SUSY'16 Melbourne, 7/07/2016

Latest Results from Neutrino Oscillation Experiments

Anselmo Cervera Villanueva IFIC (UV-CSIC) Valencia

On behalf of the T2K Collaboration

Neutrino sources

Neutrino sources

Anselmo Cervera Villanueva, IFIC (UV-CSIC)-Valencia

A bit of recent history

- **1998**: Super-Kamiokande discovered neutrino oscillations $(v_{\mu} \rightarrow v_{x})$
- **1999**: K2K (Japan) is the first Long-Baseline (LBL) ν -osc experiment
- **2001**: SNO discovered the solar transition $(v_e \rightarrow v_x)$
- **2002:** Kamland (Japan) reactor experiment confirms solar transition ($\overline{v}_e \rightarrow \overline{v}_x$) **2002:** Nobel Prize for Koshiba and Davis
- **2011**: T2K (Japan, LBL) has 2.5 σ indication of $v_{\mu} \rightarrow v_{e}$ (and $\theta_{13} \neq 0$)
- **2012**: Daya-Bay (China) reactor experiment measured $\theta_{13} \neq 0$ (~8.4°)
- **2013**: T2K discovers (> 7σ) the $v_{\mu} \rightarrow v_{e}$ transition
- 2014: NOvA (US) LBL experiment began data-taking
- **2015**: OPERA (Italy, LBL) discovers $v_{\mu} \rightarrow v_{\tau}$ oscillation
- **2015**: US and EU LBL programs collapse into DUNE
- 2015: Nobel Prize for Kajita and McDonald

A bit of recent history

- **1998:** Chooz (France) puts a limit on θ₁₃ (<12°)
- **1998**: Super-Kamiokande discovered neutrino oscillations $(v_{\mu} \rightarrow v_{x})$
- **1999**: K2K (Japan) is the first Long-Baseline (LBL) ν -osc experiment
- **2001**: SNO discovered the solar transition $(\mathbf{v_e} \rightarrow \mathbf{v_x})$
- **2002:** Kamland (Japan) reactor experiment confirms solar transition $(\overline{v}_e \rightarrow \overline{v}_x)$
- 2002: Nobel Prize for Koshiba and Davis
- **2011**: T2K (Japan, LBL) has 2.5 σ indication of $v_{\mu} \rightarrow v_{e}$ (and $\theta_{13} \neq 0$)
- **2012**: Daya-Bay (China) reactor experiment measured $\theta_{13} \neq 0$ (~8.4°)
- **2013**: T2K discovers (> 7σ) the $v_{\mu} \rightarrow v_{e}$ transition
- 2014: NOvA (US) LBL experiment began data-taking
- **2015**: OPERA (Italy, LBL) discovers $v_{\mu} \rightarrow v_{\tau}$ oscillation
- 2015: US and EU LBL programs collapse into DUNE
- 2015: Nobel Prize for Kajita and McDonald

Experimental strategies

porticle dota group 2015

Anselmo Cervera Villanueva, IFIC (UV-CSIC)-Valencia

SUSY 20016, MELBOURNE

Daya Bay reactor experiment

- \overline{v}_e detection by Inverse Beta Decay (search for \overline{v}_e disappearance)
- High statistics with 6 powerful reactors: 4th largest in the world
- Small reactor flux uncertainty by relative measurement: near sites, 1 far site
- Small detector uncertainty with multiple identical detectors

Latest results

See talk by B. ROSKOVEC, at 14:00 in flavour physics WG

1230 days data

4%

Other reactor experiments

- Double-Chooz (France): first results including near detector data
 - Lots of improvements in calibration and systematics but not new results since Moriond'16
- RENO (Korea): Phys. Rev. Lett. 116, 211801 (May 2016)

SUSY 20016, MELBOURNE

The T2K experiment

T2K (Japan) was the first off-axis neutrino oscillation experiment, started taking data early 2010 and in 2011 published the first indication of electron neutrino appearance (and non-zero θ₁₃), which was later discovered (> 5σ) in 2013

- Taking data in anti-neutrino mode since 2014
- Next goals:
 - Discover \overline{v}_e appearance
 - Search for strong indication of CP violation

T2K detectors

T2K detectors

T2K detectors

tuned narrow band beam

Anselmo Cervera Villanueva, IFIC (UV-CSIC)-Valencia

Anselmo Cervera Villanueva, IFIC (UV-CSIC)-Valencia

12

Data taking summary

- Started data taking with anti-neutrinos in 2014
- Continuous rise in power from ~225 kW (2014) to 420 kW (2016)

