Impact of Jet Veto Resummation on Slepton Searches

Frank Tackmann (DESY), Wouter Waalewijn (UvA Amsterdam), LZ, [arXiv:1603.03052]

Lisa Zeune

Nikhef, Amsterdam

SUSY 2016, Melbourne 05.07.2016

Introduction

- Several searches for new physics at the LHC require a fixed number of signal jets and veto additional jets with $p_T > p_T^{cut}$
- Jet vetoes introduce logarithms in the cross section ⇒ **Resummation**

$$\begin{split} \sigma(p_T^{\mathsf{cut}}) \sim \sigma_0 \times (1 + \alpha_s \left[L^2 + L + c_1 \right] & \text{Large logarithms} \\ &+ \alpha_s^2 \left[L^4 + L^3 + L^2 + L + c_2 \right] & L = \ln(p_T^{\mathsf{cut}}/Q) \\ &+ \dots & \downarrow & \downarrow &) \\ &\text{LL NLL} & \end{split}$$

Introduction

- Several searches for new physics at the LHC require a fixed number of signal jets and veto additional jets with $p_T > p_T^{cut}$
- Jet vetoes introduce logarithms in the cross section ⇒ Resummation

$$\sigma(p_T^{\text{cut}}) \sim \sigma_0 \times (1 + \alpha_s [L^2 + L + c_1] \qquad \text{Large logarithms} \\ + \alpha_s^2 [L^4 + L^3 + L^2 + L + c_2] \qquad L = \ln(p_T^{\text{cut}}/Q) \\ + \dots \qquad \downarrow \qquad \downarrow \qquad) \\ \text{LL NLL} \qquad \text{Higgs production (0 jets)}$$

• Sizeable effect in Higgs production

 $\begin{array}{l} p_T^{\rm veto}\sim 30~{\rm GeV}\\ {\rm Higgs:}~Q\sim 125~{\rm GeV}\\ {\rm New~physics:}~Q\sim 1000~{\rm GeV} \end{array}$

Jet veto effect more significant for new physics processes!

Page 3 | Lisa Zeune | Impact of Jet Veto Resummation on Slepton Searches

Introduction

- Several searches for new physics at the LHC require a fixed number of signal jets and veto additional jets with $p_T > p_T^{cut}$
- Jet vetoes introduce logarithms in the cross section ⇒ **Resummation**

$$\begin{split} \sigma(p_T^{\mathsf{cut}}) &\sim \sigma_0 \times (1 + \alpha_s \left[L^2 + L + c_1 \right] & \text{Large logarithms} \\ &+ \alpha_s^2 \left[L^4 + L^3 + L^2 + L + c_2 \right] & L = \ln(p_T^{\mathsf{cut}}/Q) \\ &+ \dots & \downarrow & \downarrow \\ &\text{LL NLL} &) \end{split}$$

- The experimental analyses take the jet-veto cut into account using parton shower Monte Carlos
 - → Uncertainty introduced by jet vetoes is not considered in the experimental exclusion limits
- Focussing on slepton searches, we present results for the 0-jet cross section at NLL'+NLO and estimate the jet veto uncertainty

8 TeV BSM searches using jet vetoes

- Electroweakino and slepton searches typically requiring 0 jets
 ATLAS: 1407.0350, 1403.5294, 1501.07110, 1509.07152, CMS: 1405.7570
- Stop and sbottom searches vetoing a third jet ATLAS: 1308.2631, 1506.08616, CMS: CMS-PAS-SUS-13-018

 Searches for large extra dimensions, unparticles and dark matter: mono-photon, mono-Z, mono-jet
 ATLAS: 1209.4625, 1404.0051, CMS: 1408.3583, 1511.09375, CMS-PAS-EXO-12-047

