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Today 13.8Gyr

Why is OLlr Universe g, i
Old, and full of structures?

I t 3

All of them are big
mysteries in the context of

evolving Universe. '
T e




Today 13.8Gyr

Rapid Accelerated Expansmn or INFLATION
in the early Universe can solve
The Horizon Problem
Why is our Universe Big?
The Flatness Problem
Why is our Universe OIld?
The Monopole/Relic Problem
Why is our Universe free from exotic relics?
The Origin-of-Structure Problem
Why is our Universe full of structures?




potential

Some historical accounts A

Field theoretic models of inflation
(based on GUT Higgs)

Old inflation:  Sato (1981), Guth (1981)
high temperature symmetry restoration
and first-order phase transition field ampntﬁde
Inflation never ends, the Universe too inhomogeneous

New inflation: Linde (1982), Albrecht & Steinhardt (1982)

high temperature symmetry restoration A/
Slow-rollover phase transition P
Inflation too short,

the Universe too inhomogeneous




Supersymmetric New inflation:

high temperature symmetry restoration
Slow-rollover phase transition

Inflation long enough,

Perturbations at the right amplitude

A
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Supersymmetric New inflation: R
high temperature symmetry restoration
Slow-rollover phase transition

Inflation long enough,
Perturbations at the right amplitude

V(©)=A46*(n¢*/o* - 1) +D¢?,
where SUSY greatly helps to

5 Z; preserve the flatness
( gy EgM F) of the potential against

radiative corrections

A=

64nlo

Since SUSY is broken at the mass scale m, on
_ 2. 4 2 2
A (gB{F)HZﬂ a’)myg (? mB)

In fact, at finite density/temperature (and/or curved spacetime)
SUSY may be broken more severely.



Was the early Universe in & therma
Two body reaction rate with a massless gauge particle
NT? o?

equilioriurn State?

N Number of reaction channel

Is = (noc) ~

¢ Gauge coupling constant
must have been larger than

Lol 1P ) 1
3M2 p_g*TJ : [?A(IPO(SIDG)_E

Namely, G D His required to realize a thermal state.

g, # Relativistic degrees of freedom

N =

This imposes an upper bound on the radiation temperature,

N2 /N g, \—1/2
T<10® (=) (=) (5) GeV=T.
< 005/ \10/ \200 © d

Thermal phase transition at the GUT scale was impossible.

Some nonthermal mechanisms to set up the initial condition
for inflation must be invoked.



Chaotic inflation Linde (1983) R M(T)

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain.

Inflation is naturally realized if #11 M,

Sufficiently flat potential is required [Q(IP © (8,06)_% r
over super-Planckian field excursion.
Curvature Perturbations Tensor Perturbations
, (Quantum gravitational waves)
0 O H 3
=22 _sN=nst=n2L="10° (hi)=21

For V[r]:%msz +Zlf4 we find gm=10"GeV,mI <10™"

To preserve the smallness of the coupling constant, SUSY is desired.



Chaotic inflation Linde (1983)

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain.

Inflation is naturally realized if #11 M,

Sufficiently flat potential is required
over super-Planckian field excursion.

Ny

Difficult to implement in Supergravity = M, =1 here

0°K

= —o0.=K=N|o|
ovow, Z' |

ool 2o

L =-K,.0,®0"D; -V, K.
v, :ew%w*—swvﬂ

4>
oW, Ky
N0, o

exponentially steep above M,



Chaotic inflation . M(T)

Very early Universe was dominated by
large quantum fluctuations, and scalar
fields must have taken random values
in each coherent domain.

Inflation is naturally realized if #11 M,

Sufficiently flat potential is required

f

>

over super-Planckian field excursion.

This symmetry has been used in
a number of contemporary models

Chaotic Inflation in Supergravit

Contrived superpotential in minimial SUGRA  Goncharov and Linde (1984)
Sneutrino inflation in no UGRA Murayama, Suzuki, Yanagida, & JY (1994)

[Shlft Symmetry D —>D+IC Kawasaki, Yamaguchi, & Yanagida (2000)
K(@,D)=K(@+D") = %(QD +@")’ =) canonical kinetic term

W =mX @ weakly breaks the shift symmetry

), :%(l"'-@ V = %ngoz 4 No exponential increase above I\/IP

along this direction




Tensor-to-scalar ratio H = ‘g(q’j 3Hp=-V"(9)

<?le;> B Ajj;z —8MZ(]I//,j =16¢ = %[KT = _%
S p

=

The Lyth Bound: Field excursion vs tensor-to-scalar ratio

Lyth (1997) N r \1/2
Ad > 5 (—) M
»= (60) 0.1 i

Number of e-folds

N= dez_j(p

A0
0= MﬁV'w) j

V (‘P) 2£M

Models with canonically normalized inflaton realizing a large
tensor-to-scalar fluctuations have super-Planckian field excursion.

