Dissecting Jets Plus MET Using n-body Extended Simplified Models

Matthew Dolan, University of Melbourne

with T. Cohen, S. El Hedri, J. Hirschauer, N. Tran and J. Whitbeck

Based on 1605.01416

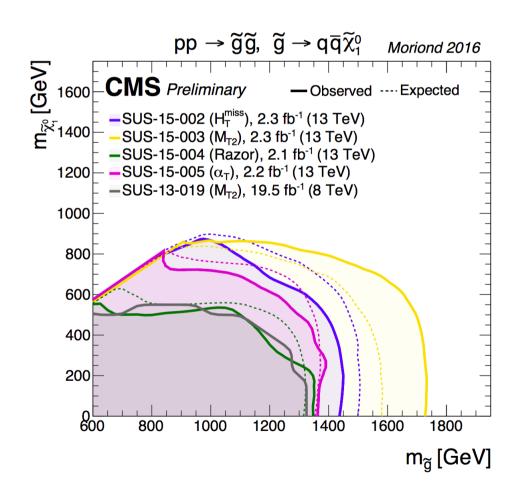
Searching for SUSY

Jets + MET is the classic SUSY search channel

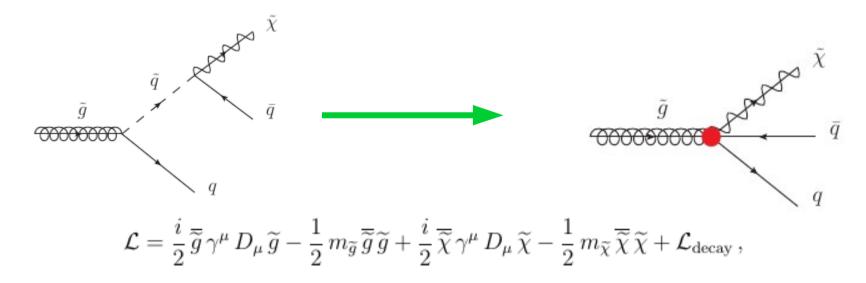
- Why are there so many searches?
- How are they related?
- Are they meant to have the same sensitvity?
- Are some variables more sensitive to certain topologies than others?
- How do we quantify this?

How do we develop intuition for an optimal analysis strategy?

Does it make sense to talk about the 'best' variable?



N-body simplified models



- Formally an extension of gluinoneutralino SMS
- Generalised to n-partons in decay

$$\mathcal{L}_{\text{decay}}^{(1)} = \frac{y^2 g_s}{16 \,\pi^2 \,\Lambda} \, G_{\mu\nu} \, \overline{\tilde{g}} \, \overline{\sigma}^{\mu\nu} \, \widetilde{\chi} + \text{h.c.} \,,$$

$$\mathcal{L}_{\text{decay}}^{(2)} = \frac{y^2}{\Lambda^2} \, \overline{q} \, \widetilde{g} \, q \, \overline{\widetilde{\chi}} + \text{h.c.} \,,$$

$$\mathcal{L}_{\text{decay}}^{(3)} = \frac{y^2 g_s}{16 \,\pi^2 \,\Lambda^4} \, \overline{q} \, q \, G_{\mu\nu} \, \overline{\tilde{g}} \, \overline{\sigma}^{\mu\nu} \, \widetilde{\chi} + \text{h.c.} \,,$$

