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Introduction: motivation

✤ We would like to count the number (degree) of the BPS states (multi-centered black 
holes) in 4d N=2 SUGRA (IIA/B on CY3) via the “index” (second helicity supertrace)
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or the refined one

center of mass degrees of freedom



Introduction: Hall halo

✤ There also exist the Hall halo bound state

(# of bound states) = (lowest Landau level degeneracies of the quantum Hall halo)
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Introduction: Denef’s conjecture

✤ Denef conjectured that there is a correspondence between the BPS 
bound states and quiver quantum mechanics (QQM)

BPS bound state (SUGRA) QQM (LσM)
particles nodes

# of particles rank of gauge groups
DSZ product # of arrows

phase of the central change FI parameters (ζ)
spin charges (Ω-background)

index partition function



Examples: two Abelian nodes

✤ I concentrate on a simplest example today

✤ Two Abelian nodes (G=U(1)×U(1)) with k arrows:

✤ Vector multiplets (nodes)  

✤ Chiral multiplets (arrows)
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k

Figure 2: U(1)1 × U(1)2 quiver with k arrows.

The BRST fixed point equation Qϵψa = 0 says that

qa(τ) = hae
−(φ1−φ2+iϵa)τ , (5.1)

where ha is an integral constant. Forcing the periodic boundary condition qa(τ + β) =

qa(τ), we see that hl = 0 except for only one label a (l ̸= a) by setting

φ1 − φ2 + iϵa =
2πi

β
n, n ∈ Z. (5.2)

This represents the infinitely many poles of the hyperbolic sine function. But, as we have

explained in section 4.3, we only pick up a pole with n = 0. This fixed point is denoted

by Φ∗
a.

The non-vanishing complex scalar qa at the fixed point is also the solution to the

D-term conditions,

|qa|2 = ζ1, (5.3)

−|qa|2 = ζ2, (5.4)

where the FI parameters satisfy the constraint θ(N) = ζ1+ ζ2 = 0. The D-term equations

mean that there exist the fixed points (|qa| ̸= 0) if ζ ≡ ζ1 = −ζ2 > 0, but not if ζ < 0.

The partition function vanishes for the later case. This is nothing but the wall crossing

formula for the quiver quantum mechanics [2, 46].

Let us evaluate the partition function for the case of ζ > 0. The solution (5.2) means

that

u1u
−1
2 xa = 1, (5.5)

where u1 = eβφ1 = V1, u2 = eβφ2 = V2, and xa = eiϵa .

The T -character of N = (1, 1) with k arrows becomes3

T k
1,1(Φ

∗
a) = (1− t)

(
2−

k∑

l=1

xlx
−1
a − 1

)
(5.6)

= (t− 1)
∑

l ̸=a

xlx
−1
a , (5.7)

3We put indices to the T -character and partition functions to indicate the dimension vector and the

number of arrows.
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5.1 Two nodes

We first start with a simplest example which consists of two Abelian nodes and k arrows

between them, which is depicted in Fig. 2. In the Higgs picture, this theory describes

the BPS bound states of two D-branes which are wrapped around two distinct cycles

in a Calabi-Yau three manifold (CY3) and intersect transversely in k points [2]. The

adjoint scalars in the two vector multiplets X i
v (v = 1, 2) represent the positions of the

two D-branes in the non-compact space and the chiral multiplet represents the open string

localized at the intersection point, whose ends are attached on the different D-branes. In

the Coulomb picture, this theory describes the BPS bound states of two particles with

mutually nonlocal charges γ1 and γ2 in a four dimensional N = 2 supergravity theory

which arises in the low energy limit of type II string theory compactified on CY3 [2]. The

number of the chiral multiplets k corresponds to the Dirac-Schwinger-Zwanziger (DSZ)

product of the two charges ⟨γ1, γ2⟩.
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Q-exact action

✤ The supersymmetric action is written in the Q-exact 
form, where Q is a specific supercharge

S
QQM

=
1

g2
S
vector

+ S
chiral

= Q

Z
d⌧(

1

g2
V
vector

+ V
chiral

)

The path integral is localized at Q-transformation and D&F-term constraints

Independent of the couplings (WKB, 1-loop exact)



Fixed point equations

✤ The partition function is localized at the solutions to:
All fields are constant  

and

or
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Overview: Coulomb vs Higgs

✤ We can evaluate exactly the partition function in two different regions, 
but the localization says that these should give the same quantity 
because of the coupling (parameter) independence 
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𝛺-backgrounds

✤ The Coulomb and Higgs branch fixed points of the original model are highly 
degenerated (many flat directions)

✤ We can turn on the 𝛺-backgrounds by gauging the global symmetries in 
SU(2)R × U(k) (isometries of each branch) in order to resolve the degeneracy

✤ The parameters of the 𝛺-backgrounds gives the refined parameters (fugacities)

Coulomb:

Higgs:
U(k) � U(1)k ) ✏a ) xa ⌘ e

i�✏a

SU(2)R � U(1) ) ✏ ) y ⌘ ei�✏

where 𝛽 is the periodicity of the time-direction: 𝜏 ~ 𝜏 + 𝛽



Fixed points: Higgs branch

✤ Let us consider more concrete examples

✤ Two Abelian nodes with k arrows:
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Figure 2: U(1)1 × U(1)2 quiver with k arrows.
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Evaluation of the index: Higgs branch

✤ For the BRST fixed points, D-term (moment map) equation says:

ql 6= 0 we can choose poles at �� �̃+ i✏l = 0

no solution of ql The contour does not contain any pole

Thus we find
where

Poincaré polynomial of CPk-1
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Effective potential in Coulomb branch

✤ Quantum effects generate the 1-loop effective potential

µD ! U(~r, ~̃r) ⇠
kX
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⇠ k
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Evaluation of the index: Coulomb branch

✤ For example, the bound states of a single monopole and a single electron 
(U(1)×U(1) with k arrows) have two fixed points in the Coulomb picture

m

e

m

e

J3=k

J3=-k−=

= agrees with the index 
in the Higgs branch

✤ Turning on the Ω-background, the Coulomb branch is localized at 
the isometry fixed points, and the localization formula reduces to

e m
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1

y � y�1
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1� y

Z
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1

(sin�✏)n�1

X
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sign(U 0(r⇤))ei�✏J3



Conclusion and Discussion

✤ We exactly evaluate the partition function of the 
supersymmetric quiver quantum mechanics by using 
the localization

✤ The partition function gives the (refined) index of the 
BPS bound states (Poincaré polynomial (Dirac genus) of 
the Higgs branch moduli)

✤ The partition function also gives configurations of the 
BPS particles as the Coulomb branch fixed points

Conclusion:



Conclusion and Discussion

Future problems:

✤ Extension to the quiver theory with loops (including the 
superpotentials)

✤ Relation and application to the integrable systems (brane 
tilings, dimer models, etc)

✤ Deeper understandings of the Coulomb branch picture from 
the holographic point of view

✤ Asymptotic behaviour of the partition function (generating 
function) ⇔ Bubbling geometry, BH entropy, etc.


