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In general, we search for SUSY by asking for large “scale”

Heavier parents and large(-ish) mass splittings provide
momentum for decay products, including weakly
interacting particles which become MET

For compressed signals, large MET has a different
provenance

THE UNIVERSITY
)  ADELAIDE

Weakly interacting particles do not receive large
momentum from decay but, rather, from recoiling
against ISR

Harder MET distribution results from WIMP system
having more mass => LSPs receive more momentum

from ISR kick (relative to backgrounds with neutrinos,
particularly if there’s only one!)
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In order to observe kinematic differences between signal and background we
need an ISR system to give our sparticles a transverse kick: the response
of the sparticle decay products is sensitive to the mass of the LSP

In the limit of nearly degenerate parent sparticles ﬁ and LSPs )Z:

EmISS — ISR

Recent literature has suggested exploiting this feature, to search for, in
these cases, compressed stop production:

— arXiv:1506.07885v1 ) e
- . € is not necessarily a good proxy for p/°k,
e Use ECZIEHSS/\/ Ht as an observable diTminishing resolution of the feature

— arXiV:1506.00653 Requires restrictions of the angle between
miss <€— | lead jet and MET, and a relatively hard jet
+ Use E /ijl as an observable in order for it have correspond to p;sk
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« Rather than relying on a clean mono-ISR signal we would like to be able
to separate “ISR objects” from “sparticle objects”

« Accomplished with a simple decay
view of the event

« CM: centre-of-mass system -
including all visible objects and
MET

* |SR: radiation not coming from
sparticle decays

S: sparticle system

— V: visible decay products
— |: weakly interacting particles

See talks by L. Lee (parallel) and
C. Rogan (plenary) for details on RJR
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Consider compressed signals with
only jets and MET

Jets in the events are split into
two groups: those associated
with the visible system (V) and
those recoiling against it (ISR)

« We then reconstruct each event by:
— lIgnoring the z-momenta of all jets in a ‘transverse’ view of the event
— Treat the MET and the transverse momentum of I/, with zero mass

— Partition all of the jets into the ISR and V groups by minimizing the
mass of the ISR and S systems

— Analyze the event kinematics in the transverse plane
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Jets in the events are split into
two groups: those associated
with the visible system (V) and
those recoiling against it (ISR)

» This is accomplished by:
— Boost to the transverse CM frame of the jets+MET system
— In the CM frame: m¢y = By = \/m% + p? + \/m%SR + p?
— With m,, fixed we choose to assign the jets to maximize P,
effectively minimizing ms and mq,
— Equivalent to finding the thrust axis in the CM frame
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This provides a set of variables:

& . M
pTC[ pT]SR / pTISR J=> a choice for mf(/mﬁ sensitive variable

p CM |, magnitude of vector-sum transverse momentum of all

TISR ‘ISR’ associated jets evaluated in CM frame

M T S => Transverse mass of S (V+|) system. Mass of all jets associated with visible
Mee? SYSTEM

f—\

NJ et => Number of jets assigned to the Visible system (i.e. not associated with ISR)
—— o/

A¢C’M V] => delta phi between CM frame momentum in lab frame and
vector sum of all jets in CM frame. Looks for correlation between
MET and energy not in jet collection.
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To study the tractability of applying this approach to an analysis at the LHC we studied
samples generated as part of the Snowmass study

They comprise samples of all major Standard Model backgrounds, simulated at 14TeV
(see arXiv:1308.1636 and 1309.1057 for details) with additional jets. All samples are
generated/simulated using Madgraph+Pythia+Delphes

Signal samples produced at 14TeV with same versions of MG5, Pythia and Delphes

Squark and Gluino pair production with compressed mass splittings:

Mass difference (parent sparticle - neutralino) = 25, 50, 100, 200, GeV
M(sq) = 400 -> 900 GeV
M(gluino) = 500 -> 1200 GeV

All samples are scaled to a projections of 10 and 100 fb-"
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=> a choice for m;(/mﬁ sensitive variable

Number of Eevents / 0.02

Works well in the ISR-regime
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CM
PTISR

=> magnitude of vector-sum transverse
momentum of all ‘ISR’ associated jets
evaluated in CM frame

Little discrimination in the
absence of other cuts
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Madgraph + Pythia + Delphes, pp — Boson(s) + jet(s), Vs=14 TeV, P;"" (ISR )> 900 GeV
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Events / (0.02 x 20 GeV) / 10 fb™!

=> a choice for m;(/mﬁ sensitive variable

Madgraph + Pythia + Delphes, pp > SM.pp =88 - qqqq )_(T )_(T . 10fb" {s=14 TeV
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Works well in the
high ISR-regime

Increasingly hard for backgrounds
to have large ratio for higher p;R




Madgraph+Pythia+Delphes 14 TeV Sim pTISR > 900 GeV Madgraph+Pythia+Delphes 14 TeV Sim pTISR > 900 GeV
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N, (V)

Madgraph + Pythia + Delphes, pp — Single top / t T (+V), V{s=14TeV, P{™ (ISR)>900 GeV 55
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Excellent discrimination, particularly
against V+jets and di-boson backgrounds

Madgraph + Pythia + Delphes. p p — Boson(s) + jet(s), s=14TeV, PS™ (ISR ) > 900 GeV
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In concert with the ratio cut
we get excellent performance
cutting harder on the jet
multiplicity




_]‘ [ « Transverse mass of S (V+I) system. Mass
s of all jets associated with visible system
Madgraph + Pythia + Delphes, pp — SM,pp = §§ — qq X. X, , 10 fb" {s=14 TeV V, and the 'inV'iS'ible System

= » Anti-correlation shows variables are
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* Improves further as min Jet pT is raised
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Good discrimination against all
backgrounds, especially V+jets
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Madgraph+Pythia+Delphes 14 TeV Sim pTISR > 900 GeV Madgraph+Pythia+Delphes 14 TeV Sim pTISR > 900 GeV
FT 1T 17T | L | L | L | L | T T 17T | L | L L | L | T T 17T | L | L | L | L | L

0.1

0.08 008

:; 006 Y U ................. ......................................