N-body simplified models

PRODUCTION	Decay Channel	FINAL STATE
\widetilde{q} \widetilde{q}	$\widetilde{q} \to q \widetilde{\chi}$	2 partons $+\mathcal{H}_T$
$\widetilde{q}\ \widetilde{g}$	$ \widetilde{g} \to q \overline{q} \widetilde{\chi} $ $ \widetilde{q} \to q \widetilde{\chi} $	3 partons $+\mathcal{H}_T$
\widetilde{g} \widetilde{g}	$\widetilde{g} \to q \overline{q} \widetilde{\chi}$	4 partons $+\mathcal{H}_T$
$\widetilde{q}\ \widetilde{g}$	$\widetilde{g} \to q \overline{q} Z^0 \widetilde{\chi}$ $\widetilde{q} \to q \widetilde{\chi}$	5 partons $+\mathcal{H}_T$
\widetilde{t} \widetilde{t}	$\widetilde{t} \to t \widetilde{\chi}$	6 partons $+ \mathcal{H}_T$
$\widetilde{q}\ \widetilde{g}$	$\widetilde{g} \to t \overline{t} \widetilde{\chi}$ $\widetilde{q} \to q \widetilde{\chi}$	7 partons $+\mathcal{H}_T$
\widetilde{g} \widetilde{g}	$\widetilde{g} \to q \overline{q} Z^0 \widetilde{\chi}$	8 partons $+\mathcal{H}_T$

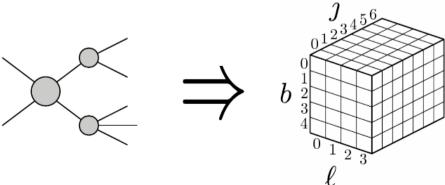
Want to understand behaviour of search variables as a function of n-partons.

N-body simplified models

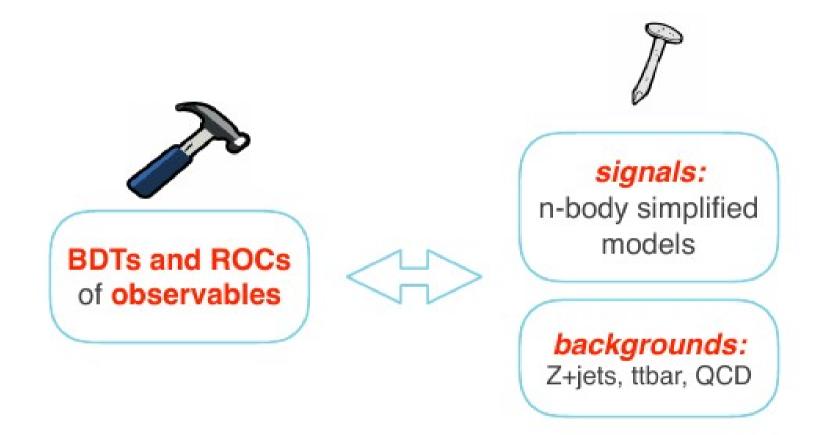
- What about on-shell vs off-shell intermediate states?
- Matters if you use kinematic features to search for a signal (we don't).

Relation to OSETs

- Proposed in context of LHC inverse problem.
- N-body SMs are Lagrangian based and admit straightforward ISR/FSR modelling a la SMSs.
- N-body SMs are signature based and admit straightforward exploration of phase space like OSETs .

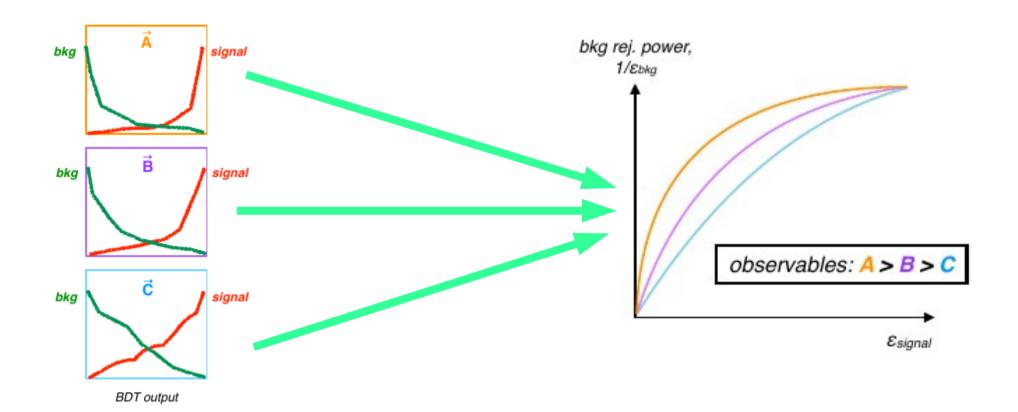


Our dissection toolkit



BDTs and **ROCs**

 BDT output visualised using ROC curve: signal versus background efficiency.



