, the gauge group is broken to the SM gauge group due a sign flip in a squared scalar mass.
- See arxiv:1606.03492 for more details!

$\begin{array}{ccc} \mathsf{Gauge} & \mathsf{Global} \\ [\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}} \times \mathrm{SU}(3)_{\mathrm{C}}] \times \mathbb{Z}_{3} \times \{\mathrm{SU}(3)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{A}} \times \mathrm{U}(1)_{\mathrm{B}}\} \\ & \downarrow & (\mathrm{tree-level}) \\ \mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{L+R}} \times \{\mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{X}} \times \mathrm{U}(1)_{\mathrm{Z}} \times \mathrm{U}(1)_{\mathrm{B}}\} \\ & \downarrow & (\mathrm{radiative}) \\ \mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \times \{\mathrm{U}(1)_{\mathrm{D}} \times \mathrm{U}(1)_{\mathrm{E}} \times \mathrm{U}(1)_{\mathrm{G}} \times \mathrm{U}(1)_{\mathrm{B}}\} \\ & \downarrow & (\mathrm{radiative}) \\ \mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \times \{\mathrm{U}(1)_{\mathrm{D}} \times \mathrm{U}(1)_{\mathrm{E}} \times \mathrm{U}(1)_{\mathrm{G}} \times \mathrm{U}(1)_{\mathrm{B}}\} \\ & \downarrow & (\mathrm{radiative}) \\ \mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{U}(1)_{\mathrm{E.M.}} \times \{(?) \times \mathrm{U}(1)_{\mathrm{B}}\} \end{array}$

	$SU(3)_L$	SU(3) _R	SU(3) _C	(SU(3) _F)
Left-handed				
Weyl Fermions				
L	3	3	1	3
$Q_{ m L}$	3	1	3	3
$Q_{ m R}$	1	3	3	3
Scalars				
Ĩ	3	3	1	3
$ ilde{Q}_{ m L}$	3	1	3	3
$ ilde{Q}_{ m R}$	1	3	3	3
Gauge Bosons				
$G_{\rm L}$	8	1	1	1
$G_{ m R}$	1	8	1	1
$G_{ m C}$	1	1	8	1

The \mathbb{Z}_3 refers to a cyclic permutation of the fields $\{L, Q_L, Q_R\}$, $\{\tilde{L}, \tilde{Q}_L, \tilde{Q}_R\}$ and $\{G_L, G_R, G_C\}$, and enforces gauge coupling unification.

Unification of Yukawa couplings

Before SSB, all fermions are massless and only one Yukawa term is allowed:

$$\mathcal{L}_{\mathrm{F}} = -y \, \epsilon_{ijk} \, (\tilde{\mathcal{L}}^{i})^{\prime}{}_{r} \, (\mathcal{Q}_{\mathrm{L}}{}^{j})^{c}{}_{l} \, (\mathcal{Q}_{\mathrm{R}}{}^{k})^{r}{}_{c} + \mathrm{c.c.} + (\mathbb{Z}_{3} \text{ permutations}).$$