SUSY searches at the LHC

Example analysis [.]		Signal region definitions			
$\frac{\mathbf{L} \times \mathbf{L} $	·	SR	$m_{ m T2}^{90}$	WWa	
AILAS & IEV 20.3 TD *		lepton flavour	DF,SF	DF,SF	
JHEP 05 (2014) 071, 1403.5294	(central light jets	0	0	
- Jet veto	ł	central b -jets	0	0	
 Targeting EVVkino and Slepton 	L	forward jets	0	0	
production ^l		$ m_{\ell\ell} - m_Z $ [GeV]	> 10	> 10	
p $\tilde{\ell}$ $\tilde{\nu}^0$		$m_{\ell\ell} \; [{ m GeV}]$		< 120	
χ_1		$E_{\rm T}^{\rm miss, rel} [{\rm GeV}]$		> 80	
$\tilde{\ell}$ $\tilde{\chi}_1^0$		$p_{\mathrm{T},\ell\ell} \; [\mathrm{GeV}]$		> 80	
p		$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 90		
l			I	1	

- All jets with $p_T > 20 \text{ GeV}$ are vetoed
- Very similar for other analyses, also CMS

Results

	$\mathrm{SR} ext{-}m_{\mathrm{T2}}^{90}$		
	\mathbf{SF}	\mathbf{DF}	
Expected background			
Total	38.2 ± 5.1	23.3 ± 3.7	
Observed events	33	21	
Observed $\sigma_{\rm vis}^{95}$ [fb]	0.63	0.55	

SUSY searches at the LHC

Setting exclusion limits

- One specific SUSY model is considered, typically a simplified model
- For each parameter point $\sigma_{vis} = \sigma_{SUSY} \times \epsilon_{SUSY}^{(SR)}$ is calculated and compared to σ_{vis}^{95} (for the signal region with highest expected sensitivity)

Page 7 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

SUSY searches at the LHC

Setting exclusion limits

- One specific SUSY model is considered, typically a simplified model
- For each parameter point $\sigma_{\rm vis} = \sigma_{\rm SUSY} \times \epsilon_{\rm SUSY}^{(SR)}$ is calculated and compared to $\sigma_{\rm vis}^{95}$ (for the signal region with highest expected sensitivity)

• <u>Model dependent exclusion limit:</u>

- ϵ^(SR)_{SUSY} including the jet veto cut is
 obtained from parton shower
 Monte Carlo
 - Captures the leading logs
 - No control over jet-veto uncertainty

Factorization and resummation in SCET

PDFs Initial-state radiation Hard scattering Final-state radiation Soft radiation

- Calculations with multiple scales lead to large logarithms, e.g. $\alpha_s \ln^2 \frac{p_T^{cur}}{O}$
- Factorization: separate the physics associated with the different scales

$$d\sigma = H \times BB \times S \times \prod J_i \quad (B = \mathcal{I} \times f)$$

- Each component depend only on one scale, e.g. H(Q) contains $\alpha_s \ln^2 \frac{\mu}{Q} \rightarrow Remove \log s$ by natural scale choice $\mu \rightarrow \mu_H = Q$
- Resummation: Use RGEs to obtain all ingredients (H, B, S, J) at a common scale $H(\mu, Q) \simeq \exp \left[\alpha_s \ln^2 \frac{Q^2}{\mu^2} + \dots \right] H(\mu_H = Q, Q)$

Page 9 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Factorization formula

- We calculate the 0-jet slepton cross section at NLL'+NLO
- Utilize the SCET framework developed for Higgs $p_T^{\rm cut}$ resummation
- Factorization formula

Stewart, Tackmann, Walsh, Zuberi, 1206.4312, 1307.1808; See also: Becher, Neubert, Rothen, 1205.3806, 1307.0025

 $\begin{aligned} \sigma_0(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) &= \int \mathrm{d}Q^2 \,\mathrm{d}Y \, H_{q\bar{q}}(Q^2, Y, m_{\text{SUSY}}, \text{cuts}) \\ &\times B_q(p_T^{\text{cut}}, x_a) \, B_{\bar{q}}(p_T^{\text{cut}}, x_b) \, S_{q\bar{q}}(p_T^{\text{cut}}) + \sigma_0^{\text{nons}}(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) \end{aligned}$