27 May 2016 POT total: 1.510×10²¹ v-mode POT: 7.57×10²⁰ (50.14%) → 6.9x10²⁰ analysed v-mode POT: 7.53×10²⁰ (49.86%)

POT ≡ Protons on Target

4 neutrino samples

Antineutrino analysis

- This is the 2015 analysis. Results to be updated at ICHEP
- \bullet Best results for $\overline{\nu}_{\mu}$ disappearance with one year of data
- Allow test of CPT symmetry. For the moment consistent with neutrino results

First fully joint analysis

• First fully joint analysis across all modes of oscillation

 $v_{\mu} \rightarrow v_{e}$ $v_{\mu} \rightarrow v_{\mu}$ $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$

Hints of CP violation

- no CP-violation ($\delta_{CP}=0$) excluded at 90% CL. Best fit $\delta_{CP} \sim -\pi/2$
- Almost a 2σ effect

The NOvA experiment

- NOvA, in the US, started data taking in 2014
- A similar concept to T2K but different detector type (scintillator), and much **longer baseline** (810 km): it has **better sensitivity to mass hierarchy** (the sign of Δm^2_{23})

Latest results

~20% of planned exposure (6.05x10²⁰ POT)

v_{μ} disappearance

- □ 78 events observed in FD
 - 473±30 with No Oscillation
 - 82 at best oscillation fit
 - 3.7 beam BG + 2.9 cosmic

ve appearance

- Observe 33 events in FD
 - background 8.2±0.8
 - >8σ signal

SUSY 20016, MELBOURNE

Maximal mixing (θ₂₃ =45°) δ_{CP}~⁻ δ_{CP}~⁻

 $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

NOvA Preliminary

Hints of non maximal mixing

- Weakly prefer normal mass hierarchy and $\,\delta_{CP} \sim 3\pi/2$ (- $\pi/2)$
- $\delta_{CP} \sim \pi/2$ excluded at 3σ for IH

20

Summary of current results

Summary of current results

θ_{23} - Δm^2_{23}

- compatible for all experiments also between v & \overline{v} (no CPT)
- Maximal mixing (θ₂₃=45°) excluded at 2.5σ by NOvA

Summary of current results

θ_{23} - Δm^2_{23}

θ13-δ_{CP}

- compatible for all experiments also between v & \overline{v} (no CPT)
- Maximal mixing (θ₂₃=45°) excluded at 2.5σ by NOvA

- small preference for δ_{CP}≈-π/2 and normal mass hierarchy (Δm²₂₃>0) from T2K and NOvA
- **θ**₁₃, dominated by Daya Bay, also compatible

What's next ?

• The combination of all current experiments will probably result in a measurement of the mass hierarchy and an indication of non-zero δ_{CP} (2-3 sigma)

• A new generation is needed to measure CP: larger or more precise detectors, more powerful beams

T2K phase II

- Proposed to cover the gap between T2K/NOvA and the next generation of experiments: HK/DUNE (from 2020 to 2026)
- Same far detector (SK) + beam upgrade: collect 20×10^{21} p.o.t.
- New improved near detector complex and reduced systematics
- Could achieve $>3\sigma$ sensitivity on CP violation

Hyper-Kamiokande (HK)

http://www.hyper-k.org/en/

- 560 kiloton (fiducial) water-Cherenkov detector with high intensity beam from J-PARC
- Multipurpose machine with all of the physics topics of Super-K and T2K, plus a few more

Deep Underground Neutrino Experiment

- High Intensity Wide Band beam from Fermilab to SURF (Homestake mine)
- **40 kton**: 4 Liquid Argon TPC detectors of 10 ktons each
 - Lower mass compensated by much larger efficiency
- Oscillation physics in 2026

Outlook

- Neutrino oscillations have been a very vibrant field for the last two decades, crucial for the understanding of neutrino properties, as mixing angles and mass-square splittings, which were measured with precisions better than 4%, except θ₂₃ (~8%)
- Three unknowns remain: δ_{CP} , sign(Δm^2_{23}) and θ_{23} octant
- With hints on these three unknowns, the current generation of experiments, **T2K**, **NOvA**, **Daya Bay**, etc, should be able to achieve 3σ sensitivity on δ_{CP} and sign(Δm^2_{23}), even more in **T2K-II**
- A new generation of experiments as **DUNE** and **HK** will cover a larger phase space of δ_{CP} with sensitivities **beyond 5** σ
- Is that the full story ? What about sterile neutrinos ? Let's be opened to surprises ...