Observables

There are many variables proposed and used in BSM searches:

$$E_{T}^{\text{miss}},\ H_{T}^{\text{miss}},\ H_{T},\ S_{T},\ L_{T},\ M_{eff},\ \frac{E_{T}^{\text{miss}}}{M_{eff}}$$

$$\frac{E_{T}^{\text{miss}}}{\sqrt{H_{T}}},\ M_{T2},\ M_{CT},\ M_{CT\perp},\ M_{R},\ R$$
 Chris Rogan's talk
$$L_{p},\ \min\Delta\phi_{\text{jet},\ E_{T}^{miss}},\ \alpha_{T},\ dE/dx,\ \beta$$

$$M_{jj},\ \Sigma M_{\text{jet}},\ \bar{M}_{\text{jet}},\ M_{\text{fat jet}},\ M_{\gamma\gamma},\ M_{\ell\ell}$$

$$N_{\text{jet}},\ N_{\text{b-tag}},\ N_{\ell},\ N_{\gamma},\ \cdots$$

We focus on a subset of these:

H _T MHT	M _{T2} M _{T2} (CMS)
$N_{ m jets}$	M_{R} , R^2
MHT/√HT	\mathbf{a}_{T}
m _{eff}	$\Sigma M_{ m J}$

Classifying Variables

Useful to classify into three types:

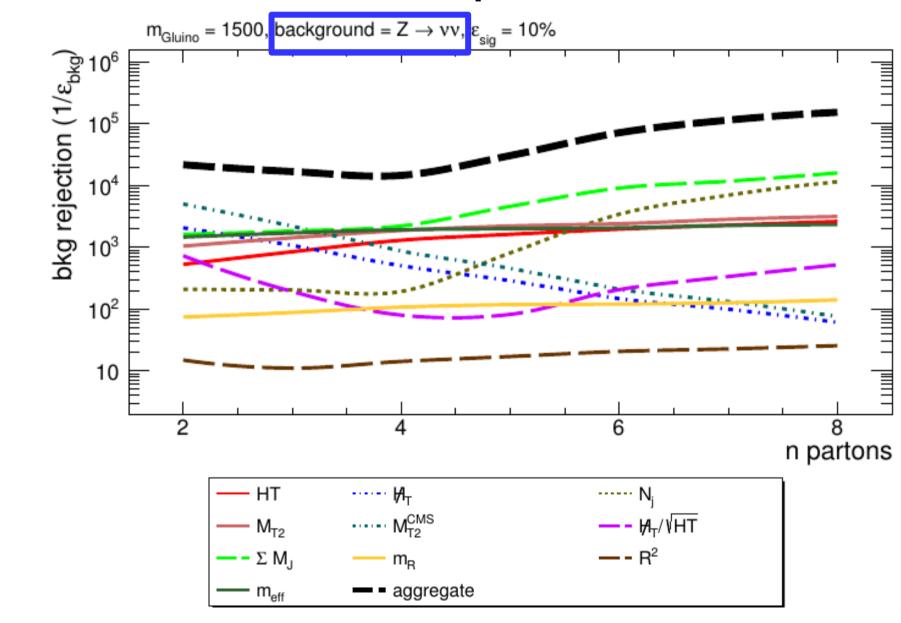
 H_T -type: The **missing energy variables** $\{\vec{H}_T, M_{T2}^{\text{CMS}}\}$ are sensitive to the properties of the invisible states, e.g. how many neutralinos in the event, what is their mass, etc.; E scale-type: The **energy scale variables** $\{H_T, M_{T2}, M_R, m_{\text{eff}}\}$ are sensitive to the overall energy scale of the event, e.g. the gluino mass;