Order	H, B, \boldsymbol{S}	γ_F^i	$\Gamma^i_{\rm cusp},\beta$
LL	LO		1-loop
NLL	LO	1-loop	2-loop
NLL'	NLO	1-loop	2-loop
NNLL	NLO	2-loop	3-loop

Factorization formula

- We calculate the 0-jet slepton cross section at NLL'+NLO
- Utilize the SCET framework developed for Higgs $p_T^{\rm cut}$ resummation
- Factorization formula

Stewart, Tackmann, Walsh, Zuberi, 1206.4312, 1307.1808; See also: Becher, Neubert, Rothen, 1205.3806, 1307.0025

 $\begin{aligned} \sigma_0(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) &= \int \mathrm{d}Q^2 \,\mathrm{d}Y \, H_{q\bar{q}}(Q^2, Y, m_{\text{SUSY}}, \text{cuts}) \\ &\times B_q(p_T^{\text{cut}}, x_a) \, B_{\bar{q}}(p_T^{\text{cut}}, x_b) \, S_{q\bar{q}}(p_T^{\text{cut}}) + \sigma_0^{\text{nons}}(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) \end{aligned}$

• Beam and soft functions obtained from Drell-Yan Stewa

Liu, Petriello, 1210.1906; Stewart, Tackmann, Walsh, Zuberi, 1307.1808

• Hard function: $H_{q\bar{q}}(Q^2, m_{\text{SUSY}}, \mu) = \sigma_B(1 + V)$ Virtual corrections

Born cross section

Page 11 | Lisa Zeune | Impact of Jet Veto Resummation on Slepton Searches

Factorization formula

- We calculate the 0-jet slepton cross section at NLL'+NLO
- Utilize the SCET framework developed for Higgs $p_T^{\rm cut}$ resummation
- Factorization formula

Stewart, Tackmann, Walsh, Zuberi, 1206.4312, 1307.1808; See also: Becher, Neubert, Rothen, 1205.3806, 1307.0025

 $\sigma_{0}(p_{T}^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) = \int dQ^{2} \, dY \, H_{q\bar{q}}(Q^{2}, Y, m_{\text{SUSY}}, \text{cuts}) \\ \times B_{q}(p_{T}^{\text{cut}}, x_{a}) \, B_{\bar{q}}(p_{T}^{\text{cut}}, x_{b}) \, S_{q\bar{q}}(p_{T}^{\text{cut}}) + \sigma_{0}^{\text{nons}}(p_{T}^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) \\ \downarrow \\ \text{matching with fixed order}$

Non-singular contributions obtained using Madgraph

$$\begin{split} \sigma(p_T^{\mathsf{cut}}) \sim \sigma_0 \times (1 + \alpha_s \left[L^2 + L + c_1 \right] & \text{Large logarithms} \\ & + \alpha_s^2 [L^4 + L^3 + L^2 + L + c_2] & L = \ln(p_T^{\mathsf{cut}}/Q) \\ & + \dots & \downarrow & \downarrow \\ & \text{LL NLL} &) \end{split}$$

Page 12 | Lisa Zeune | Impact of Jet Veto Resummation on Slepton Searches

Profile scales

- Resummation region: canonical scales (minimizing logarithms)
- Fixed-order region: common fixed order scale (resummation turned off)
- Smooth transition between resummation and fixed order region using profile scales: $\mu_H = \nu_B = \mu_{\rm FO},$

Ligeti, Stewart, Tackmann, 0807.1926; Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080

$$\mu_H = \nu_B = \mu_{\rm FO},$$

$$\mu_B = \mu_S = \nu_S = \mu_{\rm FO} \times f_{\rm run} \left(p_T^{\rm cut} / (2m_{\tilde{\ell}}) \right)$$

Stewart, Tackmann, Walsh, Zuberi, 1307.1808

Page 13 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Theory uncertainties