Scalar potential: $V_{\rm S} = V_1 + V_2 + V_3$ with

$$\begin{split} \mathbf{V}_{1} &= -\mu^{2} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{*}_{i})_{l}{}^{r} + \lambda_{1} \left[(\tilde{L}^{i})^{\prime}{}_{r} (\tilde{L}^{*}_{i})_{l}{}^{r} \right]^{2} \\ &+ \lambda_{2} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{j})^{\prime'}{}_{r'} (\tilde{L}^{*}_{j})_{l}{}^{r} (\tilde{L}^{*}_{i})_{l'}{}^{r'} \\ &+ \lambda_{3} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{j})^{\prime'}{}_{r'} (\tilde{L}^{*}_{i})_{l'}{}^{r'} (\tilde{L}^{*}_{j})_{l'}{}^{r'} \\ &+ \lambda_{4} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{j})^{\prime'}{}_{r'} (\tilde{L}^{*}_{j})_{l'}{}^{r'} (\tilde{L}^{*}_{j})_{l'}{}^{r'} \\ &+ (\mathbb{Z}_{3} \text{ permutations}), \\ \mathbf{V}_{2} &= \alpha_{1} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{*}_{i})_{l'}{}^{r'} (\tilde{Q}_{L}{}^{j})^{c}{}_{l'} (\tilde{Q}_{L}^{*}_{L})_{c}{}^{l'} \\ &+ \alpha_{2} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{*}_{j})_{l'}{}^{r'} (\tilde{Q}_{L}{}^{j})^{c}{}_{l'} (\tilde{Q}_{L}^{*})_{c}{}^{l'} \\ &+ \alpha_{3} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{L}^{*}_{j})_{l'}{}^{r'} (\tilde{Q}_{L}{}^{j})^{c}{}_{l} (\tilde{Q}_{L}^{*})_{c}{}^{l'} \\ &+ \alpha_{4} \left(\tilde{L}^{i}\right)^{\prime}{}_{r} (\tilde{Q}_{j}{}^{i})_{l'}{}^{r'} (\tilde{Q}_{L}{}^{j}{}^{c})_{c} (\tilde{Q}_{L}^{*})_{c}{}^{l'} \\ &+ (\mathbb{Z}_{3} \text{ permutations}), \\ \mathbf{V}_{3} &= \gamma \epsilon_{ijk} (\tilde{L}^{i})^{\prime}{}_{r} (\tilde{Q}_{L}{}^{j})^{c}{}_{l} (\tilde{Q}_{R}{}^{*})^{c}{}_{c} + \text{c.c.} \end{split}$$

 $V_{
m S}$ has a minimum where

$$\langle (\tilde{L}^{i})'_{r} \rangle = \delta_{3}^{i} \delta_{3}^{\prime} \delta_{r}^{3} \frac{v_{3}}{\sqrt{2}} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{v_{3}}{\sqrt{2}} \end{array} \right)^{i=3}$$

This is equivalent to putting the VEV in either $\tilde{Q}_{\rm L}$ or $\tilde{Q}_{\rm R}$ due to the \mathbb{Z}_3 symmetry.

Scalar mass eigenstates.						
Fields	(Mass) ²	Comment				
$(\tilde{L}')^L_R$	$-(\lambda_2+\lambda_3+\lambda_4) v_3^2$					
$(\tilde{L}')^3_R$	$-(\lambda_2+\lambda_3)v_3^2$					
$(\tilde{L}^3)^L_R$	$-(\lambda_3+\lambda_4)v_3^2$					
$(\tilde{L}')^L_3$	$-(\lambda_2+\lambda_4)v_3^2$					
$\operatorname{Re}[(\tilde{L}^3)^3_3]$	$2(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4) v_3^2$					
$\operatorname{Im}[(\tilde{L}^3)^3_3]$	0	Gauge Goldstone				
$(\tilde{L}^3)^L_3$	0	Gauge Goldstone				
$(\tilde{L}^3)^3_R$	0	Gauge Goldstone				
$(\tilde{L}')^3_3$	0	Global Goldstone				

Scalar mass eigenstates:

 $(+ \; {\sf All} \; ilde Q_{
m L,R} \; {\sf get} \; {\sf masses} \; {\sf of} \; \mathcal{O}(v_3))$

Fermion mass eigenstates:					
Fields	(Mass) ²	Comment			
$\frac{\left(\begin{array}{c}\left(Q_{\rm L}^{\ \prime}\right)^{c}{}_{3}\right)}{\epsilon^{\prime\prime}\left(Q_{\rm R}^{\dagger}{}_{J}\right)_{3}{}^{c}}\right)$	$\frac{1}{2}y^2v_3^2$	${\rm SU}(2)_{\rm F}$ doublet			

Table: Among the fermions, 1 exotic flavour doublet heavy quark gets a (Dirac) mass. All others are massless at this stage.

