Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Unraveling the CP phase of top Yukawa coupling at LHC

Pankaj Sharma

The University of Adelaide

In collaboration with

Saurabh D. Rindani and Ambresh Shivaji

arXiv:1605.03806

July 6, 2016

OUTLINE

Introduction

 \Rightarrow CP phase in top Yukawa coupling

- Constraints
 - ⇒ EDM Constraints
 - \Rightarrow Constraints from LHC
- Top Polarization
- Associated production of Higgs and top.
- Asymmetries.
- Conclusions.

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

INTRODUCTION

- Characterization of Higgs is an important task in Run II LHC,
 ⇒ May provide unique information about BSM physics
- Determination of spin and parity is crucial,
 ⇒Consistent with spin 0 particle with SM like couplings,
 ⇒Also pure pseudoscalar is disallowed,
- However, a CP admixture is still allowed,
- It is of fundamental importance to explore this information,
- Yukawa couplings of third generation fermions, particularly top quarks, are of particular interest,
- Fermionic couplings are more democratic to CP odd Higgs compared to EW gauge bosons

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

CP violating top Yukawa coupling

The most general top Yukawa coupling without imposing CP invairance can be written as

$$\mathcal{L}_{t\bar{t}h} = -y_t \ \bar{t} \ (\cos\zeta_t + i \ \gamma_5 \ \sin\zeta_t) t \ h.$$

- ζ_t is the CP violating phase,
- $\zeta_t = 0$ or $\zeta_t = \pi \Rightarrow$ a pure scalar state,
- $\zeta_t = \pi/2 \Rightarrow$ a pure pseudoscalar state,
- $0 < \zeta_t < \pi/2$, or $\pi/2 < \zeta_t < \pi$ signals CP violation,
- $\zeta_t = \pi/4$ denotes a maximally CP violating case.

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

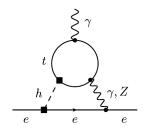
Top Yukawa Coupling

Constraints

EDM Constraints

LHC Constraints

Top Polarization


Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Constraints from Low Energy Experiments

- Upper bound on electron-EDM is $|d_e/e| < 8.7 \times 10^{-29}$ cm,
- Leads to $|\zeta_t| < 0.01$,
- However, it assumes $\kappa_e = 1$ (SM-like)
- Bound vanishes in the limit $\kappa_e \rightarrow 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Unraveling the CP phase of top Yukawa coupling at LHC

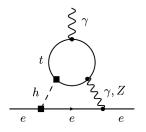
> Pankaj Sharma

The University of Adelaide

Introduction

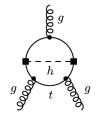
op Yukawa Coupling

Constraints


EDM Constraints

Top Polarization

Associated production


Angular distributions Asymmetries

Constraints from Low Energy Experiments

- Other low energy bound comes from neutron EDM,
- Even if $\kappa_{e,d,u} = 0$,
- Gluon operator contributes in such a scenario,
- Bound is two order magnitude weaker than electron EDM

- Upper bound on electron-EDM is $|d_e/e| < 8.7 \times 10^{-29}$ cm,
- Leads to $|\zeta_t| < 0.01$,
- However, it assumes $\kappa_e = 1$ (SM-like)
- Bound vanishes in the limit $\kappa_e \to 0$

[Brod, Haisch, Zupan], JHEP 11, 180 (2013)

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

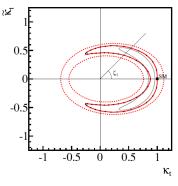
Fop Yukawa Coupling

Constraints

EDM Constraints LHC Constraints

Top Polarization

Associated production Top Polarization Angular distributions


Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Constraints from LHC

- Modifications in $t\bar{t}h$ couplings affects both $gg \rightarrow h$ production as well as $h \rightarrow \gamma \gamma$ decays,
- Effective Hgg and Hγγ couplings obtained from LHC provides stringent constraints,
- Assumption: $\kappa_f = 1$ and $\kappa_W = \kappa_Z = 1$,
- Negative value of the top Yukawa still allowed by the data

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

ntroduction

Top Yukawa Coupling

Constraints

EDM Constraints

LHC Constraints

Top Polarization

Associated production Top Polarization Angular distributions Asymmetries

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Top Polarization

- Life time $\sim 5 \times 10^{-25}$ s which is smaller than $\Lambda_{QCD} \sim 3 \times 10^{-24}$ s
- In the top-rest frame, the distribution of its decay products is

$$\frac{1}{\Gamma} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} \left(1 + \kappa P_t \cos\theta_f \right)$$

