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Evidence for a SM-like Higgs boson

In the summary slide of his talk on Monday, Eliot Lipeles summarized the

results of the ATLAS Higgs experiment as follows:
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Motivations for an extended Higgs sector

• The fermion sector of the SM is not of minimal form (“Who ordered

that?”). So, why should the scalar sector be minimal?

• Adding new scalar states can alleviate the metastability of the vacuum,

allowing the Higgs-sector-extended SM to be valid all the way up to the

Planck scale.

• Extended Higgs sectors can provide a dark matter candidate.

• Extended Higgs sectors can provide new sources of CP violation (which

may be useful in baryogenesis).

• Models of BSM physics often require additional scalar Higgs states. The

MSSM is a famous example of this.



For an arbitrary Higgs sector, the tree-level ρ-parameter is given by

ρ ≡ m2
W

m2
Z cos2 θW

= 1 ⇐⇒ (2T + 1)2 − 3Y 2 = 1 ,

independently of the Higgs vacuum expectation values (vevs), where T and

Y specify the weak-isospin and the hypercharge of the Higgs multiplet.∗ The

simplest solutions are Higgs singlets (T, Y ) = (0, 0) and hypercharge-one

complex Higgs doublets (T, Y ) = (12, 1). These Higgs representations will be

our main focus.

More generally, one can achieve ρ = 1 by conspiracy if

∑

T,Y

[

4T (T + 1)− 3Y 2
]

|VT,Y |2cT,Y = 0 ,

where VT,Y ≡ 〈Φ(T, Y )〉 and cT,Y = 1 for complex Higgs representations and

cT,Y = 1
2 for real Y = 0 Higgs representations.

∗Y is normalized such that the electric charge of the scalar field is Q = T3 + Y/2.



The alignment limit—approaching the SM Higgs boson

Consider an extended Higgs sector with at n hypercharge-one Higgs doublets

Φi and m additional singlet Higgs fields φi.

After minimizing the scalar potential, we assume that only the neutral Higgs

fields acquire vevs (in order to preserve U(1)EM),

〈Φ0
i 〉 = vi/

√
2 , 〈φ0

j〉 = xj .

Note that v2 ≡∑i |vi|2 = 4m2
W/g2 = (246 GeV)2.

We define new linear combinations of the hypercharge-one doublet Higgs

fields (the so-called Higgs basis). In particular,

H1 =

(

H+
1

H0
1

)

=
1

v

∑

i

v∗iΦi , 〈H0
1〉 = v/

√
2 ,

and H2,H3, . . . , Hn are the other linear combinations such that 〈H0
i 〉 = 0.



That is H0
1 is aligned with the direction of the Higgs vev in field space. Thus,

if
√
2Re(H0

1) − v is a mass-eigenstate, then the tree-level couplings of this

scalar to itself, to gauge bosons and to fermions are precisely those of the

SM Higgs boson. This is the exact alignment limit.

In general,
√
2Re(H0

1)− v is not a mass-eigenstate due to mixing with other

neutral scalars. In this case, the observed Higgs boson is SM-like if either

• the mixing of
√
2Re(H0

1)− v with other neutral scalars is suppressed,

and/or

• the diagonal squared masses of the other scalar fields are all large compared

to the mass of the observed Higgs boson (the so-called decoupling limit).

Although the alignment limit is most naturally achieved in the decoupling

regime, it is possible to have a SM-like Higgs boson without decoupling. In

the latter case, the masses of the additional scalar states could lie below

∼ 500 GeV and be accessible to LHC searches.



Extending the SM Higgs sector with a singlet scalar

The simplest example of an extended Higgs sector adds a real scalar field S.

The most general renormalizable scalar potential (subject to a Z2 symmetry

to eliminate linear and cubic terms) is

V = −m2Φ†Φ− µ2S2 + 1
2λ1(Φ

†Φ)2 + 1
2λ2S

4 + λ3(Φ
†Φ)S2 .