Chaotic inflation is natural, requiring no fine tuning in initial condition.

Chaotic inflation predicts observable tensor-to-scalar ratio.
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Nature did not favor (simple polynomial) Chaotic Inflation

m

Tensor-to-scalar ratio (70.002)
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Nature favors R? inflation and (original) Higgs inflation

12
14 S | - | % | Planck 2013
\ BN Planck TT4+lowP
- \\ B8 Planck TT,TE,EE+lowP
ST Q0u6,+ o \ | | Natural inflation

Hilltop quartic model

« attractors
— -  Power-law inflation

0.15

Tensor-to-scalar ratio (70.002)
0.10

0.05

0.00

Primoraral tilt (ny)

spectral index of curvature perturbations HS Planck 2015

Nature favors simplistic approach?



The RZ inflation (often called Starobinsky model) Nariai & Tomita (1571)
Starobinsky (1980)

N

RZ
6M°

S==L[f(RW-gd'x  f(R)=R+

Conformal Transformation Jordan frame Gy ==> Einstein frame g,

f’(ﬁ)‘

chi) 3./4.%(L-exp(-abS[X) . ¥5qre (2. /3))). 5 —— M ~ 3)(1013 Gev from amp“tUde

. ) of fluctuations
inflation

U({fO) — ZMEME (1 _ B—\/gmp)g | Igo M;l

- for {p>>80f}
reheating V1P for o< p;

V.o




=0.964, r= =39x107° =
N T 1 0.964, r (ON 1 1)? 3.9 x 107" for ¥ =60

ng =1-—

Problem with R? inflation?

R? IAQS R* Why are higher ord
" y are higher order
f(R)= R"' 6M2 M4 +'BM6 T terms absent?

Actually, the Lagrangian is
M 2
L=—PR+

2 ~5.3x10°

A large dimensionless parameter

The real question may be how the linear (Einstein) term emerged
out of an R? theory with a large dimensionless coupling
(with no Weyl curvature term).



o _ ] Cervantes-Cota & Dehnen (1995);
The Original Higgs Inflation  Bezrkov & shaposhnikov (2008)
Barvinsky, Kamenshchik, & Starobinsky (2008)...

_ Mg M: .. ;
Mo R cRHMT L, m = ZPR—XRF—%(ﬂf)Z—éf“

2

Conformal Transformation Jordan frame gy == Einstein frame g,

~ F = 2 _ _ F
p— 2 W? =11- dJ:MP\/MP X(l GX)
Guw = Guv 2 XM; df M - xF
M, IM _[2
= 2P R - _(TU) -V (.’) (1 e kJ)

The potential has the same form as conformally transformed
R? inflation in the field range relevant to inflaton.

l,}f: -4.7" ]_O4 \/ 7 | to match the amplitude of CMB anisotropy.

. cf Spokoiny (1984)
Large and negative



Supergravity extension of R? inflation and Higgs inflation
has also been studied by a number of authors.

SUGRA R? inflation (some including R" corrections)

Ferrara, Grisaru, & van Nieuwenhuizen (1978); Cecotti (1987);

Hindawi, Ovrut, & Waldram (1996); Gates & Ketov (2009);

Ketov & Starobinsky (2012); Ketov (2013); Ketov & Terada (2013);

Kallosh & Linde (2013); Ellis, Nanopoulos, & Olive (2013),

Ferrara, Kallosh & van Proeyen (2013); Watanabe & JY (2013); Pallis (2014);
Giudice & Lee (2014); Kamada & JY (2014); Terada, Watanabe, Yamada & JY (2015)...

SUGRA Higgs inflation

Einhorn & Jones (2010); Ben-Dayan & Einhorn (2010), Lee (2010);
Ferrara, Kallosh, Linde, Marrani, van Proeyen (2010,2011);
Nakayama & Takahashi (2010); Chatterjee & Mazumdar (2011);
Arai, Kawai, & Okada (2011); Pallis & Toumbas (2011);

Choudhury, Chakraborty, & Pal (2014); Terada (2015); Pallis (2016)...

NO longer simple, but we must explore these possibilities
if SUSY is discovered...
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A few remarks on o
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Weather forecast

If the weather forecaster says the probability of rain
tonight is 90%, we always take an umbrella and e R
it indeed rains by the time we return home. il

sunrise

PERTH
-

Particle physics experiments

If a 30 (=99.7%) evidence is reported, first of all, no
theorists believe it (but still write many papers),
and eventually, it disappears in most cases.

Cosmological observations

We have only 13 years of experience since 1o '\
and 2o contours were introduced in papers on . N \
cosmology. We are not yet used to “statisticat-
significance” in cosmology and tendto ~ "&?
interpret it incorrectly, e.g., focusing on the
central region of the contours.
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Quantum correction under control to sustain a sufficiently flat potential.