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

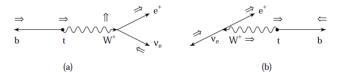
EDM Constraints

LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries


Conclusions

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Top Polarization

- Life time $\sim 5 \times 10^{-25}$ s which is smaller than $\Lambda_{QCD} \sim 3 \times 10^{-24}$ s
- In the top-rest frame, the distribution of its decay products is

$$\frac{1}{\Gamma} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} \left(1 + \kappa P_t \cos\theta_f \right)$$

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

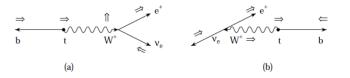
EDM Constraints

LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries


Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Top Polarization

- Life time $\sim 5 \times 10^{-25}$ s which is smaller than $\Lambda_{QCD} \sim 3 \times 10^{-24}$ s
- In the top-rest frame, the distribution of its decay products is

$$\frac{1}{\Gamma} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} \left(1 + \kappa P_t \cos\theta_f \right)$$

• The ℓ^+ and d quark are the best spin analyzers with $\kappa_{\ell^+} = \kappa_{\bar{d}} = 1$,

• Thus the ℓ^+ or d have the largest probability of being emitted in the direction of the top spin,

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Top Polarization Contd

A issue

- These distributions are defined in top-quark rest frame.
- Reconstruction of top-rest frame is difficult at LHC

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Top Polarization Contd

A issue

- These distributions are defined in top-quark rest frame.
- Reconstruction of top-rest frame is difficult at LHC

Our Prescription

- We study lab-frame distributions of top-decay products,
- Decay-lepton angular distribution is insensitive of anomalous tbW couplings at linear order,

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

cire constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Top Polarization Contd

A issue

- These distributions are defined in top-quark rest frame.
- Reconstruction of top-rest frame is difficult at LHC

Our Prescription

- We study lab-frame distributions of top-decay products,
- Decay-lepton angular distribution is insensitive of anomalous tbW couplings at linear order,

Thus, we have a pure and clean looking glass for top polarization.

$\Rightarrow \mathsf{New} \; \mathsf{Physics}$

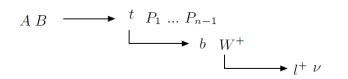
Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling


Constraints

EDM Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Lepton angular distributions are independent of anomalous tbW couplings under following assumptions:

[Godbole, Rindani], [Grzadkowski]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Line constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

$$A B \longrightarrow \begin{array}{c} t \quad P_1 \ \dots \ P_{n-1} \\ & & & \\ & & & \\ & & & b \quad W^+ \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Lepton angular distributions are independent of anomalous tbW couplings under following assumptions:

[Godbole, Rindani], [Grzadkowski]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• top is on-shell; narrow-width approximation for top,

$$|\mathcal{M}|^2 = \frac{\pi \delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{i,j} \rho(\lambda, \lambda') \Gamma(\lambda, \lambda')$$

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Erre constrainte

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

$$A B \longrightarrow \begin{array}{c} t \quad P_1 \ \dots \ P_{n-1} \\ & & & \\ & & & \\ & & & b \quad W^+ \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Lepton angular distributions are independent of anomalous tbW couplings under following assumptions:

[Godbole, Rindani], [Grzadkowski]

• top is on-shell; narrow-width approximation for top,

$$|\mathcal{M}|^2 = \frac{\pi \delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{i,j} \rho(\lambda, \lambda') \Gamma(\lambda, \lambda')$$

•
$$t \rightarrow bW(\ell \nu_{\ell})$$
 is the only decay channel,

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Erre constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

$$A B \longrightarrow \begin{array}{c} t \quad P_1 \ \dots \ P_{n-1} \\ & & & \\ & & & \\ & & & b \quad W^+ \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Lepton angular distributions are independent of anomalous tbW couplings under following assumptions:

[Godbole, Rindani], [Grzadkowski]

• top is on-shell; narrow-width approximation for top,

$$|\mathcal{M}|^2 = \frac{\pi \delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{i,j} \rho(\lambda, \lambda') \Gamma(\lambda, \lambda')$$

