

Christopher Rogan
 [TAST UNIVERSITY

SUSY16 - University of Melbourne - July 6, 2016

Entering the next phase of

 our fantastic journey...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Entering the next phase of

 our fantastic journey...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Not quite the right analogy...

"SUSY" isn't one signature that we simply look for

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Rather: Is this what LHC13 is supposed to look like?...

Are our observations consistent with the SM?

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching Collider Phase Space for SUSY

Less like searching for a single person

More like exploring a previously unvisited landscape, searching for new flora/fauna/geographical features

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching Collider Phase Space for SUSY

The elevation represents the rate of production of different types of collision events

The lateral distance from the center of the mountain represents what's in those collision events, i.e. how rare they are

phase space
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching Collider Phase Space for SUSY

- Particles decaying to W/Z/ $\gamma /$ leptons/ top quarks/b-jets
- Cascading decays through SM spectrum (BSM?) can lead to high/conspicuous object multiplicities

LHC Phase-space

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching Collider Phase Space for SUSY

more mass \Rightarrow more energy

- Heavy BSM particles decaying to SM particles \rightarrow large visible momenta
- New symmetry conservation \rightarrow large missing momenta
- Resonances, kinematic edges, mass sensitive variables...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching Collider Phase Space for SUSY

more integrated luminosity (more data) reveals more of the phase-space

from A. Askew's talk

LHC Phase-space

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Searching for rare events

- BSM physics can potentially produce event topologies rarely seen in the SM
$Z+$ jets, $Z Z, Z \gamma, W Z, \cdots$
- Must control/measure object fake-rates and validate/understand simulation of rare SM processes

LHC Phase-space

Searching for general excesses

- BSM can produce an excess of events with interesting kinematic features (large missing transverse energy, momentum, mass)
- Final states with weakly interacting particles can lead to 'broad' excesses in the tails of these kinematic distributions

LHC Phase-space

Searching for general excesses

- BSM can produce an excess of events with interesting kinematic features (large missing transverse energy, momentum, mass)
- Final states with weakly interacting particles can lead to 'broad' excesses in the tails of these kinematic distributions
CMS-EXO-16-013

- Must have an accurate reference expectation for the SM to see subtle features!

Searching for general excesses

Nearby regions of phase space are often necessary to contextualize our observations in signal sensitive regions sidebands, control regions, ...

LHC Phase-space

The view from the pole(s)

- SUSY searches begin at 'the pole': W/Z bosons, tops, quarkonia candles
- Used to:
select control samples of leptons, photons, b-jets, ... calibrate/measure object reconstruction performance, fake-rates, energy scales
validate our understanding of the SM in new phase-space

JINST 10 (2015) P02006

The view from the peak

- BSM searches begin at 'the rate peak': QCD mult-ijets
- Used to:
select control samples of leptons, photons, b-jets, ...
calibrate/measure object reconstruction performance, fake-rates, energy scales
validate our understanding of the SM in new phase-space

Eur.Phys.J. C72 (2012) 1844

Searching for kinematic features

- New physics can produce kinematic features that are not expected in the SM bumps, edges...
- Understanding/measuring/improving physics object reconstruction essential for being able to resolve these features

Phys. Lett. B 726 (2013), pp. 88-119

LHC Phase-space

Missing transverse energy

Two plots from my SUSY10 conference talk...
 we turned the LHC on in 2010 hoping to see this...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing transverse energy

Two plots from my SUSY10 conference talk...

...and we got this

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing transverse energy

Two plots from my SUSY10 conference talk...

Missing transverse energy is a powerful observable for inferring the presence of weakly interacting particles in events...
...but, it only tells us about their transverse momenta - often we can better resolve quantities of interest by using additional information

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing Transverse Energy

Missing transverse energy only tells us about the momentum of weakly interacting particles in an event...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing Transverse Energy

...not about the identity or mass of weakly interacting particles, or about the particle(s) they may decay from...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing Transverse Energy

...not about the identity or mass of weakly interacting particles, or about the particle(s) they may decay from...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing Transverse Energy

We can learn more by using other information in an event to contextualize the missing transverse energy and resolve additional information

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Resolving the invisible $W(e \nu)$

CMS Experiment at LHC, CERN Run 133874, Event 21466935 Lumi section: 301 Sat Apr 24 2010, 05:19:21 CEST