- Fixed-order as well as resummation uncertainties estimated by profile scale variations
- Fixed-order and resummation uncertainties added in quadrature
- Follows the procedure developed for Higgs production

Stewart, Tackmann, Walsh, Zuberi, 1307.1808

Page 14 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Results at 8 TeV

- Parameter point at the edge of the current exclusion limit: $m_{\tilde{\ell}} = 250 \text{ GeV}$
- Experimental value $p_T^{\text{cut}} = 20$ GeV deep in resummation region
- Comparing NLL'+NLO to NLL: Good convergence and substantial reduction of theory uncertainties

Impact on current exclusion limits

- Analysis gives σ_{vis}^{95} which is compared to $\sigma_{vis} = \sigma_{SUSY} \times \epsilon_{SUSY}^{(SR)}$
- Define the <u>upper limit on the 0-jet cross section</u>:

- $\sigma_{0,\text{vis}}^{95}$ is defined without reconstruction efficiencies and acceptance cuts
- $\epsilon_{\rm SUSY}^{\rm (SR-noJV)}$ is calculated with the codes

ATOM Kim, Papucci, Sakurai, Weiler (in preparation)

and CheckMATE: Drees, Dreiner, Kim, Schmeier, Tattersall, 1312.2591

- → Codes to estimate efficiencies taking detector effects into account
- → Many implemented and validated analyses

Page 16 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Impact on current exclusion limits

ATLAS, 1403.5294

- Exclusion limit by ATLAS takes into account theory uncertainty on total cross section (including PDF uncertainty), but not the jet veto uncertainty
- Parton showers at best NLL: Jet veto uncertainty could easily be as large as our NLL uncertainty
- Even our NLL'+NLO result (without PDF uncertainty) has larger uncertainty than ATLAS
 Page 17 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Impact on current exclusion limits

- At NLL the exclusion limits would be noticeably weaker:
 - ightarrow Down to \sim 270 GeV for left-handed sleptons (compared to \sim 305 GeV)
 - ightarrow Down to \sim 210 GeV for right-handed sleptons (compared to \sim 245 GeV)
- Central values are similar

Caution: 5-10% uncertainty on central value from ATOM and CheckMATE

Page 18 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Results at 13 TeV

p_T^{cut} dependence for a slepton mass of 500 GeV:

• Higher slepton mass leads to larger logarithms in the cross section

 \rightarrow Increase of perturbative uncertainties compared to $m_{\tilde{\ell}} = 250$ GeV (8 TeV)

Page 19 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Results at 13 TeV

<u>Slepton mass dependence for two fixed values of p_T^{cut} :</u>

• Perturbative uncertainties increase with slepton mass

Page 20 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Results at 13 TeV

Slepton mass dependence for two fixed values of p_T^{cut} :

- Perturbative uncertainties increase with slepton
- PDF uncertainties:
 - PDF4LHC15 recommendations
 - → Perturbative uncertainties still larger but become comparable for $p_T^{\text{cut}} = 100 \text{ GeV}$

Page 21 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

 Uncertainties for $p_T^{cut} = 25 \text{ GeV}$

 300 GeV
 1000 GeV

 NLL
 24 %
 38 %

 NLL'+NLO
 6 %
 11 %

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - → Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - → Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Note: Fuks, Klasen, Lamprea, Rothering, 1304.0790, 1310.2621; Broggio, Neubert, Vernazza, 1111.6624; Bozzi, Fuks, Klasen, 0701202 Threshold resummation for the total slepton production cross section has been studied - small effect for currently tested values of slepton masses

Page 23 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Next step:

Extend our analysis to other new physics processes, including also those with final-state jets

Page 24 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Backup Slides

Correlations of jet veto with other cuts

- Beam and soft function depend on jet veto, whereas hard function depends on other cuts
- Correlations via the common variables Q and Y?