After minimizing the scalar potential, 〈Φ0〉 = v/
√
2 and 〈S〉 = x/

√
2. The

squared-mass matrix of the neutral Higgs bosons is

M2 =

(

λ1v
2 λ3vx

λ3vx λ2x
2

)

.

The corresponding mass eigenstates are h and H with mh ≤ mH. An

approximate alignment limit can be realized in two different ways.

• x ≫ v. This is the decoupling limit, where h is SM-like and mH ≫ mh.

• |λ3|x ≪ v. Then h is SM-like if λ1v
2 < λ2x

2. Otherwise, H is SM-like.



The Higgs mass eigenstates are explicitly defined via
(

h

H

)

=

(

cosα − sinα

sinα cosα

)(√
2Re Φ0 − v√
2S − x

)

,

where
λ1v

2 = m2
h cos

2α+m2
H sin2α ,

λ2x
2 = m2

h sin
2α+m2

H cos2α ,

λ3xv = (m2
H −m2

h) sinα cosα .

The SM-like Higgs must be approximately
√
2Re Φ0 − v.

If h is SM-like, then m2
h ≃ λ1v

2 and

| sinα| = |λ3|vx
√

(m2
H −m2

h)(m
2
H − λ1v2)

≃ |λ3|vx
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ λ1v

2 and

| cosα| = |λ3|vx
√

(m2
H −m2

h)(λ1v2 −m2
h)

≃ |λ3|vx
m2

H −m2
h

≪ 1 .



Taken from T. Robens and T. Stefaniak, Eur. Phys. J. C75, 104 (2015).



Theoretical structure of the 2HDM

Consider the most general renormalizable 2HDM potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[

λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)

]

Φ†
1Φ2 + h.c.

}

.

After minimizing the scalar potential, assume that 〈Φ0
i 〉 = vi (for i = 1, 2).

Define the Higgs basis fields,

H1 =

(

H+
1

H0
1

)

≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(

H+
2

H0
2

)

≡ −v2Φ1 + v1Φ2

v
,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is uniquely defined

up to an overall rephasing, H2 → eiχH2.



In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[

Z6(H
†
1H1) + Z7(H

†
2H2)

]

H†
1H2 + h.c.

}

,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5,

Z6 and Z7 are complex and transform under the rephasing of H2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

Physical observables must be independent of χ.

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remark: Generically, the Zi are O(1) parameters.



Type I and II Higgs-quark Yukawa couplings in the 2HDM

In the Φ1–Φ2 basis, the 2HDM Higgs-quark Yukawa Lagrangian is:

−LY = ULΦ
0 ∗
i hU

i UR−DLK
†Φ−

i h
U
i UR+ULKΦ+

i h
D †
i DR+DLΦ

0
ih

D †
i DR+h.c. ,

where K is the CKM mixing matrix, and there is an implicit sum over i. The

hU,D are 3× 3 Yukawa coupling matrices.

In order to naturally eliminate tree-level Higgs-mediated FCNC, we shall

impose a discrete symmetry to restrict the structure of LY.

Under the discrete symmetry, Φ1 → +Φ1 and Φ2 → −Φ2, which restricts

the form of the scalar potential by setting m2
12 = λ6 = λ7 = 0.Two different

choices for how the discrete symmetry acts on the fermions then yield:

• Type-I Yukawa couplings: hU
1 = hD

1 = 0,

• Type-II Yukawa couplings: hU
1 = hD

2 = 0.



If the discrete symmetry is unbroken, then the scalar potential and vacuum

are automatically CP-conserving (and all scalar potential parameters and the

Higgs vevs can be chosen real).

Actually, it is sufficient for the discrete symmetry to be broken softly by

taking m2
12 6= 0. In this case, an additional source of CP-violation will be

present if Im(λ∗
5[m

2
12]

2) 6= 0. Nevertheless, Higgs-mediated FCNC effects

remain suppressed.