Electron $\mathrm{p}_{\mathrm{T}}=35.6 \mathrm{GeV} / \mathrm{c}$ $\mathrm{ME}_{\mathrm{T}}=36.9 \mathrm{GeV}$ $M_{T}=71.1 \mathrm{GeV} / \mathrm{c}^{2}$

Missing transverse

- momentum $\left(\mathrm{ME}_{\mathrm{T}}\right)$

$$
m_{T}=\sqrt{2 p_{T}^{e} p_{T}^{\nu}(1-\cos \phi)}
$$

$m_{T}(\ell \nu)$ has kinematic edge at $m_{W} \sim 80 \mathrm{GeV}$
Can use visible particles in events to contextualize missing transverse energy and better resolve mass scales

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Missing Transverse Energy

We can learn more by using other information in an event to contextualize the missing transverse energy \Rightarrow what about multiple weakly interacting particles?
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

Experimental signature: di-lepton final states with missing transverse momentum

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

Main background:

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

What quantities, if we could calculate them, could help us distinguish between signal and background events?

$$
\sqrt{\hat{s}}=2 \gamma^{\operatorname{decay}} m_{\tilde{\ell}} \quad M_{\Delta} \equiv \frac{m_{\tilde{l}}^{2}-m_{\tilde{\chi}^{0}}^{2}}{m_{\tilde{l}}}
$$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

What information are we missing?

We don't observe the weakly interacting particles in the event. We can't measure their momentum or masses.

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

What do we know?

We can reconstruct the 4-vectors of the two leptons and the transverse momentum in the event

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: slepton pair-production

Can we calculate anything useful?
With a number of simplifying assumptions...

$$
\vec{E}_{T}^{m i s s}=\sum \vec{p}_{T}^{\tilde{\chi}^{0}} \quad m_{\tilde{\chi}^{0}}=0
$$

...we are still 4 d.o.f. short of reconstructing any masses of interest Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

'Singularity’ Mass Variables

- State-of-the-art for LHC Run I was to use singularity variables as observables in searches
- Derive observables that bound a mass or mass-splitting of interest by
- Assuming knowledge of event decay topology
- "Extremizing" over under-constrained kinematic degrees of freedom associated with weakly interacting particles

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Singularity Variable Example: $\mathrm{M}_{\mathrm{T} 2}$

Generalization of transverse mass to two weakly interacting particle events

$M_{T 2}^{2}\left(m_{\chi}\right)=\min _{\vec{p}_{T}^{\chi_{1}}+\vec{p}_{T}^{\chi_{2}}=\vec{E}_{T}^{m i s s}} \max \left[m_{T}^{2}\left(\vec{p}_{T}^{\ell_{1}}, \vec{p}_{T}^{\chi_{1}}, m_{\chi}\right), m_{T}^{2}\left(\vec{p}_{T}^{\ell_{2}}, \vec{p}_{T}^{\chi_{2}}, m_{\chi}\right)\right]$
with: $m_{T}^{2}\left(\vec{p}_{T}^{\ell_{i}}, \vec{p}_{T}^{\chi_{i}}, m_{\chi}\right)=m_{\chi}^{2}+2\left(E_{T}^{\ell_{i}} E_{T}^{\chi_{i}}-\vec{p}_{T}^{\ell_{i}} \cdot \vec{p}_{T}^{\chi_{i}}\right)$

From:
C.G. Lester and D.J. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys.Lett., B463:99-103, 1999.
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Singularity Variable Example: $\mathrm{M}_{\mathrm{T} 2}$

Generalization of transverse mass to two weakly interacting particle events

Extremization over LSP 'test mass' under-constrained d.o.f.

$M_{T 2}^{2}\left(m_{\chi}\right)=\sum_{\vec{p}_{T}^{\chi_{1}}+\vec{p}_{T}^{\chi_{2}^{2}}=\vec{E}_{T}^{m_{i s s}^{m}}} \max \left[m_{T}^{2}\left(\vec{p}_{T}^{\ell_{1}}, \vec{p}_{T}^{\chi_{1}}, m_{\chi}\right), m_{T}^{2}\left(\vec{p}_{T}^{\ell_{2}}, \vec{p}_{T}^{\chi_{2}}, m_{\chi}\right)\right]$ Subject to constraints
with: $m_{T}^{2}\left(\vec{p}_{T}^{\ell_{i}}, \vec{p}_{T}^{\chi_{i}}, m_{\chi}\right)=m_{\chi}^{2}+2\left(E_{T}^{\ell_{i}} E_{T}^{\chi_{i}}-\vec{p}_{T}^{\ell_{i}} \cdot \vec{p}_{T}^{\chi_{i}}\right)$

From:
C.G. Lester and D.J. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys.Lett., B463:99-103, 1999.
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Singularity Variable Example: $\mathrm{M}_{\mathrm{T} 2}$

Generalization of transverse mass to two weakly interacting particle events

Extremization over
LSP 'test mass' under-constrained d.o.f.

