Nambu–Jona-Lasinio Model of Dynamical Supersymmetry Breaking

Yifan Cheng

Department of Physics, National Central University, Taiwan

2016/07/07 SUSY 2016, Melbourne

arXiv:1507.01514 [hep-th], arXiv:1603.00724 [hep-th]

(Collaboration with Yan-Min Dai, Gaber Faisel and Otto Kong)

Motivation and Background

Symmetry is the organizing principle in the theory of modern physics.

- ▶ spontaneous symmetry breaking as a key feature of many theories
- Viable models with all symmetry breaking and mass generation arising dynamically have had limited success.

Supersymmetry (SUSY) is a symmetry of unique importance and undoubtedly a popular candidate for physics beyond the Standard Model.

- ► soft SUSY breaking masses as the seed for the electroweak symmetry breaking
- ► The origin of soft supersymmetry breaking masses has been usually depicted intricately in the literature via extra hidden/mediating sectors.

Motivation and Background

A **simple** theory for the generation of the soft masses would be more compelling.

- We present the prototype model with a four-superfield interaction term, which gives rise to supersymmetry breaking and soft masses dynamically.
- Along with the supersymmetry breaking, the presence of the expected Goldstino is verified.

Nambu and Jona-Lasinio (NJL) Model Mechanism

In 1961, Y. Nambu and G. Jona-Lasinio proposed a classic model of dynamical mass generation and symmetry breaking, with the basic Lagrangian density being

Nambu and Jona-Lasinio (1961)

$$\mathcal{L} = -\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + g_{0}\left[\left(\bar{\psi}\psi\right)^{2} - \left(\bar{\psi}\gamma_{5}\psi\right)^{2}\right]\,.$$

- strong attractive four-fermion interaction
- arise the bound state of fermion pair which behaves as a scalar composite
- dynamical electroweak symmetry breaking
- ► Dirac fermion mass

Nambu and Jona-Lasinio (NJL) Model Mechanism

Explicitly, we have

$$\begin{split} \mathcal{L} &= i \bar{\psi}_+ \sigma^\mu \partial_\mu \psi_+ + i \bar{\psi}_- \sigma^\mu \partial_\mu \psi_- + g^2 \bar{\psi}_+ \bar{\psi}_- \psi_+ \psi_- \\ \rightarrow & \mathcal{L} - \left(\phi^* - g \psi_+ \psi_- \right) \left(\phi - g \bar{\psi}_+ \bar{\psi}_- \right) \\ &= i \bar{\psi}_+ \sigma^\mu \partial_\mu \psi_+ + i \bar{\psi}_- \sigma^\mu \partial_\mu \psi_- - \phi^* \phi + g \left(\phi^* \bar{\psi}_+ \bar{\psi}_- + \phi \psi_+ \psi_- \right) \end{split}$$

- lacktriangle equation of motion for ϕ^\dagger gives $\phi=g\bar{\psi}_+\bar{\psi}_-$
- \blacktriangleright no kinetic term for ϕ
- lacktriangle non-zero $\langle \phi \rangle$ gives electroweak symmetry breaking and fermion mass

Supersymmetric Nambu-Jona-Lasinio (SNJL) Model

The basic Lagrangian density for the Supersymmetric NJL Model is

$$\mathcal{L} = \int d^4\theta \ \left[\bar{\Phi}_+ \Phi_+ + \bar{\Phi}_- \Phi_- + g^2 \bar{\Phi}_+ \bar{\Phi}_- \Phi_+ \Phi_- \right] \, . \label{eq:lagrangian}$$

- ► Interaction term $g^2 \int d^4 \theta \bar{\Phi}_{+a} \bar{\Phi}_{-}^a \Phi_{+}^b \Phi_{b-}$ is introduced.
- ► In component fields, *i.e.*, $\Phi = A(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$, one can see that it contains dimension-six operator $\bar{\psi}_+\bar{\psi}_-\psi_+\psi_-$.