The low-scale effective Left-Right symmetric theory

For ${\rm SU}(2)_{\rm R} \times {\rm U}(1)_{\rm L+R} \to {\rm U}(1)_{\rm Y}$ breaking we need a vev in

$$\tilde{R}'_R \equiv (\tilde{L}')^3_R$$

Also need at least one ${\rm SU}(2)_{\rm L}$ doublet to trigger EWSB ${\rm SU}(2)_{\rm L}\times {\rm U}(1)_{\rm Y}\to {\rm U}(1)_{\rm E.M.}$, e.g.

$$\tilde{h}^L_R \equiv (\tilde{L}^3)^L_R$$

We define

$$\begin{split} m_R^2 &= -(\lambda_3 + \lambda_2) \, v_3^2 &\equiv \epsilon \, v_3^2, \\ m_h^2 &= -(\lambda_3 + \lambda_4) \, v_3^2 &\equiv \delta \, v_3^2. \end{split}$$

and integrate out all heavy states except \tilde{h}^L_R and \tilde{R}^I_R , assuming $\delta, \epsilon \ll 1$.

	$\rm SU(2)_L$	${ m SU}(2)_{ m R}$	$\rm SU(3)_{C}$	$\mathrm{U}(1)_{\mathrm{L+R}}$	$(\mathrm{SU}(2)_{\mathrm{F}})$	(X, Z, B)
Scalars						
ĥ	2	2	1	0	1	(+2, 0, 0)
Ñ	1	2	1	1	2	(-1, 1, 0)
- Õ	1	1	1	0	2	(-2, 1, 0)

$$\begin{split} V_{S}^{LR} &= m_{h}^{2} |\tilde{h}|^{2} + m_{R}^{2} |\tilde{R}|^{2} + m_{\Phi}^{2} |\tilde{\Phi}|^{2} \\ &+ \lambda_{a} |\tilde{h}|^{4} + \lambda_{b} |\tilde{R}|^{4} + \lambda_{c} |\tilde{\Phi}|^{4} + \lambda_{d} |\tilde{h}|^{2} |\tilde{\Phi}|^{2} + \lambda_{e} |\tilde{R}|^{2} |\tilde{\Phi}|^{2} + \lambda_{f} |\tilde{R}|^{2} |\tilde{h}|^{2} \\ &+ \lambda_{g} (\tilde{R}')_{R_{1}} (\tilde{R}_{i}^{*})^{R_{2}} (\tilde{h})^{L}{}_{R_{1}'} (\tilde{h}^{*})_{L}{}^{R_{2}'} \quad \epsilon^{R_{1}R_{1}'} \epsilon_{R_{2}R_{2}'} \\ &+ \lambda_{h} (\tilde{R}^{I_{1}})_{R} (\tilde{R}_{j_{1}}^{*})^{R} \tilde{\Phi}^{I_{2}} \tilde{\Phi}_{j_{2}}^{*} \quad \epsilon_{I_{1}I_{2}} \epsilon^{J_{1}J_{2}} \\ &+ \lambda_{i} (\tilde{R}^{I_{1}})_{R_{1}} (\tilde{R}^{I_{2}})_{R_{1}'} (\tilde{R}_{j_{1}}^{*})^{R_{2}} (\tilde{R}_{j_{2}}^{*})^{R_{2}'} \quad \epsilon_{I_{1}I_{2}} \epsilon^{J_{1}J_{2}} \epsilon_{R_{2}R_{2}'} \epsilon^{R_{1}R_{1}'} \\ &+ \lambda_{j} (\tilde{h})^{L_{1}}_{R_{1}} (\tilde{h})^{L_{1}'}_{R_{1}'} (\tilde{h}^{*})_{L_{2}}{}^{R_{2}} (\tilde{h}^{*})_{L_{2}'}{}^{R_{2}'} \quad \epsilon_{L_{1}L_{1}'} \epsilon^{L_{2}L_{2}'} \epsilon_{R_{2}R_{2}'} \epsilon^{R_{1}R_{1}'} \end{split}$$