Note that the parameter

tanβ ≡ v2
v1

,

is now meaningful since it refers to vacuum expectation values with respect

to the basis of scalar fields where the discrete symmetry has been imposed.



�
Beware of rare B decays

The decays B± → τ±ντ and B → D(∗)τ−ντ are noteworthy, since these

processes possess tree-level charged Higgs exchange contributions that can

compete with the dominant W -exchange in models with extended Higgs

sectors.

The BaBar Collaboration measured values of the rates for B → Dτ−ντ

and B → D∗τ−ντ that showed a combined 3.4σ discrepancy from the SM

predictions, which were also not compatible with the 2HDM Type-I and II

Higgs Yukawa couplings. Subsequent measurements of the Belle and LHCb

Collaborations are consistent with the BaBar measurements, although with

larger error bars.



Taken from J.P. Lees et al. [BaBar Collaboration], Phys. Rev. D88, 072012 (2013).



The alignment limit in the CP-conserving 2HDM

We take m2
12 6= 0 and impose a Type-I or II structure of the Higgs–quark

interactions. For simplicity, we assume CP-conservation, in which case all

scalar potential parameters of the Higgs basis can be chosen real.

The CP-odd Higgs boson is A =
√
2 ImH0

2 withm2
A = Y2+

1
2(Z3+Z4−Z5)v

2.

After eliminating Y2 in favor of m2
A, the CP-even Higgs squared-mass matrix

with respect to the Higgs basis states, {
√
2Re H0

1−v ,
√
2Re H0

2} is given by,

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

The CP-even Higgs bosons are h and H with mh ≤ mH. An approximate

alignment limit can be realized in two different ways.

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit, where h is SM-like and

mA ∼ mH ∼ mH± ≫ mh.

2. |Z6| ≪ 1. h is SM-like if m2
A+(Z5−Z1)v

2 > 0. Otherwise, H is SM-like.



In particular, the CP-even mass eigenstates are:
(

H

h

)

=

(

cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2Re H0

2

)

,

where cβ−α ≡ cos(β −α) and sβ−α ≡ sin(β −α) are defined in terms of the

mixing angle α that diagonalizes the CP-even Higgs squared-mass matrix when

expressed in the original basis of scalar fields, {
√
2Re Φ0

1−v1 ,
√
2Re Φ0

2−v2}.

Since the SM-like Higgs must be approximately
√
2Re H0

1 −v, it follows that

• h is SM-like if |cβ−α| ≪ 1 ,

• H is SM-like if |sβ−α| ≪ 1.

The case of a SM-like H necessarily corresponds to alignment without

decoupling.

Remark: Although the tree-level couplings of
√
2Re H0

1 − v coincide with

those of the SM Higgs boson, the one-loop couplings can differ due to the

exchange of non-minimal Higgs states (if not too heavy). For example, the

H± loop contributes to the decays of the SM-like Higgs boson to γγ and γZ.



The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

Z5v
2 = m2

Hs2β−α +m2
hc

2
β−α −m2

A .

If h is SM-like, then m2
h ≃ Z1v

2 and

|cβ−α| =
|Z6|v2

√

(m2
H −m2

h)(m
2
H − Z1v2)

≃ |Z6|v2
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ Z1v

2 and

|sβ−α| =
|Z6|v2

√

(m2
H −m2

h)(Z1v2 −m2
h)

≃ |Z6|v2
m2

H −m2
h

≪ 1 .