Many scalar fields which may serve as an inflaton.

Too many scalar fields, some of which may drive the Universe to
a wrong state.

rQ(Ipis (one of) the cutoff scale. Shift symmetry helps to achieve
field excursion larger than [’é\(IP'

For models realizing small enough CMB anisotropy in terms of small

coupling constants, SUSY is the most desirable ingredient of the theory.
This is not the case for models realizing small % by a large parameter.

Is there any other way to make a model of inflation
where quantum corrections are under control ?



The most general single scalar action with second order field equations
5 Kobayashi, Yamaguchi, JY (2011)
S=>" / drz /—gL;
= 1 4G,

£'2 — K(gba X)7 X = —59’“1/8‘&@561}@ GiX - a_x
Lz = —G3(0,X)0¢,

Li = G, X)R+ Cax [(0¢)? — (V. V09)?],

L5 = Gs(6, X)GuV"V"6 ~ <Gax [((0)° —306(V,Vu0) +2V,V,0)"],



The most general single scalar action with second order field equations

5 Kobayashi, Yamaguchi, JY (2011)
S = Z/d4x VvV—9L;
1=2

I _aGi
Ly = K(¢,X), X =—59"0.00,¢ Gix—a_x
Lz = —G3(0,X)0¢,
Li = G, X)R+ Cax [(0¢)? — (V. V09)?],
L5 = Gs(6, X)GuV"V"6 ~ <Gax [((0)° —306(V,Vu0) +2V,V,0)"],

Here we consider potential-driven slow-roll Generalized G-inflation

Expand in terms of X = %gwauqba,,gb
K(9,X) = V(@) +K@X + 5ha(@) X2, Gil6,X) = gi(6) + hi($) X

1 L :
Later we take k() =1 g4 = EM]% == Einstein action



Background v
Field H2 ~
Equations

Perturbation variables

694

SH.J =~ —Vy + 12H gy,
J ~ &(K 4+ X ho +3Hohs + 6H?hy + 3H>6hs)

g — ¢ e e "3

Second-order action for Comoving Curvature Perturbation (Scalar Perturbation)

g >~
Second-order action for Tensor Perturbation

: Fq Fs >~ —5
Sez = / d'za’ [gs<2 ‘5( 29, ] o
H?

Fr Fr =294,
S"f’g - /d4{1§‘(1, [g %,J (81?7{})2] )
@ G ~ 2q4.
T 2 204
Tensor-to- Scalar Tensor
Scalar ratio Sound speed Sound speed
16¢csFs 5o Fs o FT |
.T} — . c._ p— , Ct _— —— 2
ctFr © Qs Gr

(/c + hoX + 6H?hy) +

S (K + 3ho X + 6H?hy) +

10X 9
ha + Hhs),
7 (ha + H )

60X 9
hs + H2hs),
7 (hs + H"hs)

1
9425M123



We find |
==

gar
2
3¢z

, . ) —1/2
(fc + hoX +6H?hy + 4Ho(hs + H h-fs))

and the Lyth Bound is modified to

N N o\ /2
Ap> —(r'2q)~5( =) (— .
$2 T (r7a) =5 (60) (0.1) I

‘L
_ MP 1/2
| 1
@’C + hoX + 6H2hy + 4Hé(hs + H2h5ﬂ ) )

If this factor is much larger than unity, the field excursion
during inflation can be smaller than M, even with observable
tensor amplitude.

— But can this be smaller than the strong coupling scale?



Consider a potential-driven G-inflation as an example

1 1 1
L= iMj%R + X + WXqu — V(o) (hs = _W> X = %g””@uqﬁaygb

At first glance, its strong coupling scaleis F ~ M ,
where perturbative calculation of scattering processes breaks down
as the effective coupling exceeds unity.

This is the case in QFT in flat spacetime, but we must estimate it in
the inflationary background.

The only scalar degree of freedom during inflation is curvature
perturbation é’ , SO we should determine the strong coupling
scale from its interaction terms during inflation rather than from

the form of the original Lagrangian. o |
cf. Nicolis, Rattazzi (2004)

Bezrukov et al. (2011)

13}
[€=HX¢ in flat gauge ]



Gao, Steer (2011)

. - f
Third order action o C De Felice, Tsujikawa (2011)

[ )
- . 1 - - : oL

Ses = / d*za® [clMJ%g@ + a—chMl%q(ac)z + CsMpC? + O(%) + 5—5 Fi

1 -

& ~—

5 3 (1 6 = ~
Clz—é (—2—1> 63+C—25C7, CQZ—ECL

Cs 5 EOM of linear perturljation
5 Mp 12X 4
=gy (1% ) oo 106 = ocs| OLs| _ _gnpz [4 (Y- gep2c
§¢ |, Pl 2 ’