$$\begin{split} m_h^2 &= \delta v_3^2 \quad , \quad m_R^2 = \varepsilon v_3^2 \quad , \quad m_{\overline{\Phi}}^2 = 0 \\ \lambda_a &= \lambda_1 - \lambda_3 - \varepsilon - \delta - \frac{(\lambda_1 - \lambda_3 - \varepsilon)^2}{\lambda_1 - \lambda_3 - \varepsilon - \delta} \approx -2\delta + \mathcal{O}(\varepsilon^2, \varepsilon \delta, \delta^2) \\ \lambda_b &= \lambda_1 - \lambda_3 - \varepsilon - \delta - \frac{(\lambda_1 - \lambda_3 - \delta)^2}{\lambda_1 - \lambda_3 - \varepsilon - \delta} \approx -2\varepsilon + \mathcal{O}(\varepsilon^2, \varepsilon \delta, \delta^2) \\ \lambda_c &= 0 \quad , \quad \lambda_d = 0 \quad , \quad \lambda_e = 0 \\ \lambda_f &= 2 \left[\lambda_1 + \lambda_3 - \frac{(\lambda_1 - \lambda_3 - \varepsilon)(\lambda_1 - \lambda_3 - \delta)}{\lambda_1 - \lambda_3 - \varepsilon - \delta} \right] \approx 4\lambda_3 + \mathcal{O}(\varepsilon^2, \varepsilon \delta, \delta^2) \\ \lambda_g &= -2\lambda_3 \\ \lambda_h &= 0 \\ \lambda_i &= \frac{1}{2}\varepsilon \\ \lambda_j &= \frac{1}{2}\delta \end{split}$$

A diagrammatic procedure for matching at a higher loop order is cumbersome due to the large number of scalar fields. See arxiv:1606.07069 for tools for 1-loop matching exploiting the 1-loop effective potential.

Fermion sector in the Left-Right symmetric theory:

$$\begin{split} \mathcal{L}_{\mathrm{F}}^{(LR)} &= \mathbf{Y}_{\alpha} \left(\tilde{R}_{I}^{*} \right)^{R} \left(I_{\mathrm{R}}^{I} \right)_{R} \Phi^{s} \\ &+ \mathbf{Y}_{\beta} \left(\tilde{R}_{I}^{*} \right)^{R} \left(I_{\mathrm{R}}^{s} \right)_{R} \Phi^{I} \\ &+ \mathbf{Y}_{\gamma} \left(\tilde{R}^{I} \right)_{R} \left(\mathcal{Q}_{\mathrm{R}}^{J} \right)^{R} D_{\mathrm{L}}^{s} \epsilon_{IJ} \end{split}$$

$$+ Y_{\delta} (\tilde{h}^{*})_{L}^{R} (H^{s})_{R}^{L} \Phi^{s}$$

$$+ Y_{\epsilon} (\tilde{h}^{*})_{L}^{R} (I_{\mathrm{L}}^{s})^{L} (I_{\mathrm{R}}^{s})_{R}$$

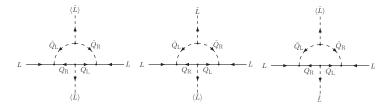
$$+ Y_{\zeta} (\tilde{h})_{R}^{L} (Q_{\mathrm{L}}^{I})_{L} (Q_{\mathrm{R}}^{J})^{R} \epsilon_{IJ}$$

$$+ Y_{\eta} \tilde{\Phi}^{*}_{I} \Phi^{I} \Phi^{s}$$

$$+ \frac{m_{\Phi^s}}{2} \Phi^s \Phi^s \qquad + \text{c.c.}$$

Tree-level matching: $Y_{\gamma} = -Y_{\zeta} = y$, and the rest vanish.

 $Y_{\alpha,\beta,\epsilon}$ and m_{Φ^s} are generated at 1-loop due to the "squarks":



and Y_{δ} at 2-loop.

 \Rightarrow We get a hierarchy among the low-energy Yukawa couplings since they are generated at different loop orders!

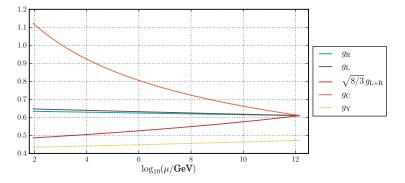


Figure: A trinification gauge coupling $g\sim 0.6$ at a matching/unification scale $\mu\sim 10^{12}{\rm GeV}$ leads to roughly the values of the SM gauge couplings at the electro-weak scale.