Higgs interaction 2HDM coupling approach to alignment limit

hV V sβ−α 1− 1
2c

2
β−α

hhh * 1 + 2(Z6/Z1)cβ−α

hH+H− * 1
3 [(Z3/Z1) + (Z7/Z1)cβ−α]

hhhh * 1 + 3(Z6/Z1)cβ−α

hDD sβ−α1+ cβ−αρ
D
R 1+ cβ−αρ

D
R

hUU sβ−α1+ cβ−αρ
U
R 1+ cβ−αρ

U
R

Type I and II 2HDM couplings of the SM-like Higgs boson h normalized to those of the SM Higgs boson,
in the alignment limit. The hH+H− coupling given above is normalized to the SM hhh coupling. The
scalar Higgs potential is taken to be CP-conserving. For the fermion couplings, D is a column vector of three
down-type fermion fields (either down-type quarks or charged leptons) and U is a column vector of three
up-type quark fields. In the third column, the first non-trivial correction to alignment is exhibited. Finally,
complete expressions for the entries marked with a * can be found in H.E. Haber and D. O’Neil, Phys. Rev. D
74, 015018 (2006) [Erratum: ibid. D 74 (2006) 059905].

Type I : ρDR = ρUR = 1 cotβ ,

Type II : ρDR = −1 tanβ , ρUR = 1 cot β .





In Type-II models, the hDD coupling relative to the SM is

sβ−α − tanβ cβ−α .

Thus, for |cβ−α| ≪ 1 and tan β cβ−α ≃ 2, the hDD coupling flips sign.†

The approach to alignment is “delayed” at large tan β.

†Many more figures of this type can be found in J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml,

Phys. Rev. D 92, 075004 (2015).



Constraints on Type-I and II 2HDMs from Higgs data

Direct constraints from LHC Higgs searches for Type-I (left) and Type-II (right) 2HDM with mH = 300 GeV
with mh = 125 GeV, Z4 = Z5 = −2 and Z7 = 0. Colors indicate compatibility with the observed Higgs
signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% C.L. from the non-observation
of the additional Higgs states overlaid in gray. From H.E. Haber and O. St̊al, Eur. Phys. J. C 75, 491 (2015)
[Erratum: ibid., 76, 312 (2016)].



Projections for future LHC running

Since present data suggests a SM-like Higgs boson, one should take this into

account in devising searches for the heavier Higgs states of the 2HDM. For

example, sample results are shown below for the search for A in gluon-gluon

fusion, scanned the Type-I and II 2HDM parameter spaces, assuming that

| cos(β − α)| ≤ 0.14.‡

‡See J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Phys. Rev. D 92, 075004 (2015).



Cross sections times branching ratio in Type I (left panels) and in Type II (right panels) for gg → A → Y at the 13 TeV LHC as
functions of mA for Y = γγ (previous page panels), Y = ττ (upper panels) and Y = tt̄ (lower panels) with tan β color code.



The alignment limit in the general 2HDM

In the general 2HDM, the scalar potential is generically CP-violating. In

this case, the neutral Higgs mass-eigenstates are linear combinations of

{
√
2ReH0

1 − v , ReH0
2 , ImH0

2}, which are determined by diagonalizing the

3× 3 real symmetric squared-mass matrix

M2 = v2









Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2









,

where Z345 ≡ Z3 + Z4 + Re(Z5). The diagonalizing matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23, such that

θ12 and θ13 are invariant whereas θ23 → θ23 − χ under the rephasing of H2.
§

The alignment limit again corresponds to two cases:

1. Y2 ≫ v2, corresponding to the decoupling limit.

2. |Z6| ≪ 1, corresponding to alignment with or without decoupling.
§See H.E. Haber and D. O’Neil, Phys. Rev. D74, 015018 (2006) [Erratum: ibid., D74, 059905 (2006)].



The alignment limit of the general 2HDM in equations

To obtain the conditions in which h1 is the SM-like Higgs boson, noting that:

gh1V V

ghSMV V
= c12c13 , where V = W or Z ,

where hSM is the SM Higgs boson, we demand that

s12 , s13 ≪ 1 .