Fi= HCCH f2 [(0:0)2 — 0720,0,(0°CO0)] + fs [aigaia—%' — 9720,0,(0°CO" 0—25)]

: 1 3 . 3 3H . M?
2 2 2 . Mp
T oM, Co™ + Mie, Cr (4c§< * 2oz (%0) c2 qc) Cire z€
+ 15 Cs (CQ + 9;CO072 — 07 2(9:COC + é@%)) + (higher order in slow-roll}.
21’141%65

In terms of canonically 52 \/EMPC — [Astrong N (ﬁMPHQ)l/S]

Normalized variable

H
T



The same result can be obtained by expanding the original action

+ X +H-—=X0Oo¢ V(é)} with respect to ¢ = ¢o(t) Hdd(x,t).

assume this term dominates over
the kinetic term

d QH@ 12 lpr 1y & 12

Then this term dominates the dynamics, and the
canonically normalized scalar-field fluctuation reads

(;) ~ \/ED%(SC) with ) = H|(_f)‘/ﬂ_[3
Then the cubic interaction of fluctuation reads

1 N2 —
Lo ~ 773 (00¢)° 06 mmp Lssm ~ (8(5@) (160

D3 M3

Because D2 M3 ~ VeMpH? the strong coupling scale is (\/EJWPHQ)%,
which is larger than the scale of inflation (il and /.



Stability of inflation against quantum corrections

First we express the second-order action for field fluctuation of ¢ = ¢o(t) + 0o (x, 1)

1 83H¢é\ .2 1 (1 & 2HO T T
_ 4 . 3 -y S L i ) I V2 2
= f de Kg M3 ) Al (2 VERNSVE ) (0:09)" = gV7(9)0¢

in the form

1 . 1=,
S = f d*zy/~gen {—59’;&’@”6%6@ - §v”a¢ﬁ]

We find the effective metric is given by gﬁg(ﬁﬁg) = diag(A, B, B, B),

with NE -\ -1
A _[y_20 4HO | _GH
I N VERNRN VE - M3 *

1 1
26 4Ho \? 6Ho \ >
B=a?|1— -+ — — 1—
“ ( M3 MB) ( M3) ’

V" — vV Y v

vV —Yeff




Stability of inflation against quantum corrections

First we express the second-order action for field fluctuation of ¢ = ¢o(t) + 0o (x, 1)

1 3Hé\ -2 1 [1 & 2HS | 1 o
_ 4 _ 3 T utY I R o - FYAY- R v 2
= / de Kz M3 ) Al (2 VERNSVE ) (0:09)" = gV7(9)0¢

in the form

1
S = /ddl"v —Jeff {__Qeﬂ'd 0Py 0@ — —V ”6(;’ ]

Calculate the one-loop effective action using the heat kernel method

K(1) = exp [’T(Deﬂ-‘ — ‘7”)}

_ (r(ls) /0 h dTTs_lTl“K(T))

1 d
== -—
2 ds




Using the heat kernel method, we find the log-divergent terms of the one-loop

effective action are given by Barvinsky, Vilkovisky (1990)
1 1 Lom Lo Lo 1 e ] AZ
RS ~ Za®H?8;j, Reg ~ —\/_Hz, V"~ 4
T2 2D 8/6D?

Compared with the tree-level Lagrangian [ — %MI%R + X + %X[@ —~ V()

V=get R ~ V—=get RSV RYY ~ H* < V

1

~ ~ 1
\/%V”Reﬁ‘ -~ 5H2V”7 \/%V’Q -~ ﬁvza

2

<1 or %D 1

3
These terms are suppressed by powers of %:‘%
P

Quantum correction is unimportant during potential driven G-inflation

This is due to the enhancement of the kinetic terms, which makes the

theory effectively weakly coupled. Kunimitsu, Suyama, Watanabe, & JY (2015)



hr GG EXCEUTSTON in Potential driven G-inflation

1 1 ) Lind=Pe?  for p + 4
L=_-MpR+ X +|—X0¢ Vig)=4?
2 M AP for p =4
: 2[]‘3—‘1} 2(4—p) 6 - . .
When ik 1, ie. Mp"™™ m s > M3, dominates the kinetic term
S J'T.l 3V
The slow-roll field equation reads ¢ = — Vs
| 9H?

Number of e-folds of inflati?nary expansion

i-p
N — [Edég 31 mz 2 ¢.}I%I_'[F'—E} I
J ¢ Mimi p p+3° p+3

2

3 c —a
: M2 M 2 p+3
starting from the field value ¢x = [(p+ 3)N + p]ﬁ (&)

4—p
2m 2

Amplitude of curvature perturbation

) p+3 2\ N 3(p+1)
i — (3.5 x 109778 (P3N TP pSm3U-P) NP2
2.2 x 109 >




For p=2 )
A¢ < dn=60 = 0.20 ( M ) ( P ) (\/EMPHZ)%

o

1019GeV 2.2 x 1079

The field excursion during last 60 e-folds of inflation is well below the
strong coupling scale (ﬁMpHZ)% if M <10"°GeV.