- $t \to b W(\ell \nu_{\ell})$ is the only decay channel,
- couplings f_{1R} , f_{2L} and f_{2R} are small,

Unraveling the CP phase of top Yukawa coupling at LHC

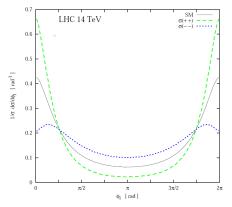
> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints


EDM Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Azimuthal distribution

We define an asymmetry

$$\mathcal{A}_{\phi}^{\ell} = \frac{\sigma(\cos\phi_{\ell} > 0) - \sigma(\cos\phi_{\ell} < 0)}{\sigma(\cos\phi_{\ell} > 0) + \sigma(\cos\phi_{\ell} < 0)},$$

- Construct top production plane using top p_T and beam axis,
- x-component of top p_T must be positive,
- No need to reconstruct top rest frame

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

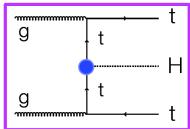
Introduction

Top Yukawa Coupling

Constraints

EDM Constraints LHC Constraints

Top Polarization


Associated production

Top Polarization Angular distributions Asymmetries

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Associated Production of top and Higgs

- Resonable prospects at Run II of LHC,
- Would be a good direct probe of CP violating phase ζ_t,
- Cross section drops with ζ_t
- Not sensitive to sign of top Yukawa

・ロット (雪) ・ (日) ・ (日) ・ (日)

Unraveling the CP phase of top Yukawa coupling at LHC

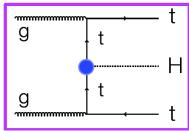
> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints


EDM Constraints LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Associated Production of top and Higgs

- Resonable prospects at Run II of LHC,
- Would be a good direct probe of CP violating phase ζ_t,
- Cross section drops with ζ_t
- Not sensitive to sign of top Yukawa

- Single top with Higgs has much smaller cross section
- Interference is largely destructive

Unraveling the CP phase of top Yukawa coupling at LHC

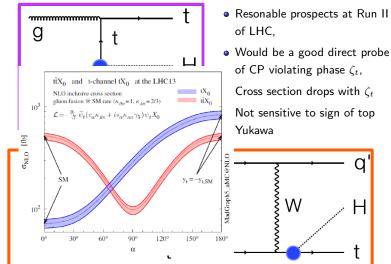
> Pankaj Sharma

The University of Adelaide

Introduction

Fop Yukawa Coupling

Constraints


EDM Constraints LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Associated Production of top and Higgs

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

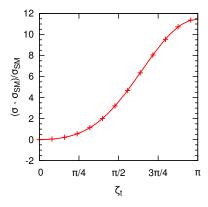
The University of Adelaide

Introduction

Fop Yukawa Coupling

Constraints

EDM Constraints LHC Constraints


Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

- Single top with Higgs has much smaller cross section
- Interference is largely destructive

Cross section for thj production

- Cross section, $\sigma \sim 72$ fb (SM),
- May be discovered in Run II LHC with full data set of 3 ab⁻¹,
- However, cross section rises sharply with ζ_t
- Quite sensitive to sign of top Yukawa

- Search strategy for *thj* heavily relies on the very forward light jet in the process,
- Putting a $|\eta_j| > 2.5$ helps in suppressing the background,
- $\bullet\,$ Main backgrounds are top pair and $tj\gamma\gamma$

Unraveling the CP phase of top Yukawa coupling at LHC

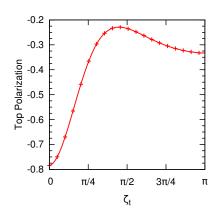
> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints


EDM Constraints LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Polarization as a fuction of ζ_t

- Polarization is obtained by calculating left and right helicity cross sections,
- Higgs emission from top changes the top helicity,
- While Higgs emitted from W does not effect top helicity,
- This plot is the theoretical expectation for P_t ,
- *P_t* is quite sensitive to CP phase ζ_t

Unraveling the CP phase of top Yukawa coupling at LHC

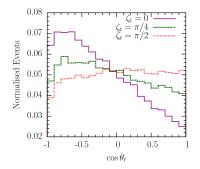
> Pankaj Sharma

The University of Adelaide

Introduction

Fop Yukawa Coupling

Constraints


EDM Constraints LHC Constraints

Top Polarization

Associated production

Top Polarization Angular distributions Asymmetries

Distributions in the rest frame

- ℓ[±] distribution is sensitive to phase ζ_t in the rest frame of top quark,
- For ζ_t = π/2, distribution is flat due to pure pseudoscalar coupling,
- Need to reconstruct top full momentum