$M_{T 2}^{2}\left(m_{\chi}\right)=\min _{\vec{p}_{T}^{\chi_{1}}+\vec{p}_{T}^{\chi_{2}}=\vec{E}_{T}^{m_{i s s}}} \max \left[m_{T}^{2}\left(\vec{p}_{T}^{\ell_{1}}, \vec{p}_{T}^{\chi_{1}}, m_{\chi}\right), m_{T}^{2}\left(\vec{p}_{T}^{\ell_{2}}, \vec{p}_{T}^{\chi_{2}}, m_{\chi}\right)\right]$ Subject to constraints
with: $m_{T}^{2}\left(\vec{p}_{T}^{\ell_{i}}, \vec{p}_{T}^{\chi_{i}}, m_{\chi}\right)=m_{\chi}^{2}+2\left(E_{T}^{\ell_{i}} E_{T}^{\chi_{i}}-\vec{p}_{T}^{\ell_{i}} \cdot \vec{p}_{T}^{\chi_{i}}\right)$
Constructed to have a kinematic endpoint
(with the right test mass) at: $M_{T 2}^{\max }\left(m_{\chi}\right)=m_{\tilde{\ell}} \quad M_{T 2}^{\max }(0)=M_{\Delta} \equiv \frac{m_{\tilde{\ell}}^{2}-m_{\tilde{\chi}}^{2}}{m_{\tilde{\ell}}}$
From:
C.G. Lester and D.J. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys.Lett., B463:99-103, 1999.

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

$\mathrm{M}_{\mathrm{T} 2}$ in practice

From:
ATLAS-CONF-2013-049
Backgrounds with di-leptonic W's fall steeply once $\mathrm{M}_{\mathrm{T} 2}$ exceeds the W mass Jacobian edge

Searches based on singularity variables have sensitivity to new physics signatures with mass splittings larger than the analogous SM ones

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

The Family of Singularity Variables

- Transverse mass-bounding variables

$$
M_{2 \top}, M_{\top 2}, M_{\circ 2} \text { and } M_{2 \circ} \quad \text { PRD 84, } 095031 \text { [1108.5182] }
$$

- 3D (3+1) generalizations, possibly with constraints

JHEP 1408070 [1401.1449]
Example:

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

The Family of Singularity Variables

- Transverse mass-bounding variables

$$
M_{2 \top}, M_{\top 2}, M_{\circ 2} \text { and } M_{2 \circ} \quad \text { PRD 84, } 095031 \text { [1108.5182] }
$$

- 3D (3+1) generalizations, possibly with constraints

See talks from Partha Konar and Abhaya Kumar Swain at SUSY16 Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

SUSY Search Variables

- A list (incomplete) of observables used in the collider searches described at SUSY16:

$$
\begin{aligned}
& E_{T}^{\mathrm{miss}}, H_{T}^{\mathrm{miss}}, H_{T}, S_{T}, L_{T}, M_{e f f}, \frac{E_{T}^{\mathrm{miss}}}{M_{e f f}} \\
& \frac{E_{T}^{\mathrm{miss}}}{\sqrt{H_{T}}}, M_{T 2}, M_{C T}, M_{C T \perp}, M_{R}, R \\
& L_{p}, \min \Delta \phi_{\mathrm{jet}}, E_{T}^{m i s s}, \alpha_{T}, d E / d x, \beta \\
& M_{j j}, \Sigma M_{\mathrm{jet}}, \bar{M}_{\mathrm{jet}}, M_{\mathrm{fat} \text { jet }}, M_{\gamma \gamma}, M_{\ell \ell} \\
& N_{\mathrm{jet}}, N_{\mathrm{b}-\mathrm{tag}}, N_{\ell}, N_{\gamma}, \cdots
\end{aligned}
$$

- See the many experimental/pheno talks in this conference for descriptions/explanations

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

SUSY Search Variables

- Which variables is/are the best?
- Depends on final state, background composition, sparticle/particle masses, instantaneous luminosity, integrated luminosity, ...