Buchmüller and Love (1982)

Supersymmetric Nambu-Jona-Lasinio (SNJL) Model

We can rewrite the Lagrangian by intrducing two auxiliary chiral superfields and the soft SUSY breaking term.

$$\begin{split} \rightarrow & \mathcal{L} = \int d^4\theta ~ \left[\left(\bar{\Phi}_+ \Phi_+ + \bar{\Phi}_- \Phi_- \right) \left(1 - \tilde{m}^2 \theta^2 \bar{\theta}^2 \right) + \bar{\Phi}_1 \Phi_1 \right] \\ & + \int d^2\theta \left[\mu \Phi_2 \left(\Phi_1 + g \Phi_+ \Phi_- \right) \right] + \text{h.c.} ~. \end{split}$$

- ► The equation of motion for Φ_2 gives $\Phi_1 = -g\Phi_+\Phi_-$, implying $\int d^4\theta \; \bar{\Phi}_1\Phi_1 = \int d^4\theta \; g^2\bar{\Phi}_+\bar{\Phi}_-\Phi_+\Phi_- \; .$
- $lackbox{ }\Phi_1$ is the composite scalar while Φ_2 plays the Higgs superfield.
- ► The soft SUSY breaking term is necessary to have a non-trivial vacuum.

Buchmüller and Ellwanger (1984)

Problems with NJL and SNJL Model

In the top mode Standard Model:

- ► Higgs as a top quark condensate
- ► top quark mass > 200 GeV

```
Bardeen et al. (1990); Marciano (1989,1990); Miransky et al. (1989); King and Mannan (1990,1991)
```

In MSSM of supersymmetric NJL:

- ► Lighter top quark mass is possible.
- ▶ Only very small $tan\beta$ is allowed.
- NJL mechanism is used to break electroweak symmetry.

Carena et al. (1992)

Inspired by the NJL and SNJL models, we proposed a similar (but with a very different behavior) model, of which the NJL mechanism is to break the supersymmetry.

Prototype Model of Superfields

Consider a four-superfield interaction $g^2 \int d^4\theta \Phi_{+a}^{\dagger} \Phi_{-}^{b\dagger} \Phi_{+a}^{a} \Phi_{b-}$:

- ► alternative color index contraction
- ▶ if $\left\langle \Phi_{+a}^{\dagger} \Phi_{+}^{a} \Big|_{\theta^{2} \bar{\theta}^{2}} \right\rangle$ or $\left\langle \Phi_{+a}^{\dagger} \Phi_{+}^{a} \Big|_{\theta^{2}} \right\rangle$ develops, we will obtain soft supersymmetry breaking mass for $\Phi_{-}^{b\dagger} \Phi_{b-}$.

Prototype Model of Superfields

Consider a four-superfield interaction $g^2 \int d^4\theta \Phi_{+a}^{\dagger} \Phi_{-}^{b\dagger} \Phi_{+}^{a} \Phi_{b-}^{-1}$:

- ► alternative color index contraction
- ▶ if $\left\langle \Phi_{+a}^{\dagger} \Phi_{+}^{a} \Big|_{\theta^{2} \bar{\theta}^{2}} \right\rangle$ or $\left\langle \Phi_{+a}^{\dagger} \Phi_{+}^{a} \Big|_{\theta^{2}} \right\rangle$ develops, we will obtain soft supersymmetry breaking mass for $\Phi_{-}^{b\dagger} \Phi_{b-}$.

We start with a Lagrangian containing the dimension six interaction term of chiral superfields,

$$\mathcal{L} = \int d^4 heta \, \left[\Phi^\dagger \Phi + rac{m_0}{2} \Phi^2 \delta^2(\bar{ heta}) + rac{m_0^*}{2} \Phi^\dagger^2 \delta^2(heta) - rac{g_0^2}{2} \left(\Phi^\dagger \Phi
ight)^2
ight]$$