<
0.04

5 0.06

5 —mﬁ—600m —400
_J P— m; = 600, m 500
; : m 600, m 550

B ;—m~—900 m_ =700 0.04

- —m_=900,m" =800 ;
002 __J .......... .................. mf 900 mz _850 ................ .................. ............ 0 02
- — m, =900, m =875 - ' — m, =600, m” = 575

0IIII|IIIIilIII|IIII|IIII|IIII|IIII|IIII II|IIII|IIII|IIII|IIXII|IIII|IIII|IIII

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
M [GeV] M [GeV]

M scales with the parent sparticle/LSP mass splitting
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A¢ delta phi between CM frame momentum in lab frame and
CM ) |4 vector sum of all jets in CM frame. Looks for correlation

Madgraph + Pythia + Delphes, p p — Single/Di-/Tri-Boson, {s=14 TeV, P:M (ISR )>900 GeV
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between MET and energy not in jet collection.

>900 GeV

Modest but
unique
discrimination
against
important
backgrounds




Madgraph + Pythia + Delphes, pp — Boson(s) + jet(s), {s=14TeV, P{™ (ISR)>900 GeV
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Events / (0.01 x 2 GeV) /10 b

Events / (0.02 x 5 GeV) / 10 fo™!

Leading and sub-leading Jet p; provides further

discrimination. Even stronger handle as Ny’
and scales as Am increases

Madgraph+Pythla+DeIphes 14 TeV Slm p_;SR > 900 GeV
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Am = 25 GeV|Am = 50 GeV|Am = 100 GeV|Am = 200 GeV
Preselection Criteria lepton veto (e and p), ET > 100 GeV, jet pr > 20 GeV
pr"" (ISR) [GeV] > 900
P prs /prs > 0.87 > 0.8 > 0.7 > 0.65
M7 (GeV) - > 100 > 200 > 350
NY > 2
pr (GeV) > 30 > 50 > 50 > 80
A¢p (CM - V) > 1.4 > 1.0

For a selection of pair-produced
gluinos - a simple set of selection
criteria can yield powerful results
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Madgraph + Pythia + Delphes, pp = 8% — qqqq X? )~(? , 100 fb! Vs=14 TeV
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For 100fb-" - studying compressed spectra where 25GeV < Am(g-y,°) < 200GeV

Exclude (20) gluinos between 1.2TeV and 1.3TeV
Discover (56) gluinos with compressed spectra around 1TeV
With optimization this can be improved this further....

With additional objects, and richness in the event, improvements can be quite vast
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« Compressed here refers to Am = 25-200GeV
* As you get additional handles with extra objects the sensitivity improves still further

« In all cases there is a simple method, only a few, quite intuitive, selection criteria to
impose, and the improvements can be quite dramatic

« Additional handles from object counting of
leptons, b-jets etc make transition to any
compressed analysis trivial

pp =T T—=t%  Moriond 2016

= 500 0 800 Bottom squark pair production, b, — b % x
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= Recursive Jigsaw Reconstruction (RJR) approach

= is to not only develop ‘good’ mass estimator variables,
but to decompose each event into a basis of
kinematic variables (see talks by Larry Lee and Chris
Rogan)

= Through the recursive procedure, each variable is (as
much as possible) independent of the others

= Compressed Analyses
= Demonstrated new approach based on RJR

= Excellent performance for all mass-splittings and final
states studied

= Squark and Gluino pair-production presented herein
but extendable to any other compressed scenario
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= In order to observe kinematic differences between signal and background we
need an ISR system to give our sparticles a transverse Kick; the response of
the sparticle decay products is sensitive to the mass of the LSP.

= In the limit of nearly degenerate parent sparticles ( p ) and LSP’s (X ):
Emzss — [ S R m)%

= Recent literature has suggested exploiting this feature to search for, in these
cases, compressed stop production:

s arXiv1506.00653

miss Requires restrictions of the angle between
= Usc E /pT 1 as an observable <€— | lead jet and MET, and a relatively hard jet
J in order for it have correspond to p;R
= arXiv1506.07885v1
) H; is not necessarily a good proxy for p,/*f,
® use Emzss/\ / HT as an observable diminishing resolution of the feature
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« Compressed here refers to Am = 25-200GeV
* As you get additional handles with extra objects the sensitivity improves still further

« In all cases there is a simple method, only a few quite intuitive selection criteria to
impose, and the improvements can be quite dramatic

« Additional handles from object counting of
leptons, b-jets etc make transition to any
compressed analysis trivial
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A dedicated approach to any/all
intermediate/compressed analyses

R THE UNIVERSITY
/ADELAIDE

Paul Jackson



