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Why is Our Universe Big, 
Old, and full of structures?

All of them are big 
mysteries in the context of
evolving Universe.
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Rapid Accelerated Expansion or INFLATION
in the early Universe can solve
The Horizon Problem

Why is our Universe Big?

The Flatness Problem 
Why is our Universe Old?

The Monopole/Relic Problem
Why is our Universe free from exotic relics?

The Origin-of-Structure Problem
Why is our Universe full of structures?
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Some historical accounts

Field theoretic models of inflation 
(based on GUT Higgs)

Old inflation: 
high temperature symmetry restoration
and first-order phase transition
Inflation never ends, the Universe too inhomogeneous

Sato (1981),  Guth (1981)

New inflation: 
high temperature symmetry restoration
Slow-rollover phase transition
Inflation too short, 
the Universe too inhomogeneous

Linde (1982),  Albrecht & Steinhardt (1982) 

potential

field amplitude



Supersymmetric New inflation: 
high temperature symmetry restoration
Slow-rollover phase transition
Inflation long enough, 
Perturbations at the right amplitude



Supersymmetric New inflation: 
high temperature symmetry restoration
Slow-rollover phase transition
Inflation long enough, 
Perturbations at the right amplitude

0 if SUSY is exact

Since SUSY is broken at the mass scale         one finds
Sm

SUSY greatly helps to 
preserve the flatness 

of the potential against 
radiative corrections

In fact, at finite density/temperature (and/or curved spacetime) 
SUSY may be broken more severely.



Two body reaction rate with a massless gauge particle

Number of reaction channel

Gauge coupling constant
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must have been larger than

Namely,

  G ≫ H
This imposes an upper bound on the radiation temperature,

Thermal phase transition at the GUT scale was impossible.

.

is required to realize a thermal state.

Some nonthermal mechanisms to set up the initial condition 
for inflation must be invoked.
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Chaotic inflation

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain. 
Inflation is naturally realized if               .

Sufficiently flat potential is required
over super-Planckian field excursion.

 	
f ≫ M

P

Curvature Perturbations

		
V[f]=

1

2
m2f2 +

l

4
f4

		m=1013GeV,			l <10-13For                                 we find 

To preserve the smallness of the coupling constant, SUSY is desired.

Linde (1983) 
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Tensor Perturbations
(Quantum gravitational waves)
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Chaotic inflation

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain. 
Inflation is naturally realized if               .

Sufficiently flat potential is required
over super-Planckian field excursion.

 	
f ≫ M

P

Difficult  to implement in Supergravity

Linde (1983) 
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Chaotic inflation

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain. 
Inflation is naturally realized if               .

Sufficiently flat potential is required
over super-Planckian field excursion.

 	
f ≫ M

P

Chaotic Inflation in Supergravity

Contrived superpotential in minimial SUGRA
Sneutrino inflation in nonminimal SUGRA

Goncharov and Linde (1984)
Murayama, Suzuki, Yanagida, & JY (1994)

Shift Symmetry iC  
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V m   No exponential increase above
along this direction 

PM

Kawasaki, Yamaguchi, & Yanagida (2000)
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This symmetry has been used in
a number of contemporary models



The Lyth Bound: Field excursion vs tensor-to-scalar ratio

Models with canonically normalized inflaton realizing a large
tensor-to-scalar fluctuations have super-Planckian field excursion.

Chaotic inflation is natural, requiring no fine tuning in initial condition.

Chaotic inflation predicts observable tensor-to-scalar ratio.

Lyth (1997)

Tensor-to-scalar ratio

Number of e-folds
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Planck 2015
	
n

s
spectral index of curvature perturbations

	r
Nature did not favor (simple polynomial) Chaotic Inflation



Planck 2015	
n

s
spectral index of curvature perturbations

	r
Nature favors R2 inflation and (original) Higgs inflation

Nature favors simplistic approach?



The R2 inflation (often called Starobinsky model)
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Problem with R2 inflation?
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A large dimensionless parameter

85.3 10 

The real question may be how the linear (Einstein) term emerged 
out of an R2 theory with a large dimensionless coupling 
(with no Weyl curvature term).

for 		N =60



The Original Higgs Inflation
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The potential has the same form as conformally transformed 
R2 inflation in the field range relevant to inflaton.

	x = -4.7´104 l to match the amplitude of CMB anisotropy.