イロト 不得 トイヨト イヨト

ъ

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

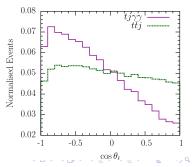
Top Yukawa Coupling

Constraints

EDM Constraints LHC Constraints

Top Polarization

Associated production Top Polarization Angular distributions


Asymmetries

Distributions in the rest frame

- Due to parity conserving coupling, $t\bar{t}j$ distribution is flat
- tjγγ arise from EW coupling leading to large slope in the distribution,
- Slope of the distribution \propto top polarization.

- ℓ[±] distribution is sensitive to phase ζ_t in the rest frame of top quark,
- For ζ_t = π/2, distribution is flat due to pure pseudoscalar coupling,
- Need to reconstruct top full momentum

Unraveling the CP phase of top Yukawa coupling at LHC

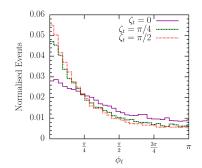
> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints


EDM Constraints LHC Constraints

Top Polarization

Associated production Top Polarization Angular distributions Asymmetries

Distributions in the laboratory frame

- Lab frame azimuthal distributions are insensitive to any new physics in decay,
- Thus probe the polarization without any impurity,
- Distribution for $\zeta_t = 0$ and $\zeta_t = \pi/4$ are quite distinct,

イロト 不得 トイヨト イヨト

ъ

Unraveling the CP phase of top Yukawa coupling at LHC

Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

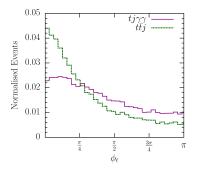
Constraints

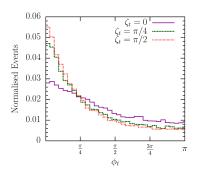
EDM Constraints

LHC Constraints

Top Polarization

Associated production


Top Polarization


Angular distributions

Asymmetries

Distributions in the laboratory frame

- Lab frame azimuthal distributions are insensitive to any new physics in decay,
- Thus probe the polarization without any impurity,
- Distribution for $\zeta_t = 0$ and $\zeta_t = \pi/4$ are quite distinct,

- Distributions are very asymmetric in the left and right portion of the detector,
- Background asymmetry are much smaller than the signal for most of the parameter space,

Unraveling the CP phase of top Yukawa coupling at LHC

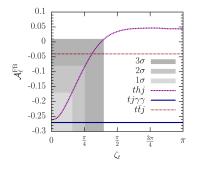
Pankaj Sharma

The University of Adelaide

Introduction

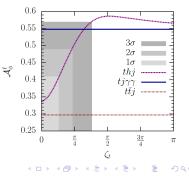
Top Yukawa Coupling

Constraints


EDM Constraints

LHC Constraints

Top Polarization


Associated production Top Polarization Angular distributions Asymmetries

Asymmetries

- Also contributions from backgrounds are shown
- Lab frame asymmetry can determine ζ_t upto $\pi/8$ with 3000 fb⁻¹,
- Without having to reconstruct top rest frame

- 1,2,3σ bands of statistical uncertainty are shown,
- Limits are evaluated with 3000 fb⁻¹ of luminosity,
- Rest frame asymmetry is more difficult to reconstruct

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints

Top Polarization

Associated production Top Polarization Angular distributions Asymmetries

Conclusions

- Determining the CP properties of the Higgs boson is a task of fundamental importance,
- Can only be probed in the associated production mechanism,
- Apart from cross section, top polarization may provide another handle to probe CP phase of the top Yukawa coupling,
- Lab frame observable, apart from being easily measurable, are also more sensitive to the phase,
- It will require a full 14 TeV data set to put a limit on the CP phase from the direct search

Unraveling the CP phase of top Yukawa coupling at LHC

> Pankaj Sharma

The University of Adelaide

Introduction

Top Yukawa Coupling

Constraints

EDM Constraints LHC Constraints

Top Polarization

Associated production Top Polarization Angular distributions Asymmetries

Conclusions

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・