Scalar spectral index and tensor-to-scalar ratio
3(p+1) 642 p

Mg — 1 = — - , T = - \
s (p+3)N +p 3v3 (p+3)N +p

For p=2 we find ns =0.970, r = 0.11 saturating the tensor-to-scalar ratio.

0.25
-

Inflation with sub-strong-coupling- \
scale field excursion is possible even
when the tensor-to-scalar ratio is
large, saturating the observed bound.

0.20

l()‘Z)
~

0.15
7~

Tensor-to-scalar ratio (rq
0.10

Kunimitsu, Suyama, Watanabe, & JY (2015)
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Yeher moe

Gravitationally enhanced friction model (New Higgs inflation type)  h, = const

V2
MER | o .

L=— Jaf?

GH 8,68, ¢

: . hy=const. A, 241/3
Strong coupling scaleis Ao coupling ~ (MPH?)

Field excursion is

M Pe \ 70 1
Ao < dn_go~0.68 ——— S MpH?)3
P~ ON=60 (mﬂc;ev) (2.2 X 10—9) (MpH?)
M <10°GeV
o ___ Apt] . 16p
N  2(p+2)N +p’ - 2(p+2)N +p

ng = 0972, r =0.066



Observables of Potential-driven Generalized G-inflation mode

C\]- | | | = | | |
Ly = K(¢,X), Ly = Ga(¢, X)R+Gax [(00)* = (V,V,0)%], Vv (¢) oC ¢p
1
L3 = —Gs3(0, X)00, Ly = G5, X)GuV'V"6 — =Gsx [(00)° = 306(V,uVi0)* +2(VuVud)*]
I = Co e -
S "VQ\_
2 *W =50
| % * @V =60
B = Ca”@ .
- O
©
& \
§ \
& = L \ )
= \
S \
,§ \
\
= L \ B
S \
\
\
= \
S 1 |
= 0.94 0.96 0.98 1.00

Primordial tilt (7)
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For a long time, the issue of inflation model construction was
how we may realize small parameters ( 7110™) to reconcile with
the smallness of observed CMB anisotropy.

Supersymmetry is helpful to preserve the smallness of parameters.

“Currently favored” models contain large parameters, and particle
theorists are invited to explain their origin from fundamental theory.

We can preserve flatness of the inflaton potential and achieve
sub-strong-coupling scale inflation with the help of higher-order
derivative interactions leading to Generalized G-inflation.

Nevertheless, the underlying physics is clearer in SUSY inflation
models.
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Quantum Consistency

Screening effect due to nontrivial background dynamics
A simpler example:

L~ Z(a¢)2 + m2¢2 4 )\¢3 Z(p,00,...) ~ const.
Z >1

- m2 - N -
~ (00)* + 7¢2 + 7372 ¢° ¢~ VZ¢

—>coupling constants and quantum corrections are effectively reduced,
and an internally consistent theory is obtained without
resort to any symmetry



Higher order interaction

o HLETIRDFFENSDIVMERFNFRIGEBATIL ALY
- E@Horndeski actionEEFR. nXDMEEERIEBT2DMA M D

CE f= =M (n-2)E-> HD EX F=MT=H (2n-4)E
— IEZERIKILT Cm( DE VMRS EIC
— RIKIZ[Z eMPPHMIB(RIT. de Sitter limit TiE 2 3)

1 1
* ™S —
>HRAE 2TIMBPTPHIY (feMp )T

&> Tstrong coupling scalelF{E<EE
Astrong coupling ™~ (\/EMPHQ)l/S
EFEIND,



Power law divergencelZ{EFE T=750)
« F7T. regularization schemelZ{&kFT 5. FELLWNGEELH S

. m;Hj'C<%>1$§5I%1E\I*)L¥—0)F_nmb\bl;tﬁiﬂﬁ’](:?r;%i
\ —) H =2
CHAEISILE —’E%Zéﬁ B (DHE: W&*Sﬁ;\f(lﬂiézlimass

termld )
u? = am?® + bA

o ZEZIFIBEIRILE—IEEH Spower law divergent’i B 5 & &t
BT imfﬁz*»ﬂe B ELELLTE

_|_ AIQ _I_ IAI2+bA2
erf mh A A mﬁﬁcﬁx_ﬁ;ﬁ\) )
g Pl gL & o obhic
CEBIRS BT, —F . Log BB DS B (L Z B AL

(Burgess, London 1992)




Heat Kernel M DETE

Heat Kernel DL —RXZF R &V TRRT 5.