[1605.01416]
Study of Jets and MET searches for n-parton simplified models

Varying n, sparticle masses, compression and comparing different variables/combinations

See Matt Dolen's SUSY16 talk for more details

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

SUSY Search Variables

- Which variableislare the best? wrong question
- Depends on final state, background composition, sparticle/particle masses, instantaneous luminosity, integrated luminosity, ...

See Matt Dolen's SUSY16 talk for more details

- Which combination/basis is the best?

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

SUSY Search Variable Basis "wish-list"

- Complete
- contains all the event information that's useful
- Always well-defined
- not over-constrained as to prevent real solutions
- Orthogonal/~uncorrelated
- as little redundant information as possible ("minimal")
- "Diagonalized"
- Ideally, matched to the particle masses, decay angles, etc. that we hope to study/discover

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

SUSY Search Variable Basis "wish-list"

- Complete
- contains all the event information that's useful
- Always well-defined
- not over-constrained as to prevent real solutions
- Orthogonal/~uncorrelated
- as little redundant information as possible ("minimal")
- "Diagonalized"
- Ideally, matched to the particle masses, decay angles, etc. that we hope to study/discover
- Recursive Jigsaw Reconstruction [P. Jackson, CR,1607.xxxx] is a systematic prescription for deriving such a basis

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

 Example: single W production
four unknown d.o.f. associated with neutrino

$$
\left(\vec{p}_{\nu, T}, p_{\nu, z}, m_{\nu}\right)
$$

subject to three constraints

$$
\vec{E}_{T}^{\text {miss }}=\vec{p}_{\nu, T} \quad m_{\nu}=0
$$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

 Sum Example: single W production
four unknown d.o.f. associated with neutrino

$$
\left(\vec{p}_{\nu, T}, p_{\nu, z}, m_{\nu}\right)
$$

subject to three constraints

$$
\vec{E}_{T}^{\text {miss }}=\vec{p}_{\nu, T} \quad m_{\nu}=0
$$

re-express under-constrained d.o.f. in terms of unknown velocity

$$
p_{\nu, z} \rightarrow \beta_{z}^{\mathrm{LAB} \rightarrow W}
$$

along beam-line to W rest frame
choose β_{z} such that equivalent to setting the nu rapidity equal to the lepton's
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: single W production

choosing $\frac{\partial M_{W}\left(\beta_{z}\right)}{\partial \beta_{z}}=0$

RestFrames Event Generation
$\mathrm{W} \rightarrow l v$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Lab Sate Docay Sunes Visble Sanes Imisibice stutes

RestFrames Event Generation

energy of lepton after boost

$$
\text { subtlety: } \frac{\partial M_{W}\left(\beta_{z}\right)}{\partial \beta_{z}} \propto \frac{\partial\left(\Lambda_{\beta_{z}} \mathbf{p}_{\ell}\right)_{0}}{\partial \beta_{z}}
$$

our W mass variable is (manifestly) invariant under longitudinal boosts it is also invariant to order β_{T}^{2} to transverse boosts
our approximation of the W rest frame has these same properties

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: single W production

RestFrames Event Generation

with approximations of all the velocities relating the reference frames in our event, we can calculate a complete basis of observables

transverse part of W decay angle

RestFrames Event Generation
$\mathrm{W} \rightarrow l v$

azimuthal angle between
W decay plane and $\vec{p}_{W, T} / \hat{n}_{z}$ plane

Recursive Jigsaw Reconstruction

RestFrames Event Generation
with approximations of all the velocities relating the reference frames in our event, we can calculate a complete basis of observables

$\vec{p}_{W, T}, M_{W}, \phi_{W}, \Delta \phi_{W}$
Observables defined in a particular reference frame inherit derived properties of that frame
ϕ_{W} is invariant under
longitudinal boosts and up to order β_{T}^{2} in transverse ones
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

 Example: charged Higgs productionsame unknown d.o.f. and constraints as W case choose β_{z} such that the rapidity of the neutrino is the same as the $h^{0}(\gamma \gamma)+\ell$ system (minimizes $M_{H^{+}}$)
procedure gives us our transverse mass...