Large and negative 

Cervantes-Cota & Dehnen (1995); 
Bezrkov & Shaposhnikov (2008) 
Barvinsky, Kamenshchik, & Starobinsky (2008)…

cf Spokoiny (1984)



Supergravity extension of R2 inflation and Higgs inflation
has also been studied by a number of authors.

SUGRA R2 inflation (some including Rn corrections)
Ferrara, Grisaru, & van Nieuwenhuizen (1978);  Cecotti (1987);
Hindawi, Ovrut, & Waldram (1996); Gates & Ketov (2009); 
Ketov & Starobinsky (2012); Ketov (2013); Ketov & Terada (2013);
Kallosh & Linde (2013); Ellis, Nanopoulos, & Olive (2013), 
Ferrara, Kallosh & van Proeyen (2013); Watanabe & JY (2013); Pallis (2014);
Giudice & Lee (2014); Kamada & JY (2014); Terada, Watanabe, Yamada & JY (2015)…

SUGRA Higgs inflation

Einhorn & Jones (2010); Ben-Dayan & Einhorn (2010), Lee (2010); 
Ferrara, Kallosh, Linde, Marrani, van Proeyen (2010,2011);
Nakayama & Takahashi (2010); Chatterjee & Mazumdar (2011);
Arai, Kawai, & Okada (2011); Pallis & Toumbas (2011);
Choudhury, Chakraborty, & Pal (2014); Terada (2015); Pallis (2016)…

NO longer simple, but we must explore these possibilities 
if SUSY is discovered… 
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If the weather forecaster says the probability of rain
tonight is 90%, we always take an umbrella and 
it indeed rains by the time we return home. 

Weather forecast

Particle physics experiments
If a 3σ (=99.7%) evidence is reported, first of all, no
theorists believe it (but still write many papers), 
and eventually, it disappears in most cases. 

Cosmological observations
We have only 13 years of experience since 1σ 
and 2σ contours were introduced in papers on 
cosmology.  We are not yet used to “statistical 
significance” in cosmology and tend to 
interpret it incorrectly, e.g., focusing on the
central region of the contours. 

real



Quantum correction under control to sustain a sufficiently flat potential.

Many scalar fields which may serve as an inflaton.

Too many scalar fields, some of which may drive the Universe to 
a wrong state.

For models realizing small enough CMB anisotropy in terms of small 
coupling constants, SUSY is the most desirable ingredient of the theory.

is (one of) the cutoff scale.  Shift symmetry helps to achieve 
field excursion larger than        .
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This is not the case for models realizing small          by a large parameter.
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The most general single scalar action with second order field equations

i
iX

G
G

X



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Kobayashi, Yamaguchi, JY (2011)

This theory includes
potential-driven inflation models
k-inflation model
Higgs inflation model
New Higgs inflation model
G-inflation model
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The most general single scalar action with second order field equations

i
iX

G
G

X





Kobayashi, Yamaguchi, JY (2011)

Here we consider potential-driven slow-roll Generalized G-inflation

Expand in terms of 

Einstein actionLater we take



Background
Field
Equations

Second-order action for Comoving Curvature Perturbation (Scalar Perturbation)

Second-order action for Tensor Perturbation

Tensor-to-
Scalar ratio

Scalar 
Sound speed

Tensor  
Sound speed

Perturbation variables
	
g

ij



→ But can this be smaller than the strong coupling scale?

If this factor is much larger than unity, the field excursion
during inflation can be smaller than         even with observable
tensor amplitude.

PM

We find

and the Lyth Bound is modified to 



Consider a potential-driven G-inflation as an example

At first glance, its strong coupling scale is                    ,
where perturbative calculation of scattering processes breaks down
as the effective coupling exceeds unity.