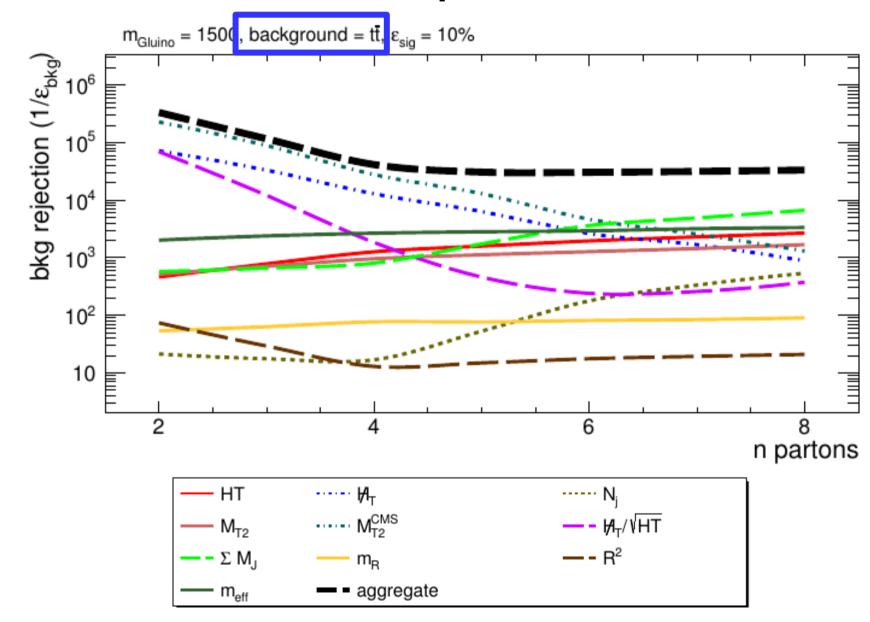
E struc-type: The energy structure variable $\{N_j\}$: is sensitive to the structure of the visible energy, e.g. how many partons are generated in the decay;

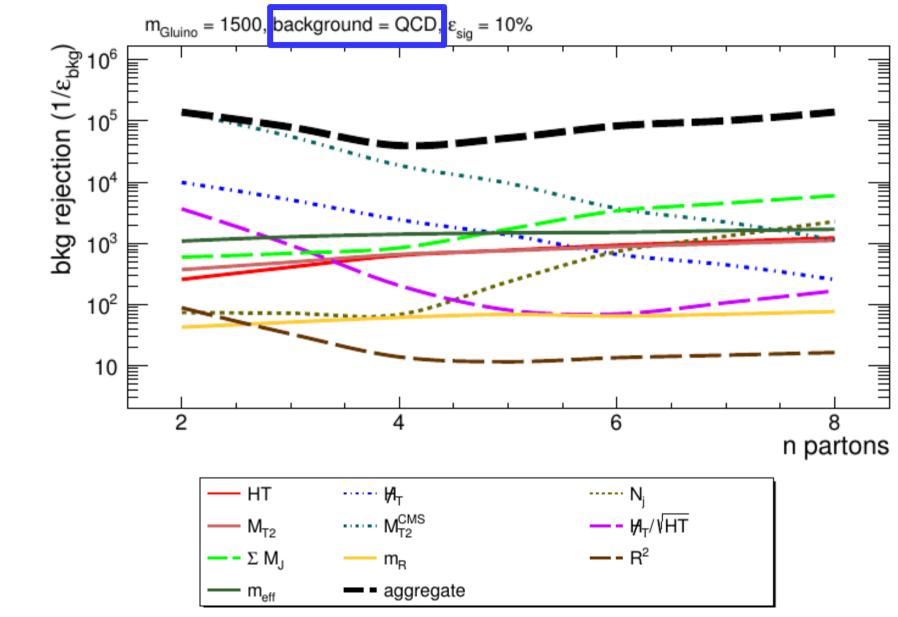
Some variables are hybrids, probing more than one type