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

 Example: charged Higgs productionRestFrames Event Generation
same unknown d.o.f. and constraints as W case choose β_{z} such that the rapidity of the neutrino is the same as the $h^{0}(\gamma \gamma)+\ell$ system (minimizes $M_{H^{+}}$)

RestFrames Event Generation
$\mathrm{pp} \rightarrow \mathrm{H}^{+} \rightarrow \mathrm{h}^{0}(\gamma \gamma) \mathrm{W}(l v)$

... and a full basis of \sim uncorrelated observables
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

RJR procedure provides a complete, physicsmotivated basis that improves resolution of kinematic features we are interested in

RestFrames Event Generation
${ }^{\mathrm{pp} \rightarrow \mathrm{H}^{+} \rightarrow \mathrm{h}^{\mathrm{O}}(\mathrm{y}) \mathrm{w}(\mathrm{W}(\nu)}$ assumes h^{0} production

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

 Example: di-sleptons eight unknown d.o.f. 2x $\ell^{\ell^{\chi^{0}}}$ associated with LSP's ($\left.\vec{p}_{\tilde{\chi}, T}, p_{\tilde{\chi}, z}, m_{\tilde{\chi}}\right)$four simplifying constraints

$$
E_{T}^{\text {miss }}=\vec{p}_{\tilde{\chi} a, T}+\vec{p}_{\tilde{\chi}_{b}, T} \quad m_{\tilde{\chi}}=0
$$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons eight unknown d.o.f. $2 x$

 associated with LSP's $\left(\vec{p}_{\tilde{\chi}, T}, p_{\tilde{\chi}, z}, m_{\tilde{\chi}}\right)$ four simplifying constraints

$$
E_{T}^{\mathrm{miss}}=\vec{p}_{\tilde{\chi}_{a}, T}+\vec{p}_{\tilde{\chi}_{b}, T} \quad m_{\tilde{\chi}}=0
$$

Tricky mass problem:
The invariant mass is invariant under coherent
Lorentz transformations of two particles

$$
m_{i n v}^{2}\left(p_{1}, p_{2}\right)=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right)
$$

The Euclidean mass (or contra-variant mass) is invariant under anti-symmetric Lorentz transformations of two particles

$$
m_{e u c l}^{2}\left(p_{1}, p_{2}\right)=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}+\vec{p}_{1} \cdot \vec{p}_{2}\right)
$$

For two mass observables $\left(\sqrt{\hat{s}}, m_{\tilde{\ell}}\right)$ we want to capture both types of behavior...
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

di-sleptons

Example: di-sleptons

contraboost invariant transverse mass has same $M_{\Delta} \equiv \frac{m_{\tilde{l}}^{2}-m_{\chi^{0}}^{2}}{m_{\tilde{\imath}}}$ end-point, irrespective of $\sqrt{\hat{\beta}} \ldots$
...but end-point is not invariant under Lorentz boost of CM system
assuming ~mass-less leptons

$$
M_{C T}^{2}=2\left(p_{T}^{\ell_{1}} p_{T}^{\ell_{2}}+\vec{p}_{T}^{\ell_{1}} \cdot \vec{p}_{T}^{\ell_{2}}\right)
$$

JHEP 0804:034

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons In RJR, rather than determining all
 under-constrained d.o.f. in one go a la singularity variables, we factorize the problem:
Imagine we knew how to get to di-slepton rest-frame:

Recursive Jigsaw Reconstruction

Example: di-sleptons In RJR, rather than determining all
 under-constrained d.o.f. in one go a la singularity variables, we factorize the problem:
Imagine we knew how to get to di-slepton rest-frame: with the lepton four-vectors in this frame $\mathbf{p}_{\ell}^{\tilde{\tilde{\ell}} \tilde{\ell}}{ }_{a} \mathbf{p}_{\ell}^{\tilde{\tilde{Q}} \tilde{}}{ }_{b}$ we choose the velocity to get to the lepton frames $\vec{\beta} \tilde{\ell} \tilde{\ell} \rightarrow \tilde{\ell}_{i}$

