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Introduction: motivation

+ We would like to count the number (degree) of the BPS states (multi-centered black
holes) in 4d . /=2 SUGRA (ITA /B on CY;) via the “index” (second helicity supertrace)
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Introduction: Hall halo

<« There also exist the Hall halo bound state

(# of bound states) = (lowest Landau level degeneracies of the quantum Hall halo)
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Higgs branch moduli of the U(1)xU(N) quiver theory with k arrows
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Introduction: Denel’s conjecture

+ Denef conjectured that there is a correspondence between the BPS
bound states and quiver quantum mechanics (QQM)

BPS bound state (SUGRA)
particles nodes
# of particles rank of gauge groups
DSZ product # of arrows
phase of the central change FI parameters (C)
spin charges (Q2-background)

index partition function



Examples: two Abelian nodes

+ [ concentrate on a simplest example today

+ Two Abelian nodes (G=U(1)xU(1)) with k arrows:
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+ Vector multiplets (nodes)
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()-exact action

+ The supersymmetric action is written in the Q-exact
form, where Q is a specific supercharge

1
SQQM o h vector T Schlral

1
e Q / dT(g vector T V;:hlral)
-

Independent of the couplings (WKB, 1-loop exact)
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The path integral is localized at Q-transformation and D&F-term constraints



Fixed point equations

+ The partition function is localized at the solutions to:

8.Z=0.Z=080.06=0.6=0
(87+¢_$)Qa:()

k
up =9 (leal*—¢) =0 *
a—=1

k
fip=9") (—lgl>+¢) =0

a="1

HE a — (Z_ Z)Qa — ()

All fields are constant

and
£ L S
¢—¢#0
(=0 (<),
or
@7
d—¢d=0

Coulomb

Higegs



Overview: Coulomb vs Higgs

+ We can evaluate exactly the partition function in two different regions,
but the localization says that these should give the same quantity

because of the coupling (parameter) independence
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Q2-backgrounds

+ The Coulomb and Higgs branch fixed points of the original model are highly
degenerated (many flat directions)

+ We can turn on the Q-backgrounds by gauging the global symmetries in

SU(2)z x U(k) (isometries of each branch) in order to resolve the degeneracy

+ The parameters of the 2-backgrounds gives the refined parameters (fugacities)
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where f is the periodicity of the time-direction: 7 ~ 7 + j



Fixed points: Higgs branch

+ Let us consider more concrete examples

+ Two Abelian nodes with k arrows:
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Kvaluation of the index: Higgs branch

+ For the BRST fixed points, D-term (moment map) equation says:
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Eftective potential in Coulomb branch

+ Quantum effects generate the 1-loop effective potential
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Evaluation of the index: Coulomb branch

+ Turning on the Q-background, the Coulomb branch is localized at
the isometry fixed points, and the localization formula reduces to
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+ For example, the bound states of a single monopole and a single electron
(U(1)xU(1) with k arrows) have two fixed points in the Coulomb picture
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Conclusion and Discussion

Conclusion:

+ We exactly evaluate the partition function of the
supersymmetric quiver quantum mechanics by using
the localization

+ The partition function gives the (refined) index of the
BPS bound states (Poincaré polynomial (Dirac genus) of
the Higgs branch moduli)

+ The partition function also gives configurations of the
BPS particles as the Coulomb branch fixed points



Conclusion and Discussion

Future problems:

+ Extension to the quiver theory with loops (including the
superpotentials)

+ Relation and application to the integrable systems (brane
tilings, dimer models, etc)

+ Deeper understandings of the Coulomb branch picture from
the holographic point of view

+ Asymptotic behaviour of the partition function (generating
function) < Bubbling geometry, BH entropy, etc.