Here, s12 ≡ sin θ12, c12 ≡ cos θ12, etc. We denote the masses of the neutral

Higgs mass eigenstates by m1, m2 and m3. It follows that:

Z1v
2 = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 ,

Re(Z6 e
−iθ23) v2 = c13s12c12(m

2
2 −m2

1) ,

Im(Z6 e
−iθ23) v2 = s13c13(c

2
12m

2
1 + s212m

2
2 −m2

3) ,

Re(Z5 e
−2iθ23) v2 = m2

1(s
2
12 − c212s

2
13) +m2

2(c
2
12 − s212s

2
13)−m2

3c
2
13 ,

Im(Z5 e
−2iθL23) v2 = 2s12c12s13(m

2
2 −m2

1) .



Assuming no mass degeneracies in the neutral scalar sector, it then follows

that in the alignment limit,

s12 ≡ sin θ12 ≃
Re(Z6e

−iθ23)v2

m2
2 −m2

1

≪ 1 ,

s13 ≡ sin θ13 ≃ −Im(Z6e
−iθ23)v2

m2
3 −m2

1

≪ 1 ,

One additional small quantity characterizes the alignment limit,

Im(Z5e
−2iθ23) ≃ (m2

2 −m2
1)s12s13

v2
≃ −2 Im(Z2

6e
−2iθ23)v2

m2
3 −m2

1

≪ 1 .

Finally, the following mass relations in the alignment limit are noteworthy,

m2
1 ≃ Z1v

2 ,

m2
2 −m2

3 ≃ Re(Z5e
−2iθ23)v2 .



The alignment limit of the Higgs sector of the MSSM

The MSSM values of Z1 and Z6 (including the leading one-loop corrections):

Z1v
2 = m2

Zc
2
2β +

3v2s4βh
4
t

8π2

[

ln

(

M2
S

m2
t

)

+
X2

t

M2
S

(

1− X2
t

12M2
S

)]

,

Z6v
2 = −s2β

{

m2
Zc2β −

3v2s2βh
4
t

16π2

[

ln

(

M2
S

m2
t

)

+
Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]

}

.

where M2
S ≡ mt̃1

mt̃2
, Xt ≡ At − µ cotβ and Yt = At + µ tanβ.

Note that m2
h ≤ Z1v

2 is consistent with mh ≃ 125 GeV for suitable choices

for mS and Xt. Exact alignment (i.e., Z6 = 0) can now be achieved due to

an accidental cancellation between tree-level and loop contributions,¶

m2
Zc2β =

3v2s2βh
4
t

16π2

[

ln

(

M2
S

m2
t

)

+
Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]

.

That is, Z6 ≃ 0 is possible for a particular choice of tan β.
¶See M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Phys. Rev. D 91, 035003 (2015).
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Left panel: Regions of the (mA, tan β) plane excluded in a simplified MSSM model via

fits to the measured rates of the production and decays of the Higgs boson h. Taken from

ATLAS-CONF-2014-010.

Right panel: Likelihood distribution, ∆χ2
HS obtained from testing the signal rates of the

Higgs boson h against a combination of Higgs rate measurements from the Tevatron and

LHC experiments, obtained with HiggsSignals, in the alignment benchmark scenario. From

P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak and G. Weiglein, EPJC 75, 421 (2015).



Likelihood analysis: allowed regions in the tanβ–mA plane

Preferred parameter regions in the (MA, tan β) plane (left) and (MA, µAt/M
2
S) plane

(right), where M2
S = mt̃1

mt̃2
, in a pMSSM-8 scan. Points that do not pass the direct

constraints from Higgs searches from HiggsBounds and from LHC SUSY particle searches

from CheckMATE are shown in gray. Applying a global likelihood analysis to the points

that pass the direct constraints, the color code employed is red for ∆χ2
h < 2.3, yellow for

∆χ2
h < 5.99 and blue otherwise. The best fit point is indicated by a black star. (Taken

from P. Bechtle, H.E. Haber, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein and L. Zeune,

in preparation.)