. i4: off 1 -~ ‘ 1 - e
TrK (1) = / Y It [1 + 7 (gﬁ’eﬁ‘ — V”) + 7 {<6Reff - V”) fi(=m8eg)V”

(47TT2)2

AV fo(—7Oetr) Retr + Rett f3(—70efr) Rerr + Rg’f’;h(—meﬁ)ﬁf{%} +O(RY, V™)

.1 -
Ao = [ et pio =010 D1
-1 I -1+}
G f1<£8>£ ) £ = 11 . + 3¢

FEEBAZTROD=-DIZIL, t TEHIT S

A /Gor 1 ~
TrK(7) = / HWT%? [1 + 7 {gﬁeﬁ — V”}

o (1w 1o 1o, 1 s o o
+7° {51/”2 = V"R + o5 Be + s R Rl } +O(7%, Rig. V")




Generalized G-inflation
(aka Horndeski theory)

* The most general single scalar action with

second order field equations Horndeski (1974)
Deffayet, et al. (2011)

§ — Z/d4 \/*ﬁ Kobayashi, et al. (2011)

Ly = K(¢,X),

L3 = —G3(¢,X)00,

Ly = Ga(¢, X)R+ Guax [(O¢)° — (V. V,6)?],

1

Ly = G5(¢, X)Gu V'V = =Gsx [(06)° = 306(V,.Vu0)” +2(VuV.u0)?]

Expand in terms of X = —lg””auqbayqb

2
K(9,X) = ~V(@) +KG)X + 5ha(@) X2, Gil6, X) = 6i(6) + hi(9) X



Generalized G-inflation

expand the free functions in terms of X
1
K¢, X)=-V(¢)+K(o)X + ~2-h2(¢)X2, Gi(¢, X) = gi(¢) +hi(¢) X

For slow-roll inflation

v

H?> ~ —
694’

3HJ ~ —Vy + 12H? g4y

J o (K + hoX)¢+ 6H(hsX + Hhad + H?*hsX)



Generalized G-inflation

So = /d4a:a3 [gséQ — %(8()2

X 40X
Fs = o5 (K +haX + 6H hy) + —Z (hs + H*hs),  Fr = 294,
X 60X
gS ~ ﬁ(lC -+ ?)hQX + 6H2h4) + ?_I(hg + H2h5), QT ~ 294.
1
L B
Pglgéﬂ e Fs 3/2 Js 1/2
Q‘FS% 47'('2 FT gT



1=2
where
E =2XKy — K,
E3 = 6XOHG3y — 2X Gy,
E1=—6H*Gy+24H* X (Gyx + XCGuxx) — 12HX $Guypx — 6HOG 1,
& =2H3X ¢ (5G5x +2XGsxx) — 6H?X (3G54 +2X Gs0x) .
> Pi=0, (3-6)
=2
where
Py =K, (3-7)
Py = —2X (Gw +6Gs X) , (3-8)

Py =2 (3H2 n QH) Gu— 12H2X Gy — AHXGax — SHXGuy — SHX X Gy x
+2 (q’b’ + 2Hq’>) G+ 4X Gapy + 4X (gb' _ 2Hq’>) Gy (3-9)

Ps = —2X (2H3gb +2HH + 3H2¢) Gsx — 4H?X%0Gsx x

FAHX (X = HX ) Gspx +2 [2(HX) + 3H2X] G5y + 4HX $Crg. (3:10)



1 d, 4
where
J=¢0Kx +6HXGsx — 20G3s +6H*) (Gax +2XCGuxx) — 12HX Gupx

+2H?X (3Gsx +2XGsxx) — 6H? ¢ (Gsy + XGsex) (3-

P, =K, —2X (G3¢¢ + gBG3¢X) +6 (2H2 + H) Gay+6H (X + 2HX) Gasx
—6H X Grpp + 2H’ X 0G0 x . (3-13)



Gravity strong coupling

dXhs F 1
573=/d4xa { 7o Vi Vik ki T é Vik Vit = 5 Vij Tk OOij | »

A Mpg
strong ™ c




1, 1
L= MER+ X + -5 X06 — V(9)

gﬁ,ff(qbo) = diag(4, B, B, B)

[

3B 3B%2 3AB

Reff —

00 >B 1B T 1AB
Ry =0

AB B B2

T

eff _ [ = _ _ O,
1 (4A2 2A 4AB) J
R 3B . 3AB

f =™ AB T 242B

‘7// _ vV —4g V//

V —Yeft




Concluding Remarks

1 It is often claimed that a positive tensor spectral index would
falsify inflation.

This is true only for the standard inflation with canonical kinetic
energy and for K inflation.

2 Energy conditions (strong, weak, null) have been believed to be
satisfied.

Normal matter and radiation do, but dark energy may not.