The only scalar degree of freedom during inflation is curvature 
perturbation , so we should determine the strong coupling 
scale from its interaction terms during inflation rather than from 
the form of the original Lagrangian.



cf. Nicolis, Rattazzi (2004)
Bezrukov et al. (2011)

This is the case in QFT in flat spacetime, but we must estimate it in 
the inflationary background.

in flat gauge



Gao, Steer (2011)
De Felice, Tsujikawa (2011)

EOM of linear perturbation

Third order action of

In terms of canonically
Normalized variable



The same result can be obtained by expanding the original action

with respect to .

Second-order action for 

Then this term dominates the dynamics, and the 
canonically normalized scalar-field fluctuation reads

with

Then the cubic interaction of fluctuation reads

Because                                 ,  the strong coupling scale is                           ,
which is larger than the scale of inflation      and       .

assume this term dominates over 
the kinetic term 

	H 	M



First we express the second-order action for field fluctuation of

in the form

We find the effective metric is given by

with



First we express the second-order action for field fluctuation of

in the form

Calculate the one-loop effective action using the heat kernel method



Using the heat kernel method, we find the log-divergent terms of the one-loop 
effective action are given by

with

Barvinsky, Vilkovisky (1990)

Compared with the tree-level Lagrangian

These terms are suppressed by powers of                         or 

   

H 2

M
P

2
≫ 1

Quantum correction is unimportant during potential driven G-inflation

Kunimitsu, Suyama, Watanabe, & JY (2015)

This is due to the enhancement of the kinetic terms, which makes the 
theory effectively weakly coupled.



in Potential driven G-inflation

When dominates the kinetic term

The slow-roll field equation reads

Number of e-folds of inflationary expansion

starting from the field value

Amplitude of curvature perturbation



For 2p 

The field excursion during last 60 e-folds of inflation is well below the 
strong coupling scale                       if                      1010 GeV.M 

For             we find                                      saturating the tensor-to-scalar ratio. 2p 

Scalar spectral index and tensor-to-scalar ratio

Inflation with sub-strong-coupling-
scale field excursion is possible even 
when the tensor-to-scalar ratio is 
large, saturating the observed bound.

Kunimitsu, Suyama, Watanabe, & JY (2015)



Gravitationally enhanced friction model (New Higgs inflation type)
4h const

Strong coupling scale is

Field excursion is

910 GeVM 
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For a long time, the issue of inflation model construction was 
how we may realize small parameters (              ) to reconcile with
the smallness of observed CMB anisotropy.

  l ≫ 10-13

Supersymmetry is helpful to preserve the smallness of parameters.

“Currently favored” models contain large parameters, and particle
theorists are invited to explain their origin from fundamental theory.

We can preserve flatness of the inflaton potential and achieve 
sub-strong-coupling scale inflation with the help of higher-order
derivative interactions leading to Generalized G-inflation. 

Nevertheless, the underlying physics is clearer in SUSY inflation
models.





Backup slides



Screening effect due to nontrivial background dynamics
A simpler example：

→coupling constants and quantum corrections are effectively reduced, 
and an internally consistent theory is obtained without
resort to any symmetry 

Quantum Consistency

- -



Higher order interaction

• あくまで3次の計算からの外挿(数学的証明ではない)
– 元のHorndeski actionと同様、n次の相互作用項で2つ微分がかかる
は
たかだか(n-2)個→ Hの数はたかだか(2n-4)個

– 正準規格化で １つにつき が分母に
– 全体には がかかる(次元、de Sitter limitで消える)

→係数は

よってstrong coupling scaleは低くとも

と予想される。



Power law divergenceは信頼できない

• まず、regularization schemeに依存する、存在しない場合もある

• 次に、出てくる係数も低エネルギーの理論からは原理的に計算
出来ないはずである。低エネルギー理論のスケール 、新し
い物理のスケール 、中間スケール について
となるヒエラルキーを考える。真の理論において、たとえばmass 
termは

• たとえば低エネルギー理論からpower law divergentな寄与を計
算できるが、 までを低エネルギーから計算したとしても

となり、真の理論は に依存しないことから
• 低エネルギーから計算されるのはcであって、真の理論のbがc
と関係する理由はない。一方、Log発散の場合は係数が同じ。

(Burgess, London 1992)



Heat Kernelからの計算

Heat Kernelのトレースを R と Vで展開すると、

発散部分を求めるためには、τ で展開する



• The most general single scalar action with 
second order field equations

Generalized G-inflation
(aka Horndeski theory)

Horndeski (1974)
Deffayet, et al. (2011)
Kobayashi, et al. (2011)

Expand in terms of 



Generalized G-inflation

expand the free functions in terms of X

For slow-roll inflation



Generalized G-inflation







Gravity strong coupling

→





Concluding Remarks
1 It is often claimed that a positive tensor spectral index would 

falsify inflation.

