Study of Higgs production in bosonic decay channels at CMS

Georgia Karapostoli (ULB) on behalf of the CMS collaboration

SUSY2016 conference, Melbourne – Australia 3 - 8 July 2016

Introduction

Higgs boson production:

- All production modes accessible at LHC

Higgs decays:

- Given the Higgs mass at 125 GeV, the branching ratios are determined from theory:

Higgs->ff (fermions):

- H→bb, H→ττ : [jets/MET] "low mass resolution"
- H→µµ : small BR

Higgs->VV (bosons):

 $\begin{array}{c} - & H \rightarrow \gamma \gamma \\ - & H \rightarrow ZZ \rightarrow 4\ell \end{array}$ "high mass resolution"

-
$$H \rightarrow WW$$
 : large x-sec

– $H \rightarrow Z\gamma$; rare

Overview of CMS searches

CMS Run1 (2011-2012):

 \sqrt{s} = 7 TeV , L ~5.1 fb⁻¹ and \sqrt{s} = 8 TeV, L ~ 19.6 fb⁻¹.

- $H\to \gamma\gamma$, $H\to ZZ$ and $H\to WW$ channels
 - Higgs discovery and measurements of its properties
 - Higgs mass and width
 - signal strength measurements in event categories
 - production and decay: couplings / cross-section / spin and parity measurements
 - BSM searches: additional Higgs partners , (non-)resonant HH

CMS Run2 (2015):

 $\sqrt{s} = 13 \text{ TeV}$, L~2.9 fb⁻¹.

- Towards Higgs re-discovery: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ and properties
- Searches for high mass resonances in $\gamma\gamma$ / $Z\gamma$ and $ZZ \rightarrow$ (4I, 2I2v, 2I2q) final states
- HH resonant: e.g. H(bb)H(WW) etc

H→γγ (run1)

Observation of Higgs in the di-photon decay channel

- Small BR~0.2% but good S/B and high mass resolution.
- Backgrounds from irreducible SM $\gamma\gamma$ production and γ -jet reducible sources.

Event categorization according to photon quality (MVA), kinematics and presence of objects to probe different production modes

- ttH, VBF [dijet0,1], VH [MET, dijet], Untagged 0,1,2,3

H→Z*Z*→4ℓ (run1)

Observation of Higgs as a narrow resonance in the 4-lepton invariant Mass

- Backgrounds: ZZ and $Z\gamma^*$ estimate from simulation; reducible Zbb, tt and instr. Z+X from control regions in data.
- Excellent mass resolution; relies on calibration of the lepton p_T scale and resolution / lepton selection efficiencies.

Events split in categories to allow sensitivity to diff production mechanisms:

- **Cat. I**: < 2jets; 4-lep p_T/m_{41} discriminates VBF and VH from gluon fusion
- Cat. II : >= 2jets; VBF-like variables $\Delta\eta_{jj}$ and Mjj

Higgs mass: combination

A combined ATLAS and CMS mass measurement with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels

- Simultaneous fit to the inv. Mass peaks in the two channels for ATLAS and CMS

Dominant systematic uncertainties:

- experimental: photon, electron/muon $\ensuremath{\mathsf{p}_{\mathsf{T}}}$ scale and resolution
- theory: Higgs x-sections and BRs,
 SM backgrounds normalization etc

Higgs production and decay

Compatibility tests with SM expectations:

	Best fit μ		Uncertainty			
		Total	Stat	Expt	Thbgd	Thsig
ATLAS + CMS (measured)	1.09	$^{+0.11}_{-0.10}$	$+0.07 \\ -0.07$	$^{+0.04}_{-0.04}$	$^{+0.03}_{-0.03}$	$^{+0.07}_{-0.06}$
ATLAS + CMS (expected)		$^{+0.11}_{-0.10}$	$+0.07 \\ -0.07$	$\substack{+0.04\\-0.04}$	$^{+0.03}_{-0.03}$	$^{+0.07}_{-0.06}$