$$
\frac{\partial\left(\Lambda_{\vec{\beta}} \mathbf{p}_{\ell}^{\tilde{\tilde{Q}_{\ell}}}+\Lambda_{-\vec{\beta}} \mathbf{p}_{\ell b}^{\tilde{\tilde{\ell}}}\right)_{0}}{\partial \vec{\beta}}=\frac{\partial\left(E_{\ell}^{\tilde{\ell}}{ }_{a}{ }_{a}+E_{\ell b}^{\tilde{\ell} b}\right)}{\partial \vec{\beta}}=0
$$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons In RJR, rather than determining all
 under-constrained d.o.f. in one go a la singularity variables, we factorize the problem:
Imagine we knew how to get to di-slepton rest-frame:
 we choose the velocity to get to the lepton frames $\vec{\beta} \tilde{\ell} \tilde{\ell} \tilde{\ell}_{i}$
which also sets $M_{\tilde{\chi} \tilde{\chi}}=m_{\ell \ell}$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons In RJR, rather than determining all
 under-constrained d.o.f. in one go a la singularity variables, we factorize the problem:

Imagine we knew how to get to di-slepton rest-frame: with the lepton four-vectors in this frame $\mathbf{p}_{\ell}^{\tilde{\tilde{\ell} \tilde{\ell}}{ }_{a} \mathbf{p}_{\ell}^{\tilde{Q_{\ell}}}{ }_{b} .}$ we choose the velocity to get to the lepton frames $\vec{\beta} \tilde{\ell} \tilde{\ell}^{\tilde{\ell}_{i}}$

$$
\frac{\partial\left(\Lambda_{\vec{\beta}} \mathbf{p}_{\ell}^{\tilde{\tilde{Q}_{\ell}}}+\Lambda_{-\vec{\beta}} \mathbf{p}_{\ell b}^{\tilde{\tilde{\ell}}}\right)_{0}}{\partial \vec{\beta}}=\frac{\partial\left(E_{\ell}^{\tilde{\ell}}{ }_{a}{ }_{a}+E_{\ell b}^{\tilde{\ell} b}\right)}{\partial \vec{\beta}}=0
$$

which also sets $M_{\tilde{\chi} \tilde{\chi}}=m_{\ell \ell}$
which allows us to determine longitudinal component of $\vec{\beta}$ LAB $\rightarrow \mathrm{CM}$ by minimizing $\sqrt{\hat{s}}$, as in previous examples

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons

Resulting basis of observables are the super-razor variables
[PRD 89, 055020 (2014)]

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: di-sleptons

extracts \sim uncorrelated estimators for both mass scales

along with complete basis of other observables

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

New approach to reconstructing final states with weakly interacting particles: Recursive Jigsaw Reconstruction

- The strategy is to transform observable momenta iteratively reference-frame to reference-frame, traveling through each of the reference frames relevant to the topology
- Recursive: At each step, specify only the relevant d.o.f. related to that transformation \Rightarrow apply a Jigsaw Rule
Repeat procedure recursively, using the visible momenta encountered in each reference frame
- Jigsaw: each of these rules is factorizable/customizable/ interchangeable like a (strange) jigsaw puzzle pieces
- Rather than obtaining one observable, get a complete basis of useful observables for each event
- See P. Jackson and L. Lee's talks for additional applications Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Generalizing Further...

Recursive Jigsaw approach can be generalized to arbitrarily complex final states with weakly interacting particles

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: the di-leptonic top basis

In more complicated decay topologies there can be many masses/mass-splittings, spin-sensitive angles and other observables of interest that can be used to distinguish between the SM and SUSY signals

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Example: the di-leptonic top basis

Mass-sensitive singularity variables are sensitive to言 mass splittings through end-points, but are not necessarily independent

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

The di-leptonic top basis

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

The di-leptonic top basis

largely independent information about decay angles

Here, the decay angle of the top/anti-top system can be used to study resonance structure, along with di-top mass

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

The di-leptonic top basis

largely independent information about decay angles

Here, the decay angle of the top/anti-top system can be used to study resonance structure, along with di-top mass

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

Example: non-resonant $\mathrm{N} W(\ell \nu)$

Decay States
Visible States
Invisible States

RestFrames Event Generation

RestFrames Event Generation

$$
\mathrm{M}_{\mathrm{CM}} / \mathrm{m}_{\mathrm{CM}}^{\text {true }}
$$

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Recursive Jigsaw Reconstruction

RestFrames Event Generation Reconstruction

Implementations of the examples shown in this talk are available in the public software RestFrames (www.RestFrames.com) Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Summary

- Probing SUSY at colliders (here LHC13) involves understanding a large, new, phase-space
- Boot-strapping our understanding of the SM and detectors from the poles to the regions where we're searching for evidence of BSM physics
- Many different way to partition that phase-space
- Observables designed for every final state, every kinematic feature we hope to exploit. Enormous breadth of techniques/strategies/signatures
- We're getting closer to a discovery, SUSY or other
- More data reveals more phase-space, increasingly detailed analyses probing more thoroughly.
- No stone left unexamined - maybe SUSY17?