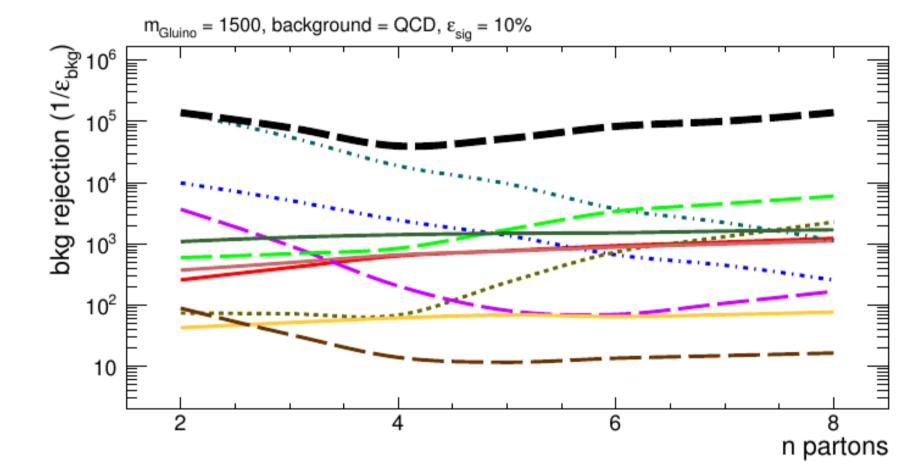
Hybrid-type: The hybrid variables {Razor R², H_T/√H_T, M_J} exhibit characteristics from multiple types depending on the number of decay partons in the event.⁶

The hybrid variables can be categorized as Razor R^2 $[\mathcal{H}_{T^-}/E \ scale-type]$; $\mathcal{H}_{T}/\sqrt{H_T} \ [\mathcal{H}_{T^-}/E \ struc-type]$ and M_J $[E \ scale-/E \ struc-type]$.