ΨΨ

n

1

1.5

Global signal strength μ compatible with SM within 1 σ ; dominant systematic term from theory unc. on ggF

 κ_v^f

CMS-HIG-15-002; ATLAS-HIGG-2015-07

Constraints on the couplings:

ATLAS and CMS

-*LHC* Run 1

68% CL

95% CL Best fit

SM expected

Combined $H \rightarrow \gamma \gamma$

-2- H→ZZ

Η→ττ

0

Πh→ww

H→bb

0.5

Hff vs HVV

(m)

CMS-PAS-HIG-14-009

Spin and parity

CMS-HIG-14-018

Studied using the H \rightarrow ZZ^{*} \rightarrow 4 ℓ , H \rightarrow WW \rightarrow $\ell \nu \ell \nu$, and H $\rightarrow \gamma \gamma$ decay modes.

- H $\rightarrow \gamma \gamma$ (sensitive to spin-2+ , excludes spin-1)
- H \rightarrow ZZ \rightarrow 4 ℓ (sensitive to all spin-parity)
- H \rightarrow WW $\rightarrow \ell \nu \ell \nu$ (sensitive to spin-1 and spin-2)

$H \rightarrow \gamma \gamma / ZZ (run2)$

13 TeV

Higgs boson re-discovery in $\gamma\gamma$ and ZZ \rightarrow 4I final states; mass is fixed to 125.09 GeV

- Event categorization similar to Run1 (except where low statistics are expected)

Differential cross-sections in terms of quantities like $p_T(H)$, $|\eta(H)|$ and Njet multiplicity

- Statistical uncertainties (23% - 75%) dominate all differential distributions

Georgia Karapostoli, SUSY2016

Cross-sections: H→WW

Fiducial cross-section measurement in the Higgs transverse momentum distribution

- Allows to test possible deviations from the SM predictions.
- $d\sigma/dx vs p_T^H = p_T^{(II)} + MET$ after the unfolding $H \rightarrow WW \rightarrow 2\ell 2\nu$ fiducial selection: CMS 19.4 fb⁻¹ (8 TeV) Physics quantity Requirement dσ_{fid}/dp^H [fb/GeV] Leading lepton p_{T} $p_{\rm T} > 20 \,{\rm GeV}$ Statistical uncertainty Subleading lepton $p_{\rm T}$ $p_{\rm T} > 10 \,{\rm GeV}$ Systematic uncertainty Pseudorapidity of electrons and muons $|\eta| < 2.5$ 0.8Model dependence Invariant mass of the two charged leptons $m_{\ell\ell} > 12 \,\text{GeV}$ ggH (POWHEGV2+JHUGen) + XH $p_{\rm T}^{\ell\ell} > 30 \,{\rm GeV}$ Charged lepton pair p_{T} aaH (HRes) + XH $m_T^{\ell\ell\nu\nu} > 50 \,\text{GeV}$ Invariant mass of the leptonic system in the transverse plane 0.6 XH = VBF + VH E_{T}^{miss} $E_{\pi}^{\text{miss}} > 0$ 19.4 fb⁻¹ (8 TeV) CMS 0.4 0.4 $d\sigma/dp_{T,reco}^{H}$ [fb/GeV] mll in p_T^{H} :[0,15] – M_T :[60,110] Data CMS 19.4 fb⁻¹ (8 TeV) 0.35 Events / bin 0.2 + Data Statistical uncertainty p^H[0, 15) GeV 400 WZ/ZZ/VVV W+jets m_r [60, 110] GeV 0.3 Wy⁽⁾ Systematic uncertainty Тор 300 - Z/γ → TT 0.25 ww Ratio to HRes+XH ggH (POWHEGV1) + XH 3 0.2 200 VBF + VH 0.15 100 0.1 80 100 120 140 160 180 200 20 40 60 r p_⊤^H [GeV] 0.05 Data/exp $\sigma_{\rm fid} = 39 \pm 8 \, (\text{stat}) \pm 9 \, (\text{syst}) \, \text{fb},$ 0 50 100 150 200 m_I [GeV] 60 80 100 120 140 160 180 200 20 40 p^H_{T reco} [GeV]
 - Inclusive in Njet to reduce syst. from theory modeling of H + jets associated production.