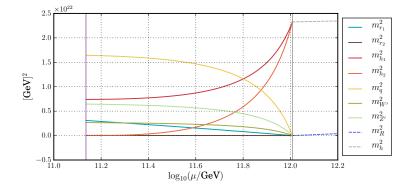
16 / 20

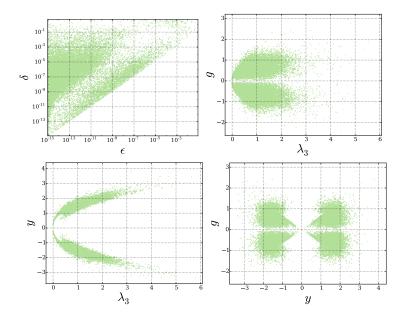
To study the model in the IR, we use the RGE to run down the model parameters. If m_R^2 runs negative, we generate a vev in $\tilde{R}^I{}_R$, i.e. we radiatively break $SU(2)_R \times U(1)_{L+R} \rightarrow U(1)_Y$.

A sign flip in m_R^2 is possible due to the Higgs bi-doublet:

$$\begin{aligned} (4\pi)^2 \beta_{m_R^2} &= 4 \left(2\lambda_f + \lambda_g \right) m_h^2 \\ &+ \left(2|Y_\beta|^2 + 6|Y_\gamma|^2 + 2|Y_\alpha|^2 + 20\lambda_b - 8\lambda_i - 6g_{\rm L+R}^2 - \frac{9}{2}g_{\rm R}^2 \right) m_R^2 \\ &- 4|Y_\alpha|^2 m_{\Phi^s}^2 \end{aligned}$$

(Computation of β -functions and numerical running were performed using pyr@te)





19 / 20

- Tree-level trinification breaking → The SM gauge group is generated radiatively at a much lower scale (for large regions in parameter space)
- A hierarchy in the low-scale Yukawa couplings stems from that they are generated at different loop levels
- The low scale quark sector is similar to that of the SM (but at present, it is unclear to what extent the SM lepton sector is recovered)
- Future work: full 1-loop analysis
- If the true SM is generated at low energies, the model offers a rich phenomenology with many new fields waiting to be discovered at the LHC or future colliders

- Tree-level trinification breaking → The SM gauge group is generated radiatively at a much lower scale (for large regions in parameter space)
- A hierarchy in the low-scale Yukawa couplings stems from that they are generated at different loop levels
- The low scale quark sector is similar to that of the SM (but at present, it is unclear to what extent the SM lepton sector is recovered)
- Future work: full 1-loop analysis
- If the true SM is generated at low energies, the model offers a rich phenomenology with many new fields waiting to be discovered at the LHC or future colliders

- Tree-level trinification breaking → The SM gauge group is generated radiatively at a much lower scale (for large regions in parameter space)
- A hierarchy in the low-scale Yukawa couplings stems from that they are generated at different loop levels
- The low scale quark sector is similar to that of the SM (but at present, it is unclear to what extent the SM lepton sector is recovered)
- Future work: full 1-loop analysis
- If the true SM is generated at low energies, the model offers a rich phenomenology with many new fields waiting to be discovered at the LHC or future colliders

- Tree-level trinification breaking → The SM gauge group is generated radiatively at a much lower scale (for large regions in parameter space)
- A hierarchy in the low-scale Yukawa couplings stems from that they are generated at different loop levels
- The low scale quark sector is similar to that of the SM (but at present, it is unclear to what extent the SM lepton sector is recovered)

• Future work: full 1-loop analysis

• If the true SM is generated at low energies, the model offers a rich phenomenology with many new fields waiting to be discovered at the LHC or future colliders

- Tree-level trinification breaking → The SM gauge group is generated radiatively at a much lower scale (for large regions in parameter space)
- A hierarchy in the low-scale Yukawa couplings stems from that they are generated at different loop levels
- The low scale quark sector is similar to that of the SM (but at present, it is unclear to what extent the SM lepton sector is recovered)
- Future work: full 1-loop analysis
- If the true SM is generated at low energies, the model offers a rich phenomenology with many new fields waiting to be discovered at the LHC or future colliders