A symmetry origin for alignment without decoupling

For simplicity, we examine the CP-conserving 2HDM, for which one can

rephase the Higgs basis field H2 such that Z5, Z6 and Z7 are real. Given a

scalar potential in the Φ1–Φ2 basis, one can derive

Z6 = −1
2

[

λ1c
2
β − λ2s

2
β − λ345c2β

]

s2β + λ6cβc3β + λ7sβs3β ,

Z7 = −1
2

[

λ1s
2
β − λ2c

2
β + λ345c2β

]

s2β + λ6sβs3β + λ7cβc3β .

If the alignment condition Z6 = 0 holds independently of tanβ, then it

follows that‖

λ1 = λ2 = λ345 , λ6 = λ7 = 0 .

where λ345 ≡ λ3 + λ4 + λ5. The above natural alignment condition can be

achieved by imposing a particular Higgs flavor or generalized CP symmetry.

Note that the natural alignment condition also sets Z7 = 0. Indeed, if the

natural alignment condition holds in one basis, then it holds in any basis.
‖See P.S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014) 024 [Erratum: ibid. 1511, 147 (2015)].



The natural alignment condition can be relaxed. It is sufficient to impose

a discrete Z2 symmetry where the Higgs basis field H1 is unchanged but

H2 → −H2. It then follows that

Y3 = Z6 = Z7 = 0 .

Note that the minimum condition Y3 = −1
2Z6v

2 requires that Y3 = 0 if

Z6 = 0, so this Z2 symmetry cannot be softly broken.

No conditions are imposed on Z1, . . . , Z5. The natural alignment condition

is a special case where Z1 = Z2 = Z345.

Having imposed the above Z2 symmetry in the bosonic sector of the theory,

we can extend it to the Yukawa interactions. If we demand that all fermions

are even under the Z2 symmetry, then the H1 couplings to fermions are those

of the SM Higgs boson and the Yukawa couplings of H2 to the fermions are

absent. This is the inert doublet model (IDM).



Further details on the IDM

By imposing the discrete Z2 symmetry, the scalar potential is CP-conserving.

The SM Higgs state is h =
√
2Re H0

1 − v. The inert doublet is

H2 =

(

H+

(H + iA)/
√
2

)

,

where the mass eigenstates consist of two neutral scalars, H, A and a charged

Higgs pair. The physical Higgs masses are

m2
h = Z1v

2 , m2
H± = Y2 +

1
2Z3v

2 ,

m2
H,A = m2

H± + 1
2(Z4 ± |Z5|)v2 .

H and A have opposite CP-quantum numbers, but there is no interaction

that can determine separate CP quantum number for these states. The

lighter of these two states will henceforth be denoted as HL.

The lightest Z2–odd particle (LOP) is stable. If Z4 < |Z5| (in which case HL

is lighter than H±), then the LOP is a neutral scalar.



The LOP is a candidate for dark matter. Including the exclusion limits

from the current dark matter direct detection experiments, a cosmologically

relevant LOP is ruled out by Goudelis, Herrmann and St̊al for all LOP masses

below 500 GeV except for a narrow window around 1
2mh.

The viable IDM parameter space projected on the (MLOP , λL,S) plane imposing only the upper limit (left) and the upper and

lower limits (right) of the WMAP range, 0.1018 ≤ MLOPh2 ≤ 0.1234. The green points correspond to all valid points in the

scan, while the red and black regions show the points which remain valid when the model satisfies stability and perturbativity up to

a scale Λ = 104 GeV and the GUT scale Λ = 1016 GeV, respectively. Above, λL,S ≡ 1
2(Z3 + Z4 ∓ |Z5|); when multiplied

by v the latter corresponds to the hHLHL coupling. Taken from A. Goudelis, B. Herrmann and O. St̊al, JHEP 1309 (2013) 106.