More from run2

CMS-PAS-HIG-15-008 CMS-PAS-HIG-16-011

13 TeV

Georgia Karapostoli, SUSY2016

γγ final states:

– spin-0/ -2 resonances for m_X: [0.5, 4] TeV and width Γ_X/m_X : [1.4x10⁻⁴, 5.6x10⁻²]

Zγ final states:

 $- A \rightarrow Z \gamma \rightarrow \ell \ell \gamma$

- For m_A: [200,1200] GeV, set upper limits on σ x BR : [0.15, 3.8] fb

High mass resonances in $H \rightarrow ZZ$

CMS-PAS-HIG-16-004 CMS-PAS-HIG-16-001

13 TeV

Limits on additional resonance H (m_X , Γ_X) for masses up to ~1 TeV:

- Limits for a heavy Higgs-like particle ggH **CMS** Preliminary 2.8 fb⁻¹ (13 TeV) 102 EWS, 2HDM interpretations (fb) Observed 95% CLs 2.8 fb⁻¹ (13 TeV) **4**() $\Gamma=0$, expected ± 1 s.d. no events observed Data Γ =0, expected ± 2 s.d. ↑ for m₄ >600 GeV H(125) $\Gamma = 5 \text{ GeV}$ $H \rightarrow ZZ \rightarrow 4\ell$: qq→ZZ, Zγ* Events / Ŋ gg→ZZ, Zγ* Γ = 20 GeV î | Z+X -X ← gg $\Gamma = 40 \text{ GeV}$ Fit in the m(4I) distribution: ́ъ 80 100 200 300 400 500 600 $H \rightarrow ZZ \rightarrow 2\ell 2\nu$: m _{4/} (GeV) 200 300 400 500 600 700 800 900 1000 m_v(GeV)
- Event categorization in 0/1-jet, VBF; use MET (>125 GeV) and M_T variables:

Georgia Karapostoli, SUSY2016

Run1: very important measurements of the Higgs sector from the bosonic channels:

- H \rightarrow ZZ, Z γ * \rightarrow 4 ℓ , H \rightarrow WW $\rightarrow \ell \nu \ell \nu$, and H $\rightarrow \gamma \gamma$
- Higgs discovery and measurement of its properties: Mass, width, spin, σ, dσ/dX, signal strength (production and decay), couplings =>
- Higgs profile fully consistent with the SM expectations

Run2: 2015 was a commissioning phase in the Higgs sector; not yet as competitive

Bosonic channels offer important tool in searches for New Physics:

- High mass resonances, HH resonances etc

Summary

13 TeV

 $H \rightarrow WW \rightarrow e\mu + vv$: opposite-charge $e\mu$ in association with large MET for up to 1-jet.

For m_H=125. GeV, obs. significance is 0.7 σ (2.0 σ expected); best fit signal strength $\sigma/\sigma_{SM} = 0.3 \pm 0.5$

Category	Expected Obser		Expected error on	σ/σ_{SM}	
	significance	significance	σ/σ_{SM}		
0-jet µe	1.1	1.3	$^{+0.91}_{-0.88}$	$1.13 \ ^{+0.9}_{-0.9}$	
0-jet eµ	1.3	0.4	+0.82 -0.77	0.33 +0.7 -0.7	
1-jet µe	0.8	o	+1.30 -1.21	$-0.11^{+0.5}_{-1.7}$	
1-jet eµ	0.9	0	$^{+1.17}_{-1.10}$	$-0.54^{+1.4}_{-1.4}$	
0-jet	1.6	1.3	+0.63 -0.61	$0.71\substack{+0.6\\-0.5}$	
1-jet	1.2	0	+0.87 -0.83	$-0.56^{+1.0}_{-1.0}$	
Combination	2.0	0.7	+0.53 -0.51	0.33+0.5	