Correlations of jet veto with other cuts

- Beam and soft function depend on jet veto, whereas hard function depends on other cuts
- Correlations via the common variables Q and Y?
 Other cuts do not affect the Q and Y shape
 - \Rightarrow Factor them out and treat them as Q and Y independent correction

Nonsingular contributions

• We include $O(p_T^{\text{cut}}/Q)$ suppressed non singular contributions to reproduce the full NLO result at large p_T^{cut} Set all scales in NLL' result

$$\sigma_0^{\text{nons}}(p_T^{\text{cut}}) = \int_{\epsilon \to 0}^{p_T^{\text{cut}}} \mathrm{d}p_T^{\text{jet}} \left(\frac{\mathrm{d}\sigma_0^{\text{FO}}}{\mathrm{d}p_T^{\text{jet}}} - \frac{\mathrm{d}\sigma_0^{\text{sing}}}{\mathrm{d}p_T^{\text{jet}}}\right)$$

Set all scales in NLL' result equal to the fixed-order scale Generate $pp \rightarrow \tilde{\ell}\tilde{\ell} + j$ events in Madgraph

$$\text{Fit: } \frac{\mathrm{d}\sigma_0^{\text{nons}}}{\mathrm{d}p_T^{\text{jet}}} = a \ln \frac{p_T^{\text{jet}}}{2m_{\tilde{\ell}}} + b + c \frac{p_T^{\text{jet}}}{2m_{\tilde{\ell}}} \ln \frac{p_T^{\text{jet}}}{2m_{\tilde{\ell}}} + d \frac{p_T^{\text{jet}}}{2m_{\ell}}$$

Page 28 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Theory uncertainties

- Variation of the transition points 14 variations ⇒ take the maximum
- Independent variations of beam and soft scales. Combinations within canonical restrictions.
 35 variations ⇒ take the maximum
- Fixed-order as well as resummation uncertainties estimated by profile scale variations Stewart, Tackmann, Walsh, Zuberi, 1307.1808
- Fixed-order and resummation uncertainties added in quadrature

Page 29 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Slepton production

• Now $\mathcal{B}(\tilde{\ell} \to \ell \chi_1^0) = 1$ allows us to consider slepton production without decay

Tree-level:

QCD corrections are clearly bigger than SUSY-QCD corrections, especially in simplified model

NLO QCD:

NLO SUSY-QCD:

• At NLO other production modes are possible, but negligible

Page 30 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches

Hard function

$$H_{q\bar{q}}(Q^2, m_{\rm SUSY}, \mu) = \sigma_B(1+V)$$

 $V = \frac{-3(q^2)^2}{4\pi} (V_{QCD} + V_{SUSY}) + h.c.$ $V_{QCD} = -\ln^2 \left(\frac{Q^2}{\mu^2}\right) + 3\ln\left(\frac{Q^2}{\mu^2}\right) - 8 + \frac{7\pi^2}{6}$ $V_{SUSY} \text{ has no IR}$ $V_{SUSY} \text{ has no IR}$ $V_{SUSY} = 1 + \frac{2m_{\tilde{g}}^2 - 2m_{\tilde{q}}^2}{Q^2} [B_0(Q^2, m_{\tilde{q}}^2, m_{\tilde{q}}^2) - B_0(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2)] + B_0(Q^2, m_{\tilde{q}}^2, m_{\tilde{q}}^2)$ $+ 2\frac{m_{\tilde{g}}^4 + (Q^2 - 2m_{\tilde{q}}^2)m_{\tilde{g}}^2 + m_{\tilde{q}}^4}{Q^2} C_0(0, 0, Q^2, m_{\tilde{q}}^2, m_{\tilde{q}}^2)$ $+ 2\frac{m_{\tilde{g}}^4 + (Q^2 - 2m_{\tilde{q}}^2)m_{\tilde{g}}^2 + m_{\tilde{q}}^4}{Q^2} C_0(0, 0, m_{\tilde{g}}^2, m_{\tilde{q}}^2)$ $- B_0(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2) + (m_{\tilde{q}}^2 - m_{\tilde{g}}^2)B_0'(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2)$

Page 31 | Lisa Zeune | Impact of Jet Veto Resummation on SUSY Searches