Localization
 in Quiver Quantum Mechanics

Kazutoshi Ohta and Yuya Sasai
Meiji Gakuin University, Japan

JHEP11(2014)123 [arXiv:1408.0582]
JHEP02(2016)106 [arXiv:1512.00594]

Introduction: motivation

\because We would like to count the number (degree) of the BPS states (multi-centered black holes) in 4 d I $=2$ SUGRA (IIA/B on CY_{3}) via the "index" (second helicity supertrace)

$$
\begin{aligned}
& \begin{array}{l}
\text { moduli } \\
\text { charge }
\end{array} \\
& =\operatorname{Tr}_{\mathcal{H}_{\gamma}^{\prime}\left(z_{a}\right)}(-1)^{2 J_{3}}
\end{aligned}
$$

or the refined one

$$
\begin{aligned}
\Omega_{\mathrm{ref}}\left(\gamma ; z_{a}, y\right) & =-\frac{1}{2} \operatorname{Tr}_{\mathcal{H}_{\gamma}\left(z_{a}\right)}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} y^{2 J_{3}} \\
& =\operatorname{Tr}_{\mathcal{H}_{\gamma}^{\prime}\left(z_{a}\right)}(-1)^{2 J_{3}} y^{2 J_{3}}
\end{aligned}
$$

where $\mathcal{H}_{\gamma}\left(z_{a}\right)$: Hilbert space one-particle states with charge γ and $\mathcal{H}_{\gamma}\left(z_{a}\right)=\left(\left[\frac{1}{2}\right]+2[0]\right) \otimes \mathcal{H}_{\gamma}^{\prime}\left(z_{a}\right)$

Introduction: Hall halo

$\%$ There also exist the Hall halo bound state
$(\#$ of bound states $)=($ lowest Landau level degeneracies of the quantum Hall halo $)$

$$
\begin{array}{rlr}
\Omega_{\mathrm{ref}}(y) & =\sum_{n=-N(k-N) / 2}^{N(k-N) / 2} d_{n} y^{2 n} & \begin{array}{c}
\text { Nelectrons + monopole } \\
\\
\end{array} y^{-N(k-N)} \frac{\prod_{j=1}^{k}\left(1-y^{2 j}\right)}{\prod_{j=1}^{N}\left(1-y^{2 j}\right) \prod_{j=1}^{k-N}\left(1-y^{2 j}\right)}
\end{array}
$$

Higgs branch moduli of the $U(1) \times U(N)$ quiver theory with k arrows

Introduction: Denef's conjecture

\% Denef conjectured that there is a correspondence between the BPS bound states and quiver quantum mechanics (QQM)

BPS bound state (SUGRA)	QQM (LoM)
particles	nodes
\# of particles	rank of gauge groups
DSZ product	\# of arrows
phase of the central change	FI parameters (ζ)
spin	charges $(\Omega$-background $)$
index	partition function

Examples: two Abelian nodes

\because I concentrate on a simplest example today

* Two Abelian nodes $(G=U(1) \times U(1))$ with k arrows:
* Vector multiplets (nodes)
$Z, \bar{Z}, \phi=\sigma+i A_{\tau}, \quad \tilde{Z}, \tilde{Z}, \tilde{\phi}=\tilde{\sigma}+i \tilde{A}_{\tau} \quad$ Coulomb branch moduli
\because Chiral multiplets (arrows)

$$
q_{a} \quad(a=1, \ldots, k)
$$

Higgs branch moduli

$$
\mathcal{M}_{\mathrm{Higgs}}=\mathbb{C} P^{k-1}
$$

Q-exact action

* The supersymmetric action is written in the Q-exact form, where Q is a specific supercharge

$$
\begin{aligned}
S_{\mathrm{QQM}} & =\frac{1}{g^{2}} S_{\text {vector }}+S_{\text {chiral }} \\
& =Q \int d \tau\left(\frac{1}{g^{2}} V_{\text {vector }}+V_{\text {chiral }}\right)
\end{aligned}
$$

Independent of the couplings (WKB, 1-loop exact)

The path integral is localized at Q-transformation and $D \& F$-term constraints

Fixed point equations

\% The partition function is localized at the solutions to:
$\partial_{\tau} Z=\partial_{\tau} \tilde{Z}=\partial_{\tau} \sigma=\partial_{\tau} \tilde{\sigma}=0$
$\left(\partial_{\tau}+\phi-\tilde{\phi}\right) q_{a}=0$
$\mu_{D}=g^{2} \sum_{a=1}^{k}\left(\left|q_{a}\right|^{2}-\zeta\right)=0$
$\tilde{\mu}_{D}=g^{2} \sum_{a=1}^{k}\left(-\left|q_{a}\right|^{2}+\zeta\right)=0$
$\mu_{F, a}=(Z-\tilde{Z}) q_{a}=0$

All fields are constant and

$$
\underbrace{\begin{array}{l}
Z-\tilde{Z} \neq 0 \\
\phi-\tilde{\phi} \neq 0 \\
q_{a}=0 \quad(\zeta \ll 1)
\end{array}}_{\text {or }}
$$

$$
Z-\tilde{Z}=0
$$

$$
\phi-\tilde{\phi}=0
$$

$$
q_{a} \neq 0 \quad(\zeta \gg 1)
$$

Coulomb

Higgs

Overview: Coulomb vs Higgs

\% We can evaluate exactly the partition function in two different regions, but the localization says that these should give the same quantity because of the coupling (parameter) independence