Adding a Higgs singlet to the 2HDM

Consider a Higgs sector that consists of two hypercharge-one complex doublet

and a complex neutral singlet S. We can define the doublet fields of the

Higgs basis, H1 and H2 as before. The relevant scalar potential is more

complicated than that of the 2HDM. Here we focus on the terms that are

relevant for the scalar squared-mass matrices.

V ∋ . . . + 1
2Z1(H

†
1H1)

2
+ . . . +

[

1
2Z5(H

†
1H2)

2
+ Z6(H

†
1H1)H

†
1H2 + h.c.

]

+ . . .

+S
†
S
[

Zs1H
†
1H1 + . . . + (Zs3H

†
1H2 + h.c.) + Zs4S

†
S
]

+
{

Zs5H
†
1H1S

2 + . . . + Zs7H
†
1H2S

2 + Zs8H
†
2H1S

2 + Zs9S
†S S2 + Zs10S

4 + h.c.
}

+
[

C1H
†
1H1S + . . . + C3H

†
1H2S + C4H

†
2H1S + C5(S

†
S)S + C6S

3
+ h.c.

]

.

For simplicity, we shall assume that the scalar potential is CP-invariant. We

then write the squared-mass matrix of the CP-even Higgs bosons with respect

to the basis {
√
2Re H0

1 − v ,
√
2Re H0

2 ,
√
2 (Re S − vs)}.



The squared-mass matrix for the CP-even scalars is a real symmetric matrix,

M2
S =

















Z1v
2 Z6v

2
√
2 v

[

C1 + (Zs1 + 2Zs5)vs

]

M
2

A + Z5v
2 v

√
2

[

C3 + C4 + 2(Zs3 + Zs7 + Zs8)vs

]

−C1

v2

2vs

+ 3(C5 + C6)vs + 4(Zs4 + 2Zs9 + 2Zs10)v
2
s

















,

where M 2
A is the 11 element of the CP-odd squared-mass matrix with respect

to the basis {
√
2 Im H0

2 ,
√
2 Im S}.

Exact alignment occurs when (M2
S)12 = (M2

S)13 = 0. That is,

Z6 = 0 , C1 + (Zs1 + 2Zs5)vs = 0 .

The decoupling limit corresponds to MA ≫ v and vs ≫ v and yields

approximate alignment.

Approximate alignment can also be achieved with a combination of a subset

of the above conditions. For example, C1+(Zs1+2Zs5)vs ≃ 0 and MA ≫ v

[with Z6 ∼ O(1)] yields approximate alignment.



The alignment limit of the Higgs sector of the NMSSM

In the NMSSM, including the leading one-loop radiative corrections,

Z1v
2 = (m2

Z − 1
2λ

2v2)c22β + 1
2λ

2v2 +
3v2s4βh

4
t

8π2

[

ln

(

M2
S

m2
t

)

+
X2

t

M2
S

(

1− X2
t

12M2
S

)]

,

Z6v
2 = −s2β

{

(m2
Z − 1

2λ
2v2)c2β −

3v2s2βh
4
t

16π2

[

ln

(

M2
S

m2
t

)

+
Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]

}

.

The exact alignment limit requires that Z6 = 0 and C1+(Zs1+2Zs5)vs = 0.

In the NMSSM, the latter condition yields

M
2

As
2
2β

4µ2
+

κs2β
2λ

= 1 ,

where M 2
A ≡ 2µ(Aλ + κvs)/s2β and µ ≡ λvs. Note that κ governs the

self-coupling of the singlet scalar field.



In contrast to the MSSM, in the NMSSM one can set Z6 = 0 and obtain

mh = 125 GeV, with only small contributions from the one-loop radiative

corrections. This leads to a preferred choice of NMSSM parameters,∗∗

λ ∼ 0.65 , tanβ ∼ 2 .

Β

Λ

Λ = ±

=

±
=

=

Β

H
L

Λ =

∗∗See M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Phys. Rev. D 93, 035013 (2016).



The second alignment limit condition leads to further correlations of the

NMSSM parameter space.