We introduce auxiliary real superfield U

$$U(x,\theta,\bar{\theta}) = \frac{C(x)}{\mu} + \sqrt{2}\theta \frac{\chi}{\mu} + \sqrt{2}\bar{\theta}\frac{\bar{\chi}}{\mu} + \theta\theta \frac{N(x)}{\mu} + \bar{\theta}\bar{\theta}\frac{\bar{N}(x)}{\mu} + \sqrt{2}\theta\sigma^{\mu}\bar{\theta}\nu_{\mu}(x) + \sqrt{2}\theta\theta\bar{\theta}\bar{\lambda}(x) + \sqrt{2}\bar{\theta}\bar{\theta}\theta\lambda(x) + \theta\theta\bar{\theta}\bar{\theta}D(x),$$

and add $\int d^4 heta \, rac{1}{2} \left(\mu U + g_o \Phi^\dagger \Phi
ight)^2$ to the original Lagrangian.

$$\begin{split} \mathcal{L} &= \int d^4\theta \left[\Phi^\dagger \Phi + \frac{1}{2} (\mu U + g_o \Phi^\dagger \Phi)^2 - \frac{g_o^2}{2} \left(\Phi^\dagger \Phi \right)^2 + \frac{m_o}{2} \Phi^2 \delta^2 (\bar{\theta}) + \frac{m_o^*}{2} \Phi^\dagger^2 \delta^2 (\theta) \right] \\ &= \int d^4\theta \left[\Phi^\dagger \Phi + \frac{\mu^2 U^2}{2} + \mu g_o U \Phi^\dagger \Phi + \frac{m_o}{2} \Phi^2 \delta^2 (\bar{\theta}) + \frac{m_o^*}{2} \Phi^\dagger^2 \delta^2 (\theta) \right] \; . \end{split}$$

- $V = -\frac{g_o}{\mu} \Phi^{\dagger} \Phi$
- lacktriangledown soft SUSY breaking masses $-\mu g_o \left< U \right|_D \right> = \tilde{m}_o^2$, $-g_o \left< U \right|_N \right> = \tilde{\eta}_o$

The effective Lagrangian in component form is given by

$$\begin{split} \mathcal{L}_{\text{eff}} = & (1 + g_o C) \left[A^* \Box A + i (\partial_\mu \bar{\psi}) \bar{\sigma}^\mu \psi + F^* F \right] \\ & + \frac{m_o}{2} \left(2AF - \psi \psi \right) + \frac{m_o^*}{2} \left(2A^* F^* - \bar{\psi} \bar{\psi} \right) \\ & + \mu CD - \mu \chi \lambda - \mu \bar{\chi} \bar{\lambda} + NN^* - \frac{\mu^2}{2} v^\nu v_\nu - \mu g_o \psi \lambda A^* - \mu g_o \bar{\psi} \bar{\lambda} A + \mu g_o DA^* A \\ & - i \frac{g_o}{2} \bar{\psi} \bar{\sigma}^\mu \chi \partial_\mu A + i \frac{g_o}{2} (\partial_\mu \bar{\psi}) \bar{\sigma}^\mu \chi A - g_o \chi \psi F^* + g_o NAF^* \\ & + i \frac{g_o}{2} \bar{\chi} \bar{\sigma}^\mu \psi \partial_\mu A^* - i \frac{g_o}{2} A^* \bar{\chi} \bar{\sigma}^\mu \partial_\mu \psi - g_o \bar{\chi} \bar{\psi} F + g_o N^* A^* F \\ & - \frac{\mu g_o}{\sqrt{2}} \eta^{\mu \nu} v_\mu i A^* \partial_\nu A + \frac{\mu g_o}{\sqrt{2}} \eta^{\mu \nu} v_\mu i (\partial_\nu A^*) A - \frac{\mu g_o}{\sqrt{2}} \eta^{\mu \nu} v_\mu \bar{\psi} \bar{\sigma}_\nu \psi \; . \end{split}$$

 $ightharpoonup \langle C \rangle$ corresponds to the wave function renormalization.

The tadpole diagrams are:

▶ The minimum conditions for scalar potential V(C, N, D) are corresponding to the so-called **gap equations**.

