SUSY discovery potential of the ATLAS detector at an upgraded LHC

Melbourne – SUSY 2016

Geoffrey Mullier on Behalf of the ATLAS collaboration Bern University Laboratory for High Energy Physics 4th July 2016

Current status of ATLAS and considered upgrades

- 4π coverage multi purpose detector aimed at generic searches
- Build to withstand the LHC design instantaneous luminosity of 10³⁴ cm⁻² s⁻¹ at a Level I trigger rate of 100 kHz
- Estimated to be working as is with minor upgrades until 2024
- For HL-HLC Redesign of the Inner detector (ITK) (TRT is dead long live the TRT)
- Replacement of forward calorimeters
- Reinforcement of the forward muon system via TGC/Micromegas combination
- Trigger redesign (L0/L1 electronics)

Current LHC Luminosity and projections for HL-LHC

SUSY or how to get Beyond Standard Model

- Standard Model is an extremely precise theory but some discrepancies gives clues that it might not be it
 - Hierarchy problem due to the "low" scalar boson mass
 - $m_{\nu} \neq 0$ (Dirac or Majorana?)
 - Non inclusion of Gravity into the models
 - Cosmological predictions falls short to model the current known universe
- Supersymmetry can provide some solutions to
 - Hierarchy problem by additional corrections to the scalar boson mass
 - Possibly introduction of gravity into the framework
 - Dark matter candidate via $\tilde{\chi}^0$
 - Additional fields give leeway for cosmological models

But, so far, nothing found yet ...

Assumptions at 14TeV 3000fb⁻¹

- SUSY is R-Parity conserving
- ${\tilde \chi}_1^0$ is the lightest SUSY particle
- Unless specified all background uncertainties are estimated at 30%
- \blacktriangleright 100% Branching ratios for all processes
- Mass constrains depends on the assumed SUSY mass spectrum

Direct \tilde{t} pair production			$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0})$	(800, 100)	(1100, 100)
			tī	69 ± 13	5.7 ± 3.4
t			$t\bar{t} + W$	5 ± 1	0.8 ± 0.6
p			$t\bar{t} + Z$	38 ± 5	3.9 ± 1.5
$\tilde{t} \sim \tilde{x}_1^0 \rightarrow 0$ lepton $1 \geq 6$ jet	ts $1 > 2$ <i>b</i> -iet	· I High F ^{miss}	$\rightarrow W^{+ \text{ jets}}$	3 ± 3	negligible
			′Z+ jets	14 ± 4	1.8 ± 1.3
$\tilde{\chi}_1^* \rightarrow 1$ lepton ≥ 4 jet	ts∣≥∣ <i>b</i> -jet	$: High E_T^{miss} $	Total bkg	129 ± 15	12.2 ± 3.9
	,		Signal	457 ± 13	46.0 ± 1.4
\sim_t					· · · · · · · · · · · · · · · · · · ·
Notural page requires		Simulation Prei	iminary		E
Naturainess requires	U 500 E √s=14	TeV	= 300 fb ⁻¹ (<u>=6</u>	0) 5o discover	y T
stop/sbottom mass to be $$	୍ର <u>ଅ</u> 800 –		-3000 fb ⁻¹ (<u>=</u>	140) 50 discov	ery
TeV	5 700 E		ATLAS 8 TeV (1-lepton): 95%	CL obs. limit
	600 ^E		AILAS 8 Iev (0-lepton): 95%	
Consider non compressed				···	*****
$ \tilde{t}_1 - \tilde{v}_1^0 > m$	500 <u>0</u> and	1-lepton combin	ed	·····	1 1
$ \iota_1 - \chi_1 > m_t$	400		seeme to be	<u> </u>	
\blacktriangleright 5 σ discovery potential up to 1	300Ē	and the second sec			
T_{a} (with 200 f = 1 and 1.2 T_{a})		AL AND	\frown	Ni -	
lev with 300 fb - and 1.2 lev	200 E		<u> </u>	l l	
with 3000 fb ^{-1} for combined	100		\		
recults	مقاسم			🖡 .	L. L B. B
i Coulto	~ 200	400 600	800 1000	0 1200	1400
					in _{stop} [Gev]

ATL-PHYS-PUB-2013-011

Direct \tilde{b} pair production

p

- ▶ 0 leptons | 2 *b*-jets $p_T > 50$ GeV making use of the boost corrected co-transverse mass to discriminate $t\bar{t} \mid m_{CT}^{\max} = \frac{m^2(\tilde{b}) m^2(\tilde{\chi}_1^0)}{m(\tilde{b})}$
- After this selection main background left $Z(\to \nu\nu) + b\bar{b}$ with some $t\bar{t}V$ and W
- \blacktriangleright 5 σ discovery potential up to 1.1 TeV with 300 fb⁻¹ and 1.3 TeV with 3000 fb⁻¹

Direct \tilde{q} and \tilde{g} production

4th July 2016

SUSY discovery potential of the ATLAS detector at an upgraded LHC

4th July 2016

SUSY discovery potential of the ATLAS detector at an upgraded LHC

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production – Wh mediated

W

- Making use of m_T and m_{CT}
- ▶ 1 lepton | ≥4 jets | ≥1 *b*-jet | High E_T^{miss}
- Two techniques
 - Cut and count
 - MVA with BDT: m_{CT} , m_{T} , E_{T}^{miss} , leading *b*-jet p_{T} , Δr (leading *b*-jet, sub-leading *b*-jet), $\Delta \phi$ (leading *b*-jet, E_{T}^{miss})

4th July 2016

SUSY discovery potential of the ATLAS detector at an upgraded LHC

Conclusions

- \blacktriangleright ATLAS in the context HL-HLC has good prospect of finding SUSY if it hides in the \approx 1TeV scale
- Many SUSY channels are being covered by ATLAS currently and in the context of the HL-HLC upgrade
- If SUSY candidates are discovered by then ATLAS at the HL-LHC can provide precise measurements of their properties
- Follow our latest SUSY searches results at https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Thank you for your attention!

SUSY discovery potential of the ATLAS detector at an upgraded LHC