H L

H
L

Λ Κ = Λ �

H L Β = =

Near the alignment limit, we have mA ≃ mH ≃ MA.



Beyond singlets and doublets

If one considers a scalar sector with triplet Higgs fields, then one must include

addition Higgs multiplets in such a way that ρ ≃ 1.

Georgi and Machacek constructed an amusing model in which ρ = 1 at tree-

level due to a well chosen scalar potential that respects custodial symmetry.

The model contains a complex Y = 1 doublet, a complex Y = 2 triplet and

a real Y = 0 singlet. Without going into details, there is a doublet vev, vφ,

and a common triplet vev, vχ, with v2 ≡ v2φ + 8v2χ = (246 GeV)2.

The physical scalars make up custodial SU(2) multiplets: a 5-plet of states

(H±±
5 , H±

5 and H0
5) with common mass m5, a triplet (H±

3 , H0
3) with

common mass m3, and custodial singlets that mix with squared-mass matrix

M2 =

(

Z11v
2
φ vφvχ(Z12 − 2

√
3m2

3/v
2)

vφvχ(Z12 − 2
√
3m2

3/v
2) 3

2m
2
3 − 1

2m
2
5 + v2χ(Z22 − 12m2

3/v
2)

)

,

where the Zij depend on dimensionless quartic couplings.



The custodial singlet CP-even Higgs bosons are h and H with mh ≤ mH.

An approximate alignment limit can be realized in two different ways.

1. In the decoupling limit, h is SM-like and mH ≃ m3 ≃ m5 ≫ mh.
††

2. vχ ≪ v. Then h is SM-like if Z11v
2 < 3

2m
2
3 − 1

2m
2
5. Otherwise, H is

SM-like.

Remark: Implications of a modified unitarity sum rule

In the Georgi-Machacek model, the existence of doubly-charged Higgs bosons

implies that

∑

i

g2hiW+W− = g2m2
W +

∑

k

|gφ++
k

W−W−|2 ,

where the sum is taken over all CP-even Higgs bosons of the model. The

presence on the last term on the right hand side above means that individual

hiV V couplings can exceed the corresponding coupling of the SM.
††For details, see K. Hartling, K. Kumar, and H.E. Logan, Phys. Rev. D90, 015007 (2014).



It is convenient to write cH ≡ cos θH = vφ/(v
2
φ + 8v2χ)

1/2 , and sH ≡ sin θH.

Then, the following couplings are noteworthy:

H0
1W

+W− : gcHmW , H ′ 0
1 W+W− :

√

8/3gmWsH ,

H0
5W

+W− :
√

1/3gmWsH , H++
5 W−W− :

√
2gmWsH ,

where H0
1 and H ′ 0

1 are the custodial singlet interaction eigenstates. Note

that H ′ 0
1 and H0

5 , H
++
5 have no coupling to fermions, whereas

H0
1ff̄ :

gmq

2mW cH
.

In the absence of H0
1–H

′ 0
1 mixing, cH = 1 corresponds to the alignment limit.

But consider the strange case of sH =
√

3/8. In this case, the H ′ 0
1 coupling

to W+W− matches that of the SM. Nevertheless, this does not saturate the

HWW sum rule! Moreover, it is possible that the H ′ 0
1 W+W− coupling

is larger than gmW , without violating the HWW sum rule. Including

H0
1–H

′ 0
1 mixing allows for even more baroque possibilities not possible in a

multi-doublet extension of the SM.



Conclusions

• The Higgs data strongly suggests that the observed Higgs boson is SM-like.

• If the Higgs sector in nature is non-minimal, then it must contain a SM-like

Higgs boson.

• In the alignment limit, the mass eigenstate corresponding to the observed

Higgs boson points is aligned with direction (in field space) of the doublet

vacuum expectation value.

• Departures from the alignment limit encode critical information that will

provide important clues for the structure of the non-minimal Higgs sector.