Assuming nonzero VEVs of C, N, D, we have three **gap equations**:

$$\qquad \qquad \bullet \quad \tilde{\eta} = g^2 \tilde{\eta} \int^{\epsilon} \frac{(k^2 - |m|^2 + \tilde{m}^2 + |\tilde{\eta}|^2)}{(k^2 + |m|^2 + \tilde{m}^2 + |\tilde{\eta}|^2)^2 - 4|m|^2 |\tilde{\eta}|^2}$$

$$\qquad \qquad \bullet \quad \tilde{m}^2 = g^2 \int^{\epsilon} \frac{\left[\tilde{m}^2 (k^2 - |m|^2) + 2k^2 |\tilde{\eta}|^2 \right] (k^2 + |m|^2 + \tilde{m}^2 + |\tilde{\eta}|^2) - 8k^2 |m|^2 |\tilde{\eta}|^2}{(k^2 + |m|^2) [(k^2 + |m|^2 + \tilde{m}^2 + |\tilde{\eta}|^2)^2 - 4|m|^2 |\tilde{\eta}|^2]} \; .$$

We expect to have a Goldstino with the supersymmetry breaking.

- ▶ loop corrected two-point function for the composite superfield *U*
- ► dynamically generated kinetic term

Goldstino in Component Field Theory

There are two fermionic components of U – the χ and λ .

- ▶ tree-level Dirac mass term $\mu \chi \lambda$
- ▶ For $\langle N \rangle = 0$, $\chi \chi$ and $\lambda \lambda$ (Majorana) mass terms are not allowed by $U(1)_R$ symmetry.

Goldstino in Component Field Theory

There are two diagrams contributing to the $\chi\lambda$ mass.

$$\begin{split} &\Omega_{\chi\chi} = -\frac{g^2\tilde{m}^4}{\tilde{\eta}}|m|^2I_{3F}(|m|^2,m_{A_-}^2,m_{A_+}^2) + \frac{1}{2\tilde{\eta}}\left(g^2I_C + \tilde{m}^2g^2I_{N'}\right)\;,\\ &\Omega_{\chi\lambda} = 2\mu g^2\tilde{m}^2|m|^2I_{3F}(|m|^2,m_{A_-}^2,m_{A_+}^2) - \mu g^2I_{N'}\;,\\ &\Omega_{\lambda\lambda} = -\mu^2g^2\tilde{\eta}|m|^2I_{3F}(|m|^2,m_{A_-}^2,m_{A_+}^2)\;. \end{split}$$

► The determinant of the fermion mass matrix is zero, indicating the existence of a massless state.

Wave Function Renormalization

On the other hand, the diagrams for the wave function renormalization are

Wave Function Renormalization

The diagrams give non-zero kinetic terms.

- ► dynamically generated kinetic term
- \blacktriangleright massless state with a kinetic term \rightarrow we have the Goldstino.

Spin One Vector Boson

The spin one vector boson v^{μ} is an important characteristic of the model.

- ► the proper self-energy diagrams
- properly behaved kinetic and mass terms generated

Remarks

We have a dimension six interaction term $\frac{-g^2}{2} \left(\Phi^{\dagger} \Phi \right) \left(\Phi^{\dagger} \Phi \right)$ in the superfield model Lagrangian.

- ► The interaction is like a superspace version of four-scalar interaction.
- ▶ With the $\langle \Phi^{\dagger} \Phi |_D \rangle$ or $\langle \Phi^{\dagger} \Phi |_N \rangle$ coming from the dynamically induced two-superfield condensate, the interaction term can be the source of SUSY breaking.
- It may be possible for the Φ to be played by one of the supersymmetric Standard Model matter superfields.
- ▶ m = 0 case with pure D-term SUSY breaking also works and is particularly interesting because of no input mass scale.

Conclusion and Discussion

We present a new model to dynamically break supersymmetry, characterized by the generation of **soft mass(es)** and a spin one **composite**.

- ▶ Together with models of dynamical electroweak symmetry breaking, it is plausible to have a supersymmetric Standard Model without input mass parameter for which soft SUSY breaking and a subsequent electroweak symmetry breaking both being generated dynamically.
- No other SUSY breaking sector, messenger sector, or hidden sector is needed.
- ► All mass scales can be generated dynamically.

Thank you for your attention!