Ω-backgrounds

* The Coulomb and Higgs branch fixed points of the original model are highly degenerated (many flat directions)
* We can turn on the Ω-backgrounds by gauging the global symmetries in $S U(2)_{R} \times U(k)$ (isometries of each branch) in order to resolve the degeneracy
\% The parameters of the Ω-backgrounds gives the refined parameters (fugacities)

$$
\begin{array}{ll}
\text { Coulomb: } & S U(2)_{R} \supset U(1) \Rightarrow \epsilon \Rightarrow y \equiv e^{i \beta \epsilon} \\
\text { Higgs: } & U(k) \supset U(1)^{k} \Rightarrow \epsilon_{a} \Rightarrow x_{a} \equiv e^{i \beta \epsilon_{a}}
\end{array}
$$

where β is the periodicity of the time-direction: $\tau \sim \tau+\beta$

Fixed points: Higgs branch

\% Let us consider more concrete examples
\% Two Abelian nodes with k arrows:

$$
\begin{aligned}
& (1) \underset{q_{a} \quad(\tilde{Z}, \tilde{\phi})}{\Longrightarrow} \quad \stackrel{k}{\Longrightarrow(Z, \phi)} \quad(a=1, \cdots, k) \\
& \mathcal{M}_{\text {Higgs }}=\mathbb{C} P^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& Z=\tilde{Z}=0 \\
& \left(\phi-\tilde{\phi}+i \epsilon_{a}\right) q_{a}=0
\end{aligned}
$$

Fixed point equation

$$
\begin{aligned}
& q_{a}=\left(0, \cdots, 0, q_{l}, 0, \cdots, 0\right) \\
& \phi-\tilde{\phi}+i \epsilon_{l}=0
\end{aligned}
$$

choice of $l \Rightarrow k$ fixed points

Evaluation of the index: Figs branch

\because For the BRST fixed points, D-term (moment map) equation says:

$$
\left|q_{l}\right|^{2}=\zeta
$$

$\zeta>0 \longrightarrow q_{l} \neq 0 \longrightarrow$ we can choose poles at $\phi-\tilde{\phi}+i \epsilon_{l}=0$ $\zeta<0 \longrightarrow$ no solution of $q_{l} \longrightarrow$ The contour does not contain any pole

Thus we find

$$
\begin{aligned}
\mathcal{Z} & =\left(\begin{array}{ll}
\left.\frac{\beta}{2 i \sin \frac{\beta}{2} \epsilon}\right)^{2} \int \frac{d \phi_{c}}{2 \pi i} \int_{\mathcal{C}} \frac{d \phi_{r}}{2 \pi i} \prod_{a=1}^{k} \frac{\sinh \frac{\beta}{2}\left(\phi_{r}+i\left(\epsilon+\epsilon_{a}\right)\right)}{\sinh \frac{\beta}{2}\left(\phi_{r}+i \epsilon_{a}\right)} & \text { where } \\
& =\left\{\begin{array}{l}
\mathcal{Z}_{c} \sum_{l=1}^{k} \prod_{a \neq l} \frac{x_{l}-y x_{a}}{x_{l}-x_{a}}=\mathcal{Z}_{c} \frac{1-y^{k}}{1-y} \\
\phi_{r} \equiv(\phi-\tilde{\phi}) / 2 \\
0
\end{array} \quad \text { for } \zeta>0\right. \\
\text { for } \zeta<0 \quad \text { Poincaré polynomial of } \mathbf{C} P^{k-1} & \text { Wall crossing phenomena }
\end{array}\right.
\end{aligned}
$$

Effective potential in Coulomb branch

Quantum effects generate the 1-loop effective potential

$$
\begin{aligned}
& \mu_{D} \rightarrow U(\vec{r}, \vec{r})\left.\left.\sim \sum_{a=1}^{k}\langle | q_{a}\right|^{2}\right\rangle-\zeta \\
& \sim \frac{k}{|\vec{r}-\vec{r}|}-\zeta \quad \\
& \forall \epsilon \neq 0 \quad(Z=\tilde{Z}=0) \\
& \frac{k}{|\sigma|}=\zeta \quad\left(\sigma= \pm \frac{k}{\zeta}\right)
\end{aligned}
$$

Evaluation of the index: Coulomb branch

\% Turning on the Ω-background, the Coulomb branch is localized at the isometry fixed points, and the localization formula reduces to

$$
\mathcal{Z}=\frac{1}{(\sin \beta \epsilon)^{n-1}} \sum_{r^{*}} \operatorname{sign}\left(U^{\prime}\left(r^{*}\right)\right) e^{i \beta \epsilon J_{3}}
$$

\because For example, the bound states of a single monopole and a single electron $(U(1) \times U(1)$ with k arrows) have two fixed points in the Coulomb picture

Conclusion and Discussion

Conclusion:

\% We exactly evaluate the partition function of the supersymmetric quiver quantum mechanics by using the localization
\% The partition function gives the (refined) index of the BPS bound states (Poincaré polynomial (Dirac genus) of the Higgs branch moduli)
\because The partition function also gives configurations of the BPS particles as the Coulomb branch fixed points

Conclusion and Discussion

Future problems:

\therefore Extension to the quiver theory with loops (including the superpotentials)
\%Relation and application to the integrable systems (brane tilings, dimer models, etc)
\% Deeper understandings of the Coulomb branch picture from the holographic point of view

* Asymptotic behaviour of the partition function (generating function) \Leftrightarrow Bubbling geometry, BH entropy, etc.