2 Energy conditions (strong, weak, null) have been believed to be 
satisfied.    

This is true only for the standard inflation with canonical kinetic
energy and for K inflation.

Normal matter and radiation do, but dark energy may not.

3 If the Null Energy Condition is violated the energy density and the
Hubble parameter may increase in time even in expanding phase.

The Universe may start in a low energy state, rather than the
highest energy quantum state.



4 There have been several attempts to realize such a scenario so far
with or without inflation.

But all of them suffered from instabilities at some point.

5 We have constructed a specific example of a model
that realizes the following scenario without any instabilities: 

a) The Universe starts with asymptotically Minkowski space.
b) It starts expansion spontaneously and smoothly connected

to inflationary regime.
c) Inflation is terminated at some point and the Universe is

reheated by gravitational particle production.

Stability is assured thanks to the higher spatial derivative terms
which appear in the Beyond Horndeski theory.

6 The form of the action and the way of analysis is so strange that
it is very difficult to convince you (and myself) that the model
is relevant.



7 Nevertheless, if future observations of tensor perturbations found a 
positive tensor spectral index, we might have to consider such class 
of models seriously.
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with second order field equations 
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(Kobayashi, Yamaguchi, JY 2011)
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This theory includes
potential-driven inflation models
k-inflation model
Higgs inflation model
New Higgs inflation model
G-inflation model

5G G
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4 2PlG M gives the Einstein action

Generalized G-inflation is a framework to study 
the most general single-field inflation model 

with second-order field equations.

Generalized Galileon = Horndeski Theory
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The standard Higgs potential is too steep as it is.
Several remedies have been proposed.

(original idea: Spokoiny 1984

Cervantes-Cota and Dehnen 1995)
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All of them are variants of Generalized G-inflation
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Physics behind G inflation : The Galileon
Higher derivative theory with a 2nd order field equation was formulated using the
Galilean shift symmetry (constant shift of the velocity)  in flat spacetime

and named Galileon. 

namely,

It is constructed by contracting 2nd derivatives with totally antisymmetric tensors, so
it has only up to 8th order derivative terms in 4 spacetime dimension.

(Nicolis, Rattazzi, & Trincherini 2009)
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In fact the most general scalar+gravity theory that yields
second-order field eqs. was discovered by Horndeski
already in 1974.  (revisited by Charmousis et al. 1106.2000)

We have found that the Generalized Galileon is equivalent 
to Horndeski theory by the following identification.

1 3 8 9, , , ( , )X    

(Kobayashi, Yamaguchi, JY 2011)

Generalized Galileon=Horndeski Theory
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seek for a solution with                                 .const. and  const.H  
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These theories may violate the NEC without any instabilities.
This issue has been studied by us in terms of perturbations generated
in the Generalized G-inflation using the same Lagrangian.

work in the unitary gauge where the 
scalar field is homogeneous               .( )t 

R
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We adopt the unitary gauge in which    is homogeneous,        .

2 2 2 2(1 2 ) 2 (1 2 )i

ids dt a dtdx a d        2
xR

0 

As usual, 
① Expand the action to the second order.
② Eliminate α and β using constraint equations.
③ Obtain a quadratic action for     .R
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is prohibited by the stability condition.

But in G-inflation         is possible.  
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The tensor-to-scalar ratio ( )
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NOT slow-roll suppressed

Small sound speed and large tensor-to-scalar ratio
are compatible.



As we trace evolution of the Universe backwards in time,
the size of the Universe becomes smaller and smaller, and  
the energy density gets larger and larger, eventually reaching
the Planck density.

2 2 2 2( )ds dt a t d   x
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