3 If the Null Energy Condition is violated the energy density and the
Hubble parameter may increase in time even in expanding phase.

The Universe may start in a low energy state, rather than the
highest energy quantum state.



4 There have been several attempts to realize such a scenario so far
with or without inflation.

But all of them suffered from instabilities at some point.

5 We have constructed a specific example of a model
that realizes the following scenario without any instabilities:
a) The Universe starts with asymptotically Minkowski space.
b) It starts expansion spontaneously and smoothly connected
to inflationary regime.
c) Inflation is terminated at some point and the Universe is
reheated by gravitational particle production.

Stability is assured thanks to the higher spatial derivative terms
which appear in the Beyond Horndeski theory.

6 The form of the action and the way of analysis is so strange that
it is very difficult to convince you (and myself) that the model
is relevant.



7 Nevertheless, if future observations of tensor perturbations found a
positive tensor spectral index, we might have to consider such class
of models seriously.



Generalized G-inflation

The most general single-field inflation ¢

S
— 4
with second order field equations S _Zj[’i\/_gd X
Generalized Galileon = Horndeski Theory '
L, =[K(¢, X) (Kobayashi, Yamaguchi, JY 2011)

4 arbitrary functions of ¢ and X __ 1 04)’
L3=—F3(¢,X) 2( )
L, :F4 (¢’ X )R G4x [(D¢)2 _(vﬂvv¢)2}

L, = Fs (¢’ X )GWV“V% _%G5x [(D¢)3 _3(D¢)(Vuvv¢)2 + Z(Vﬂvvqj)ﬂ




Generalized G-inflation
SZZS:fﬁi —gd*x

Generalized Galileon = Horndeski Theory

L, =K(¢,X)
G, oM} /2 gives the Einstein action

£, =-G,(¢, X )¢
£, =[G, (4, X W]%[(w)z —(Vﬂvmﬁﬂ

£, =Gy (4,X)G,, V"V’ 1c., (0¢)' ~3(09)(V,V,6) +2(V,V,¢)

Generalized G-inflation is a framework to study

the most general single-field inflation model
with second-order field equations.

G-inflation model K (g, X)—G(¢, X )¢



Example: Generalized Higgs Inflation

Ma o 1 A
TR 2(a¢) .

The standard Higgs potentlal is too steep as it is.
Several remedies have been proposed.

[ =

AL:—§R¢2 Original

1

AL =~ M. G*0,40,¢ New Higgs
AL:—l\‘Zzn (09) Running Kinetic

¢ ]
A£=—M Xop  Higgs G

HG



Example: Generalized Higgs Inflation

Moo 1502 A
TR (0g) = A8ty Ar

All of them are varlants of Generalized G-inflation
K¢, X)=V(@)+K(@A)X+... G, (4, X)=—0,(@)+h (#X +...

Zmz_ng Original r=3x10° g »_Ma ¢

[ =

2 2
1 1
AL=————G"3 40,¢ New Higgs h,(#) = —
M r=0.1 M
Aﬁ?,fiznn (09) Running Kinetic  «(¢) =1+ ¢2nn
K r=0.05—0.16 M
_ ¢ - $
Ac=-——Xop  Higgs G 9;(¢) =
My r=0.05-0.13 M

Running Einstein h, (4) = ¢






Physics behind G inflation : The Galileon

Higher derivative theory with a 2" order field equation was formulated using the
Galilean shift symmetry (constant shift of the velocity) in flat spacetime

Ot — Oud + by namely, ¢ —> ¢+ c+ byt
and named Galileon.

L1 = ¢ (000 $)* = 0,0,00"0"9,
(8,00 $)> = 8,,0,0" 9" D)0

Lo = (0¢)°

L3 = (9¢)°D0¢

Lo = (04)[(0¢)? — (0u0u$)?]

Ls = (9¢)% [(04)> —3(0¢) (9uduvd)? + 2 (9udvs)?]

It is constructed by contracting 2"d derivatives with totally antisymmetric tensors, so
it has only up to 8" order derivative terms in 4 spacetime dimension.



In fact the most general scalar+gravity theory that yields
second-order field egs. was discovered by Horndeski
already in 1974. (revisited by Charmousis et al. 1106.2000)

L _ 5aﬁ7 [ 1Vﬂva¢Rﬁym + (% levﬂva¢ + 2K3x Va¢V”¢) VVV/}W“VM + K3Va¢vﬂ¢Rﬁ7m:|

Uvo

+00 | FR ™ +2F V'V V'V yp+ 2N 0V V'V 1 | 6(F, - X, 1+ i

with &% =315%5/ 57 Fy :2(K3+2XK3X _K1¢) Kl,Kg,Kg,Kg(¢1 X)

y7\%e3 u v o

We have found that the Generalized Galileon is equivalent
to Horndeski theory by the following identification.