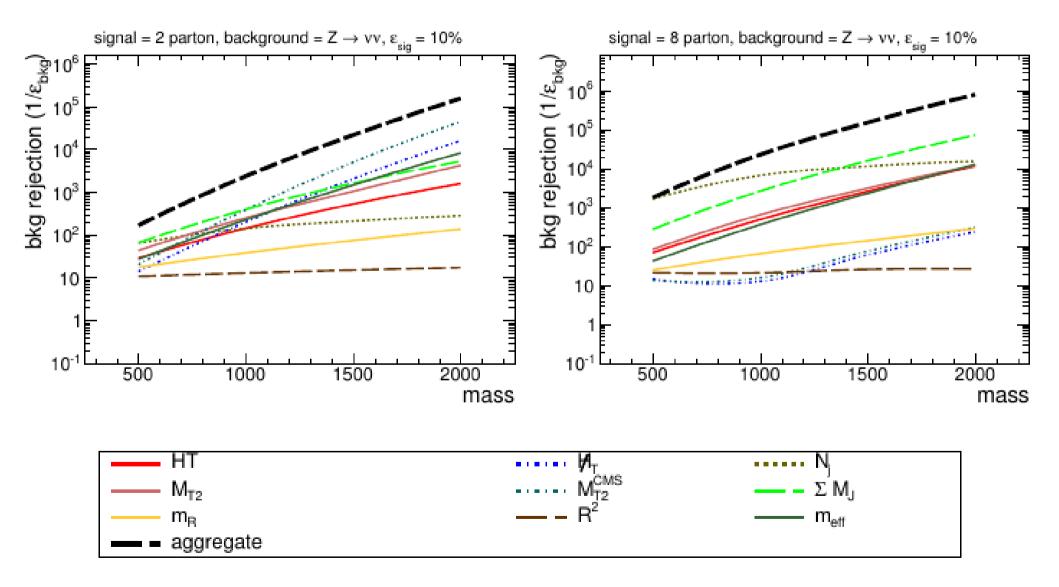




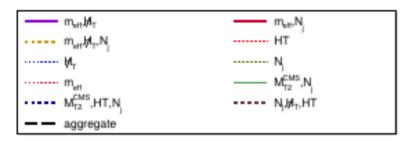


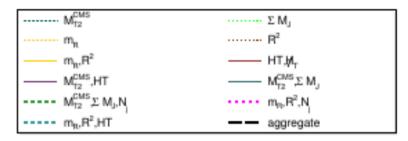


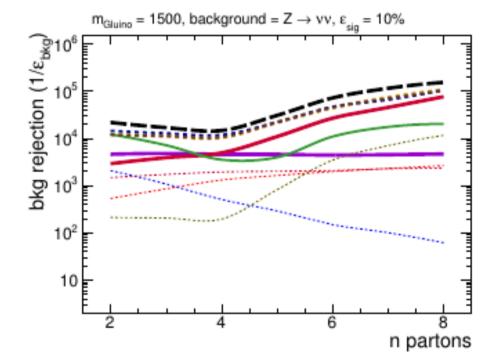
No single variable is efficient over the full phase space. Need to look at combinations.