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Open vs. closed final states

CLOSED $H \rightarrow Z(\ell \ell) Z(\ell \ell)$ Can calculate all masses, momenta, angles

Can use masses for discovery, can use information to measure spin, CP, etc.

OPEN $\quad H \rightarrow W(\ell \nu) W(\ell \nu)$
Under-constrained system with multiple weakly interacting particles - can't calculate all the kinematic information What useful information can we calculate? What can we measure?

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Singularity variables

Kinematic Singularities. A singularity is a point where the local tangent space cannot be defined as a plane, or has a different dimension than the tangent spaces at nonsingular points.

From:
Ian-Woo Kim. Algebraic singularity method for mass measurements with missing energy. Phys. Rev. Lett., 104:081601, Feb 2010.

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

Singularity variables

The guiding principle we employ for creating useful hadron-collider event variables, is that: we should place the best possible bounds on any Lorentz invariants of interest, such as parent masses or the center-of-mass energy $\hat{s}^{1 / 2}$, in any cases where it is not possible to determine the actual values of those Lorentz invariants due to incomplete event information. Such incomplete informa-

From:

A.J. Barr, T.J. Khoo, P. Konar, K. Kong, C.G. Lester, et al. Guide to transverse projections and mass-constraining variables. Phys.Rev., D84:095031, 2011.

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

p_{T} corrections for M_{CT}

Attempts have been made to mitigate this problem:

(i) 'Guess' the lab $\rightarrow \mathrm{CM}$ frame boost:
$M_{C T(\text { corr })}=\left\{\begin{array}{ccc}M_{C T} & \text { after boosting by } \beta=p_{b} / E_{\mathrm{cc}} & \text { if } A_{x(\mathrm{lab})} \geq 0 \text { or } A_{x(\mathrm{lo})}^{\prime} \geq 0 \\ M_{C T} & \text { after boosting by } \beta=p_{b} / \hat{E} & \text { if } A_{x(\mathrm{hi)}}^{\prime}<0 \\ M_{C y} & \text { if } A_{x(\mathrm{hi)}}^{\prime} \geq 0\end{array}\right.$
x - parallel to boost
y - perp. to boost

$$
\text { with: } \begin{aligned}
A_{x} & =p_{x}\left[q_{1}\right] E_{y}\left[q_{2}\right]+p_{x}\left[q_{2}\right] E_{y}\left[q_{1}\right] \\
M_{C y}^{2} & =\left(E_{y}\left[q_{1}\right]+E_{y}\left[q_{2}\right]\right)^{2}-\left(p_{y}\left[q_{1}\right]-p_{y}\left[q_{2}\right]\right)^{2}
\end{aligned}
$$

Giacomo Polesello and Daniel R. Tovey. Supersymmetric particle mass measurement with the boost-corrected contransverse mass. JHEP, 1003:030, 2010.
(ii) Only look at event along axis perpendicular to boost:

Konstantin T. Matchev and Myeonghun Park. A General method for determining the masses of semi-invisibly decaying particles at hadron colliders. Phys.Rev.Lett., 107:061801, 2011.
Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

$\mathrm{M}_{\mathrm{CTperp}}$ in practice

'peak position' of signal and backgrounds due to other cuts ($\mathrm{p}_{\mathrm{T}}, \mathrm{MET}$) and only weakly sensitive to sparticle masses

From:

CMS-SUS-PAS-13-006

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

What other info can we extract?

Ex. $\mathrm{M}_{\mathrm{T} 2}$ extremization assigns values to missing degrees of freedom - if one takes these assignments literally, can we calculate other useful variables?

From:

Mass and Spin Measurement with M(T2) and MAOS Momentum - Cho, Won Sang et al. Nucl.Phys.Proc.Suppl. 200-202 (2010) 103-112 arXiv:0909.4853 [hep-ph]

When we assign unconstrained d.o.f. by extremizing one quantity, what are the general properties of other variables we calculate? What are the correlations among them?

Christopher Rogan - SUSY16 - University of Melbourne, July 6, 2016