Generalized Gahleon Horndeski Theory
G =6F; —2X kg — 8X ks +"‘/ dX' (kg — 2K34).

(-_1:—1 = 2F — '—’ljfh'g.




Tensor Perturbations

* The quadratic action a=F=R =0

) [(:;*4 —9XGux — X (H(g _ r)]

The “sound” velocity ¢; =% /G; deviates from unity
if G,x 20, G;x 20 or G;, #0.

* Tensor spectral index and amplitude

4¢+3f. —¢ _
Ny =3-2vp =— 2(1—5T—sT)T Blue spectrum if 4¢+3f. —g; <O0.
g . . . 5
85—1, fTET—T’ g, = Ot , STEi. (P(k)N 1 H

2
H H HG, C; ECr |,



Kinetically driven G-inflation: A simple example
» K(g, X)=K(X), G,(¢,X)=gX =X/M?, G,=M2/2, and G, =0.

seek for a solution with H =const. and ¢ = const.

For p=—p=—K =const. >0we

* The simplest solution
2

X M 3
K(X)=-X + X[ M3u H2O £
(X) Mz - M oM

U=const. during de Sitter inflation



These theories may violate the NEC without any instabilities.
This issue has been studied by us in terms of perturbations generated
in the Generalized G-inflation using the same Lagrangian.

ds? = —=N?dt? + ~;; (da' + N'dt) (da? + N7 dt)
N=1+a, N;=09p.
or (- 1
’"U — {'IQ(I"){‘?ER (dij -+ h‘ij -+ Ehik‘hkj)

/ lii — 0=1 Lij,j
work in the unitary gauge where the
scalar field is homogeneous ¢ =¢(t).



Tensor Perturbations

* The quadratic action a=LF=R=0

- ’ i) i) " FT — .
-i 1‘% T :-'_:' b i 7 ] -. :-_-:'
/ dtd” a® [w hij — =5 (Vhij)

") ‘ for stability
2 |G —2X Gax — X (HoGsx —Gsy ) | R0

The “sound” velocity ¢ =% /G; deviates from unity
if G,x 20, G5, #0 or G, #0.

* Tensor spectral index and amplitude

4e+3f. —¢g :
N, =3-2v; =— 2(1_8T_ST)T Blue spectrum if 4¢+3f. —g; <0.
H F: ' ¢ 1 H*
= e m= = SLYET=

7Y T g T ’
H HE, Hg, He, ECr |,



Curvature Perturbations

We adopt the unitary gauge in which ¢ is homogeneous, §¢ = 0.
> = —(1+ 2a)dt® + 2a°0, pdtdx’ +a® (1+ 2}@dx2

As usual, Curvature

(D Expand the action to the second order. Perturbation
@ Eliminate a and B using constraint equations.

® Obtain a quadratic action for ®. . .
QTR:@O"

V—Z(gTquraz@,B) o +30%

= XKx +2X2Kxx + 12HOX Gsx
HOHOX 2Gaxx — 2X Gy — 2X Gy — GH2GYy
+6|H2 (TXGax + 16X °Gaxx +4X°Gaxxx)
—H$ (g +5X Gagx +2X2C gy x )]

+-3( VH 2

+AH3.
+9X G
0 = —0XGs 3x +2HGy — 8H X Gax
f\HX(4\\+(4—)\(4\
o Y .




5@ = j dtd ®xa [gsqi ——S(w{) }

F,
No ghosts, No gradient instability if G, >0, cg :g—S > 0.
S
In k inflation where G, =G, =0, G, =M} /2 hold,

we find & =MZe=-M} H/H2 which means that
H > O is prohibited by the stability condition.
But in G-inflation H > Qis possible.

* Scalar spectral index and amplitude

de +3f, — g, 2. (K) = 1 H°?

2(1l-£-5,) T An? Ee

STS ISHC

ng—1=3-2v, =—




* The tensor-to-scalar ratio @ (k) 16 Fy Cq
2Kk)
Standard inflation £=X-V[d] r=16¢
k-inflation £=K(¢ X) r =16¢c,

G-inflation  £=K($X)-G@.XX'¢ [ r=16mc, |
: : : Ty Cq
Generalized G-inflation r=16-S-=5
A T g
NOT slow-roll suppressed .
Small sound speed and large tensor-to-scalar ratio
are compatible.




Conventional wawv off thinkine

As we trace evolution of the Universe backwards in time,

the size of the Universe becomes smaller and smaller, and
the energy density gets larger and larger, eventually reaching
the Planck density.

Tuy = (p + p) upty — Guvp ds? = —dt? +a?(t)dx>

.4 |
gz—%G(p+3p)<O if p+3p>0
a

p=—-3H(p+p). H=—42G(p+p)
p<0.fp+p=>0