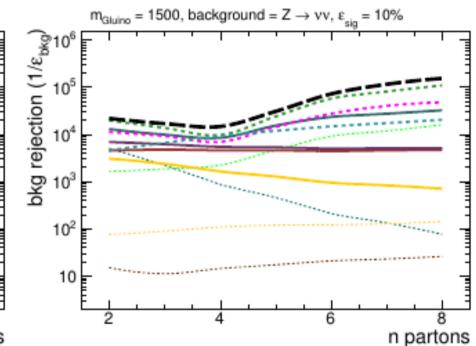


Uncompressed - Multivariable







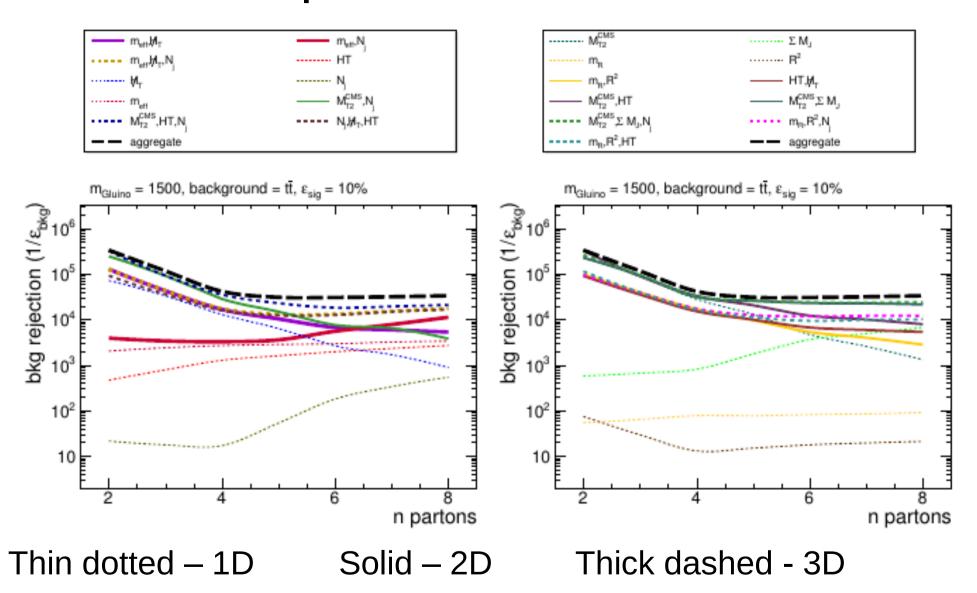


Thin dotted – 1D

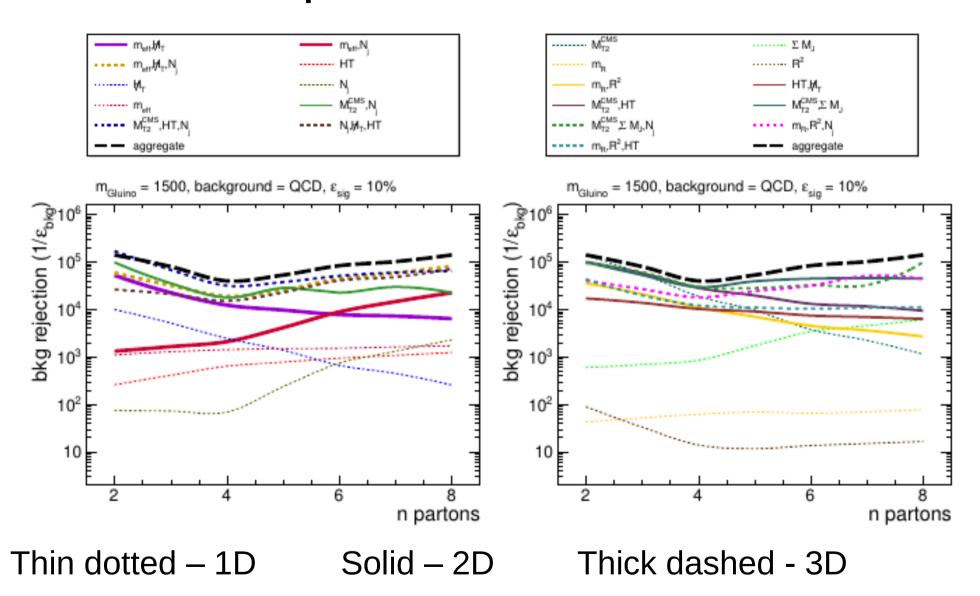
Solid – 2D

Thick dashed - 3D

Uncompressed - Multivariable



Uncompressed - Multivariable

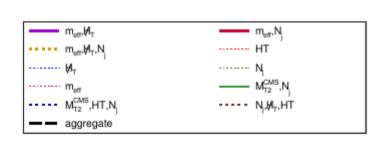


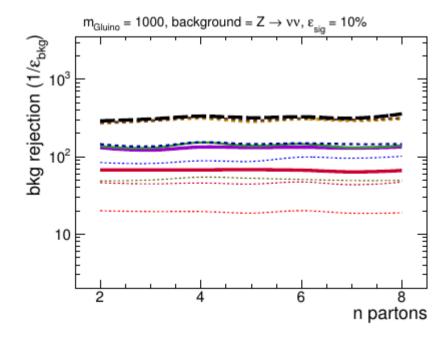
Uncompressed - Conclusions

- No 2 variable combination optimal over all phase space. For combinations:
- *H_T*-/ E struc-type: deficient at high n partons where N_j is more important;
- *H_T-/E scale-type*: deficient at medium to high n partons where visible energy becomes more important;
- E scale-/E struc-type: deficient at low n partons where missing energy variables are most dominant.
- But $(M_{T2}^{\text{CMS}}, M_J)$ is pretty good and $(M_{T2}^{\text{CMS}}, H_T \text{ or } M_J, N_j)$ is near optimal.

Compressed

- We also looked in detail at a compressed spectrum scenario
- Similar conclusions: 2-variable combinations are not optimal over whole parameter space
- 3 again near optimal: $(H_T, \mathcal{H}_T, N_j)$ and $(m_{\text{eff}}, \mathcal{H}_T, N_j)$
- Combinations with Razor also do well





Summary

- Introduced n-body extension of simplified models
- Systematic attempt to quantify relationships between variables in inclusive jets + MET searches
- Re-learn some things we know (e.g. n-jets important for many partons)
- And things we don't: 3 variable combos required to achieve near-optimal performance over full phase-space
- Interesting to extend to more leptons, jets, intermediate states...many possibilities!